Genetic Characterization of the Partial Disease Resistance of Rice to Bacterial Panicle Blight and Sheath Blight by Combined QTL Linkage and QTL-seq Analyses
Abstract
:1. Introduction
2. Results
2.1. Phenotypic Variations within the RIL population
2.2. Correlations among the Traits of BPB, SB, and Days to 50% Heading (DTH)
2.3. QTL Analysis of the Traits for BPB, SB, and DTH
2.4. Non-Parametric Analysis of the Markers Associated with BPB, SB, and DTH
2.5. Analysis of the Genes within the Major QTL Overlapping for SB, BPB, and DTH
2.6. QTL-Seq Analysis Using Whole-Genome Sequence Data of Selected RILs
2.7. Marker Test for the Parents and the Selected RILs for the Resistant and Susceptible Bulks
3. Discussion
4. Materials and Methods
4.1. Generation of the RIL Mapping Population
4.2. Evaluation of Individual RILs in Their Phenotypes in BPB, SB, and other Traits
4.3. Genotyping of the RIL Population
4.4. Statistical Analyses of Phenotypic Traits
4.5. QTL Linkage Analysis
4.6. QTL-Seq Analysis of the Resistant and Susceptible Bulks
4.7. Comparative Sequence Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wamishe, Y.; Mulaw, T.; Jia, Y.; Gebremariam, T.A.; Belmar, S.B.; Kelsey, C.D. Monitoring bacterial panicle blight disease of rice and germplasm evaluation for resistance in Arkansas in 2015. B. R. Wells Rice Res. Stud. 2016, 634, 120–125. [Google Scholar]
- Mulaw, T.; Wamishe, Y.; Jia, Y. Characterization and in plant detection of bacteria that cause bacterial panicle blight disease of rice. Am. J. Plant Sci. 2018, 9, 667–684. [Google Scholar] [CrossRef] [Green Version]
- Jia, Y.; Gibbons, A.; Sookaserm, T.B. Identification of sheath blight resistant rice varieties from the USDA rice core collection. In Proceedings of the 36th Rice Technical Working Group Meeting Proceedings, Galveston, TX, USA, 1–4 March 2016; p. 67. [Google Scholar]
- Liu, G.; Jia, Y.; McClung, A.M.; Oard, J.; Lee, F.; Correll, J. Confirming QTLs and finding additional loci responsible for resistance to rice sheath blight disease. Plant Dis. 2013, 97, 113–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nandakumar, R.; Shahjahan, A.K.M.; Yuan, X.L.; Dickstein, E.R.; Groth, D.E.; Clark, C.A.; Cartwright, R.D.; Rush, M.C. Burkholderia glumae and B. gladioli cause bacterial panicle blight in rice in the southern United States. Plant Dis. 2009, 93, 896–905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahjahan, A.K.M.; Rush, M.C.; Groth, D.; Clark, C.A. Panicle blight. Rice J. 2000, 15, 26–29. [Google Scholar]
- Urakami, T.; Ito-Yoshida, C.; Araki, H.; Kijima, T.; Suzuki, K.; Komagata, K. Transfer of Pseudomonas plantarii and Pseudomonas glumae to Burkholderia as Burkholderia spp. and description of Burkholderia vandii sp. nov. Int. J. Syst. Bacteriol. 1994, 44, 235–245. [Google Scholar] [CrossRef]
- Yabuuchi, E.; Kosako, Y.; Oyaizu, H.; Yano, I.; Hotta, H.; Hashimoto, Y.; Ezaki, T.; Arakawa, M. Proposal of Burkholderia gen. nov. and transfer of seven species of the Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. Nov. Microbiol. Immunol. 1992, 36, 1251–1275. [Google Scholar] [CrossRef]
- Ham, J.H.; Melanson, R.A.; Rush, M.C. Burkholderia glumae: Next major pathogen of rice? Mol. Plant Pathol. 2011, 12, 329–339. [Google Scholar] [CrossRef]
- Jeong, Y.; Kim, J.; Kim, S.; Kang, Y.; Nagamatsu, T.; Hwang, I. Toxoflavin produced by Burkholderia glumae causing rice grain rot is responsible for inducing bacterial wilt in many field crops. Plant Dis. 2003, 87, 890–895. [Google Scholar] [CrossRef] [Green Version]
- Nandakumar, R.; Rush, M.C.; Correa, F. Association of Burkholderia glumae and B. gladioli with panicle blight symptoms on rice in Panama. Plant Dis. 2007, 91, 767. [Google Scholar] [CrossRef]
- Riera-Ruiz, C.; Vargas, J.; Cedeno, C.; Quirola, P.; Escobar, M.; Cevallos-Cevallos, J.M.; Ratti, M.; Peralta, E.L. First report of Burkholderia glumae causing bacterial panicle blight on rice in Ecuador. Plant Dis. 2014, 98, 988–989. [Google Scholar] [CrossRef]
- Zhou, X.G. First report of bacterial panicle blight of rice caused by Burkholderia glumae in South Africa. Plant Dis. 2014, 98, 566. [Google Scholar] [CrossRef] [PubMed]
- Shew, A.M.; Durand-Morat, A.; Nalley, L.L.; Zhou, X.G.; Rojas, C.; Thoma, G. Warming increases bacterial panicle blight (Burkholderia glumae) occurrences and impacts on USA rice production. PLoS ONE 2019, 14, e0219199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, F.N.; Rush, M.C. Rice sheath blight: A major rice disease. Plant Dis. 1983, 67, 829–832. [Google Scholar] [CrossRef]
- Rush, M.C.; Lee, F.N. Sheath blight. In Compendium of Rice Diseases; Webster, R.K., Gunnell, P.S., Eds.; APS Press: St. Paul, MN, USA, 1992; pp. 22–23. [Google Scholar]
- Liu, Y.; Chen, L.; Fu, D.; Lou, Q.J.; Mei, H.W.; Xiong, L.; Li, M.S.; Xu, X.Y.; Mei, X.H.; Luo, L.J. Dissection of additive, epistatic effect and QTL X environment interaction of quantitative trait loci for sheath blight resistance in rice. Hereditas 2014, 151, 28–37. [Google Scholar] [CrossRef]
- Marchetti, M.A.; Bollich, C.N. Quantification of the relationship between sheath blight severity and yield loss in rice. Plant Dis. 1991, 75, 773–775. [Google Scholar] [CrossRef]
- Mizobuchi, R.; Fukuoka, S.; Tsushima, S.; Yano, M.; Sato, H. QTLs for resistance to major rice diseases exacerbated by global warming: Brown spot, bacterial seedling rot, and bacterial grain rot. Rice 2016, 9, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinson, S.R.M.; Shahjahan, A.K.M.; Rush, M.C.; Groth, D.E. Bacterial panicle blight resistance QTLs in rice and their association with other disease resistance loci and heading date. Crop Sci. 2010, 50, 1287–1297. [Google Scholar] [CrossRef]
- Mizobuchi, R.; Sato, H.; Fukuoka, S.; Tanabata, T.; Tsushima, S.; Imbe, T.; Yano, M. Mapping a quantitative trait locus for resistance to bacterial grain rot in rice. Rice 2013, 6, 13. [Google Scholar] [CrossRef] [Green Version]
- Hikichi, Y.; Noda, C.; Shimizu, K. Oxolinic acid. Jpn. J. Infect. Dis. 1989, 55, 21–23. [Google Scholar]
- Zhou, X.-G. Sustainable strategies for managing bacterial panicle blight in rice. In Protecting Rice Grains in the Post-Genomic Era; Jia, Y., Ed.; IntechOpen: London, UK, 2019. [Google Scholar]
- Mizobuchi, R.; Fukuoka, S.; Tsuiki, C.; Tsushima, S.; Sato, H. Evaluation of major Japanese rice cultivars for resistance to bacterial grain rot caused by Burkholderia glumae and identification of standard cultivars for resistance. Breed. Sci. 2018, 68, 413–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.-G.; McClung, A.M.; Way, M.O.; Jo, Y.; Tabien, R.E.; Wilson, L.T. Severe outbreak of bacterial panicle blight across Texas Rice Belt in 2010. Phytopathology 2011, 101, S205. [Google Scholar]
- Liu, G.; Jia, Y.; Correa-Victoria, F.J.; Prado, G.A.; Yeater, K.M.; McClung, A.; Correll, J.C. Mapping quantitative trait loci responsible for resistance to sheath blight in rice. Phytopathology 2009, 99, 1078–1084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taguchi-Shiobara, F.; Ozaki, H.; Sato, H.; Maeda, H.; Kojima, Y.; Ebitani, T.; Yano, M. Mapping and validation of QTLs for rice sheath blight resistance. Breed. Sci. 2013, 63, 301–308. [Google Scholar] [CrossRef] [Green Version]
- Wen, Z.H.; Zeng, Y.X.; Ji, Z.J.; Yang, C.D. Mapping quantitative trait loci for sheath blight disease resistance in Yangdao 4 rice. Genet. Mol. Res. 2015, 14, 1636–1649. [Google Scholar] [CrossRef]
- Zarbafi, S.S.; Ham, J.H. An overview of rice QTLs associated with disease resistance to three major rice diseases: Blast, sheath blight, and bacterial panicle blight. Agronomy 2019, 9, 177. [Google Scholar] [CrossRef] [Green Version]
- Pinson, S.R.M.; Capdevielle, F.M.; Oard, J.H. Confirming QTLs and finding additional loci conditioning sheath blight resistance in rice using recombinant inbred lines. Crop Sci. 2005, 45, 503–510. [Google Scholar] [CrossRef] [Green Version]
- Molla, K.A.; Azharudheen, T.P.M.; Ray, S.; Sarkar, S.; Swain, A.; Chakraborti, M.; Vijayan, J.; Singh, O.N.; Baig, M.J.; Mukherjee, A.K. Novel biotic stress responsive candidate gene based SSR (cgSSR) markers from rice. Euphytica 2019, 215, 17. [Google Scholar] [CrossRef]
- Silva, J.; Scheffler, B.; Sanabria, Y.; De Guzman, C.; Galam, D.; Farmer, A.; Woodward, J.; May, G.; Oard, J. Identification of candidate genes in rice for resistance to sheath blight disease by whole genome sequencing. Theor. Appl. Genet. 2012, 124, 63–74. [Google Scholar] [CrossRef]
- Zuo, S.M.; Zhang, Y.F.; Yin, Y.J.; Li, G.Z.; Zhang, G.W.; Wang, H.; Chen, Z.X.; Pan, X.B. Fine-mapping of qSB-9TQ, a gene conferring major quantitative resistance to rice sheath blight. Mol. Breed. 2014, 34, 2191–2203. [Google Scholar] [CrossRef]
- Zuo, S.M.; Yin, Y.J.; Pan, C.H.; Chen, Z.X.; Zhang, Y.F.; Gu, S.L.; Zhu, L.H.; Pan, X.B. Fine mapping of qSB-11LE, the QTL that confers partial resistance to rice sheath blight. Theor. Appl. Genet. 2013, 126, 1257–1272. [Google Scholar] [CrossRef]
- Poland, J.A.; Balint-Kurti, P.J.; Wisser, R.J.; Pratt, R.C.; Nelson, R.J. Shades of gray: The world of quantitative disease resistance. Trends Plant Sci. 2009, 14, 21–29. [Google Scholar] [CrossRef]
- Young, N.D. QTL mapping and quantitative disease resistance in plants. Annu. Rev. Phytopathol. 1996, 34, 479–501. [Google Scholar] [CrossRef] [PubMed]
- Tanksley, S.D. Mapping polygenes. AnnuRev. Genet. 1993, 27, 205–233. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.L.; Qiu, J.; Gao, Q.K. QTL-BSA: A bulked segregant analysis and visualization pipeline for QTL-seq. Interdiscip. Sci. 2019, 11, 730–737. [Google Scholar] [CrossRef]
- Takagi, H.; Abe, A.; Yoshida, K.; Kosugi, S.; Natsume, S.; Mitsuoka, C.; Uemura, A.; Utsushi, H.; Tamiru, M.; Takuno, S.; et al. QTL-seq: Rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J. 2013, 74, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Sha, X.; Linscombe, S.D.; Groth, D.; Bond, J.A.; White, L.M.; Chu, Q.R.; Utomo, H.S.; Dunand, R.T. Registration of ‘Jupiter’ rice. Crop Sci. 2006, 46, 1811–1812. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Wang, J.; Han, Z.; Gong, X.; Zhang, H.; Chai, J. Molecular Mechanism for Fungal Cell Wall Recognition by Rice Chitin Receptor OsCEBiP. Structure 2016, 7, 1192–1200. [Google Scholar] [CrossRef] [Green Version]
- Hayafune, M.; Berisio, R.; Marchetti, R.; Silipo, A.; Kayama, M.; Desaki, Y.; Arima, S.; Squeglia, F.; Ruggiero, A.; Tokuyasu, K.; et al. Chitin-induced activation of immune signaling by the rice receptor CEBiP relies on a unique sandwich-type dimerization. Proc. Natl. Acad. Sci. USA 2014, 111, E404–E413. [Google Scholar] [CrossRef] [Green Version]
- Weerawanich, K.; Webster, G.; Ma, J.K.; Phoolcharoen, W.; Sirikantaramas, S. Gene expression analysis, subcellular localization, and in planta antimicrobial activity of rice (Oryza sativa L.) defensin 7 and 8. Plant Physiol. Biochem. 2018, 124, 160–166. [Google Scholar] [CrossRef]
- Lee, S.Y.; Kim, J.; Han, J.J.; Han, M.J.; An, G.H. Functional analyses of the flowering time gene OsMADS50, the putative SUPPRESSOR OF OVEREXPRESSION OF CO 1/AGAMOUS-LIKE 20 (SOC1/AGL20) ortholog in rice. Plant J. 2004, 38, 754–764. [Google Scholar] [CrossRef]
- Li, Z.; Pinson, S.R.; Marchetti, M.A.; Stansel, J.W.; Park, W.D. Characterization of quantitative trait loci (QTLs) in cultivated rice contributing to field resistance to sheath blight (Rhizoctonia solani). Theor. Appl. Genet. 1995, 91, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.K.; Luo, L.J.; Mei, H.W.; Paterson, A.H.; Zhao, X.H.; Zhong, D.B.; Wang, Y.P.; Yu, X.Q.; Zhu, L.; Tabien, R.; et al. A “defeated” rice resistance gene acts as a QTL against a virulent strain of Xanthomonas oryzae pv. oryzae. Mol. Gen. Genet. 1999, 261, 58–63. [Google Scholar] [CrossRef]
- Illa-Berenguer, E.; Van Houten, J.; Huang, Z.; van der Knaap, E. Rapid and reliable identification of tomato fruit weight and locule number loci by QTL-seq. Theor. Appl. Genet. 2015, 128, 1329–1342. [Google Scholar] [CrossRef]
- Wei, Q.Z.; Fu, W.Y.; Wang, Y.Z.; Qin, X.D.; Wang, J.; Li, J.; Lou, Q.F.; Chen, J.F. Rapid identification of fruit length loci in cucumber (Cucumis sativus L.) using next-generation sequencing (NGS)-based QTL analysis. Sci. Rep. 2016, 6, 27496. [Google Scholar] [CrossRef] [PubMed]
- Mizobuchi, R.; Sato, H.; Fukuoka, S.; Tsushima, S.; Yano, M. Fine mapping of RBG2, a quantitative trait locus for resistance to Burkholderia glumae, on rice chromosome 1. Mol. Breed. 2015, 35, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pieterse, C.M.; van Wees, S.C.; van Pelt, J.A.; Knoester, M.; Laan, R.; Gerrits, H.; Weisbeek, P.J.; van Loon, L.C. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 1998, 10, 1571–1580. [Google Scholar] [CrossRef] [Green Version]
- Cao, H.; Glazebrook, J.; Clarke, J.D.; Volko, S.; Dong, X. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 1997, 88, 57–63. [Google Scholar] [CrossRef] [Green Version]
- Groth, D.E. Effects of cultivar resistance and single fungicide application on rice sheath blight, yield, and quality. Crop Prot. 2008, 27, 1125–1130. [Google Scholar] [CrossRef]
- Linscombe, S.D.; Sha, X.; Bond, J.A.; Bearb, K.; Rush, M.C.; Chu, Q.R.; Groth, D.E.; White, L.M.; Dunand, R.T. Registration of ‘Trenasse’ rice. Crop Sci. 2006, 46, 2318–2319. [Google Scholar] [CrossRef] [Green Version]
- Saichuck, J. Louisiana Rice Produciton Handbook; LSU AgCenter: Baton Rouge, LA, USA, 2014. [Google Scholar]
- Shrestha, B.K.; Karki, H.S.; Groth, D.E.; Jungkhun, N.; Ham, J.H. Biological control activities of rice-associated Bacillus sp. strains against sheath blight and bacterial panicle blight of rice. PLoS ONE 2016, 11, e0146764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karki, H.S.; Shrestha, B.K.; Han, J.W.; Groth, D.E.; Barphagha, I.K.; Rush, M.C.; Melanson, R.A.; Kim, B.S.; Ham, J.H. Diversities in virulence, antifungal activity, pigmentation, and DNA fingerprint among strains of Burkholderia glumae. PLoS ONE 2012, 7, e45376. [Google Scholar] [CrossRef] [PubMed]
- IRRI. Standard Evaluation System for Rice; International Rice Research Institute: Manila, Philippines, 1996. [Google Scholar]
- Clarke, J.D. Cetyltrimethyl ammonium bromide (CTAB) DNA miniprep for plant DNA isolation. Cold Spring Harb. Protoc. 2009, 2009, pdb–prot5177. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: http://www.R-project.org/ (accessed on 7 March 2019).
- Holland, J.B.; Nyquist, W.E.; Cervantes-Martínez, C.T. Estimating and interpreting heritability for plant breeding: An update. In Plant Breeding Reviews; Janick, J., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2002; pp. 9–112. [Google Scholar]
- Meng, L.; Li, H.; Zhang, L.; Wang, J. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop Journal 3 2015, 269–283. [Google Scholar] [CrossRef] [Green Version]
- Broman, K.W.; Wu, H.; Sen, S.; Churchill, G.A. R/qtl: QTL mapping in experimental crosses. Bioinformatics 2003, 19, 889–890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Ma, H.; Goryanin, I. A semi-automated genome annotation comparison and integration scheme. BMC Bioinform. 2013, 14, 172. [Google Scholar] [CrossRef] [Green Version]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. 2010. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 23 June 2018).
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv 2013, arXiv:1303.3997. [Google Scholar]
- Sugihara, Y.; Young, L.; Yaegashi, H.; Natsume, S.; Shea, D.J.; Takagi, H.; Booker, H.; Innan, H.; Terauchi, R.; Abe, A. High-performance pipeline for MutMap and QTL-seq. bioRxiv 2020. [Google Scholar] [CrossRef]
- Shrestha, B.K.; Oh, D.H.; Dassanayake, M.; Ham, J.H. Analysis of genome sequence variations among three U.S. rice varieties showing differential quantitative disease resistance to bacterial panicle blight and sheath blight. Int. J. Genom. Data Min. 2018, 122. [Google Scholar] [CrossRef]
- Poplin, R.; Ruano-Rubio, V.; DePristo, M.A.; Fennell, T.J.; Carneiro, M.O.; Van der Auwera, G.A.; Kling, D.E.; Gauthier, L.D.; Levy-Moonshine, A.; Roazen, D.; et al. Scaling accurate genetic variant discovery to tens of thousands of samples. bioRxiv 2017. [Google Scholar] [CrossRef] [Green Version]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef] [PubMed]
- Cingolani, P.; Platts, A.; Wang, L.L.; Coon, M.; Nguyen, T.; Wang, L.; Land, S.J.; Lu, X.; Ruden, D.M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 2012, 6, 80–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Trait Name | Mean Trenasse/Jupiter a | RIL Mean | RIL Range | Std. Dev. b | RIL F-Values c | Heritability d |
---|---|---|---|---|---|---|
SB2012 e | 8.9/ 1.6 *** | 5.9 | 0–9 | 2.4 | 11.30 ** | 0.4888 |
SB2014 e | 8.0/ 3.0 *** | 6.6 | 2.5–9 | 1.51 | 2.67 ** | |
BPB2012 e | 8.7/ 4.4 *** | 6.7 | 4–9 | 1.15 | 2.31 ** | 0.2366 |
BPB2013 e | 8.6/ 1.9 *** | 5.4 | 0.5–8.5 | 1.68 | 6.29 ** | |
DTH2012 f | 79.0/ 89.0 *** | 81.9 | 74–99.5 | 4.58 | 9.79 ** | 0.7136 |
DTH2013 f | 108.0/ 114.0 *** | 112.5 | 105–124 | 3.12 | 6.45 ** |
SB 2012 | SB 2014 | BPB 2012 | BPB 2013 | DTH 2012 | DTH 2013 | |
---|---|---|---|---|---|---|
SB 2012 | 1 | |||||
SB 2014 | 0.72 * | 1 | ||||
BPB 2012 | 0.61 | 0.55 | 1 | |||
BPB 2013 | 0.84 ** | 0.63 | 0.43 | 1 | ||
DTH 2012 | −0.99 * | −0.75 * | −0.63 * | −0.85 ** | 1 | |
DTH 2013 | −0.92 ** | −0.80 * | −0.65 * | −0.89 ** | 0.91 ** | 1 |
Trait | QTL | Ch | Position (cM) | Marker Interval | Marker Position (Mb) | LOD | PVE (%) | Additive Effect | Published QTLs |
---|---|---|---|---|---|---|---|---|---|
SB 2012 | qSB3.1 | 3 | 5 | SNP225-SNP91 | 0.66–1.95 | 19.37 | 26.34 | 1.3881 | [20] |
SB 2014 | qSB2.1 | 2 | 109 | SNP247-SNP54 | 21.76–24.73 | 4.62 | 7.74 | 0.4168 | |
qSB3.1 | 3 | 1 | SNP225-SNP91 | 0.66–1.95 | 3.63 | 5.49 | 0.3501 | [20] | |
qSB9.1 | 9 | 109 | SNP198-SNP163 | 15.62–22.74 | 2.9 | 4.32 | 0.3105 | ||
BPB 2012 | qBPB3.2 | 3 | 13 | SNP91-SNP103 | 1.95–3.39 | 4.24 | 6.04 | 0.303 | |
BPB 2013 | qBPB11.1 | 11 | 5 | SNP462-SNP474 | 4.13–5.37 | 3.42 | 4.97 | −0.2732 | |
qBPB1.1 | 1 | 416 | SNP76-SNP280 | 40.13–42.32 | 2.8 | 3.26 | 0.353 | ||
qBPB2.1 | 2 | 182 | SNP1270-SNP43 | 29.79–34.37 | 2.91 | 4.72 | 0.3889 | ||
qBPB3.1 | 3 | 2 | SNP225-SNP91 | 0.66–1.95 | 16.64 | 19.82 | 0.7946 | [20] | |
qBPB4.1 | 4 | 29 | SNP431-SNP337 | 11.87–15.98 | 2.8 | 3.56 | −0.3369 | ||
qBPB5.1 | 5 | 69 | SNP329-SNP341 | 19.44–20.88 | 3.88 | 4.28 | 0.3736 | ||
DTH 2012 | qHEAD3.1 | 3 | 5 | SNP225-SNP91 | 0.66–1.95 | 20.22 | 25.99 | −2.7605 | |
DTH 2013 | qHEAD3.1 | 3 | 2 | SNP225-SNP91 | 0.66–1.95 | 15.2 | 22.01 | −1.5383 |
Trait | Position a | Marker | Kruskal–Wallis Test p-Value | LOD Score |
---|---|---|---|---|
SB 2012 | Ch 3 (Loc 5) | SNP225 | 0.000 ** | 18.2 |
SB 2014 | Ch 2 (Loc 110) | SNP54 | 0.000 ** | 5.16 |
Ch 3 (Loc 0) | SNP225 | 0.000 ** | 5.62 | |
BPB 2012 | Ch 3 (Loc 13) | SNP91 | 0.006 ** | 3.99 |
BPB 2013 | Ch 2 (Loc 176) | SNP1270 | 0.024 ** | 3.31 |
Ch 3 (Loc 3) | SNP225 | 0.000 ** | 15.86 | |
Ch 5 (Loc 60) | SNP329 | 0.009 ** | 3.67 | |
DTH 2012 | Ch 3 (Loc 4) | SNP225 | 0.000 ** | 17.4 |
DTH 2103 | Ch3 (Loc 2) | SNP225 | 0.000 ** | 15.6 |
MSU Rice Annotation | Pathway Identifier | Pathway Name | Gene Name | Description | Reference |
---|---|---|---|---|---|
LOC_Os03g04110 | R-OSA-9612650 | Responses to stimuli: biotic stimuli and stresses | Chitin elicitor-binding protein | Lysine motif (LysM) receptor-like protein (RLP), chitin oligosaccharide elicitor-binding protein, perception and transduction of chitin elicitor signal for defense responses | [41,42] |
R-OSA-9611432 | Recognition of fungal and bacterial pathogens and immunity response | ||||
LOC_Os03g03810 | R-OSA-6787011 | Jasmonic acid signaling | Defensin-like 8 | Defensin, plant antimicrobial peptide, pathogen defense | [43] |
LOC_Os03g03070 | R-OSA-8934036 | Long-day regulated expression of florigens | MADS-box gene 50 | MIKC-type MADS-box protein, flowering activator, short-day/long-day promotion of flowering (Os03t0122600-01); transcription factor, MADS-box domain-containing protein | [44] |
Chromosome | Start (bp) | End (bp) | Interval (bp) | Mean ∆SNP-Index | Allele in R-Bulk |
---|---|---|---|---|---|
1 | 31,674,255 | 34,217,945 | 2,543,690 | 0.598 | Jupiter |
2 | 2,432,622 | 4,317,628 | 1,885,006 | 0.713 | Jupiter |
3 | 1,002,165 | 1,997,968 | 995,803 | 0.693 | Jupiter |
3 | 25,310,338 | 25,994,426 | 684,088 | −0.668 | Trenasse |
8 | 21,700,098 | 24,288,071 | 2,587,973 | −0.652 | Trenasse |
9 | 1,002,205 | 4,792,809 | 3,790,604 | 0.611 | Jupiter |
11 | 1,003,453 | 3,799,429 | 2,795,976 | 0.666 | Jupiter |
11 | 26,401,483 | 27,226,417 | 824,934 | 0.646 | Jupiter |
MSU Locus | Gene Name (Gene Symbol) in RAP-DB |
---|---|
LOC_Os01g56200 | NPR1 HOMOLOG 2 (NH2, OsNH2, OsNPR2, NPR2, DLN21, OsDLN21, PR2) |
LOC_Os02g05510 | GATA TRANSCRIPTION FACTOR 17 (GATA17, OsTIFY2a, OsCCT04, OsGATA17, OsGATA17b) |
LOC_Os03g03070 | MADS BOX GENE 50 (MADS50, OsMADS50, AGL20, SOC1, OsSOC1, RMADS208, DTH3, OsDTH3) |
LOC_Os03g03810 | defensin 8 (OsDEF8) |
LOC_Os03g04110 | CHITIN ELICITOR BINDING PROTEIN (CEBiP, OsCEBiP) |
LOC_Os08g35740 | OPEN GLUME1 (OG1, OPR7, OsOPR08-1, OsOPR13, OsOPR7) |
LOC_Os11g05480 | b-ZIP TRANSCRIPTION FACTOR 79 (BZIP79, OsbZIP79) |
LOC_Os11g44600 | Encoding a hypothetical protein involved in salicylic acid signaling * |
LOC_Os11g44680 | Not named but described as ‘Calmodulin binding protein-like family protein’ |
Genes | Variant (p < 0.05) | Type | Position | Change | Effect | Changes |
---|---|---|---|---|---|---|
LOC_Os01g56200 | S01_32370037 | SNP | 32370037 | A > T | Moderate | Missense variant; Met > Leu |
LOC_Os03g03070 | S03_1271083 | SNP | 1271083 | C > T | Modifier | Intron variant |
S03_1270417 | INDEL | 1270417 | CATAT > CAT | Modifier | 3’ UTR variant | |
LOC_Os08g35740 | S08_22548209 | SNP | 22548209 | G > T | Modifier | Downstream gene variant |
LOC_Os11g05480 | S11_2467972 | SNP | 2467972 | A > G | Modifier | Intron variant |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ontoy, J.C.; Shrestha, B.; Karki, H.S.; Barphagha, I.; Angira, B.; Famoso, A.; Ham, J.H. Genetic Characterization of the Partial Disease Resistance of Rice to Bacterial Panicle Blight and Sheath Blight by Combined QTL Linkage and QTL-seq Analyses. Plants 2023, 12, 559. https://doi.org/10.3390/plants12030559
Ontoy JC, Shrestha B, Karki HS, Barphagha I, Angira B, Famoso A, Ham JH. Genetic Characterization of the Partial Disease Resistance of Rice to Bacterial Panicle Blight and Sheath Blight by Combined QTL Linkage and QTL-seq Analyses. Plants. 2023; 12(3):559. https://doi.org/10.3390/plants12030559
Chicago/Turabian StyleOntoy, John Christian, Bishnu Shrestha, Hari Sharan Karki, Inderjit Barphagha, Brijesh Angira, Adam Famoso, and Jong Hyun Ham. 2023. "Genetic Characterization of the Partial Disease Resistance of Rice to Bacterial Panicle Blight and Sheath Blight by Combined QTL Linkage and QTL-seq Analyses" Plants 12, no. 3: 559. https://doi.org/10.3390/plants12030559
APA StyleOntoy, J. C., Shrestha, B., Karki, H. S., Barphagha, I., Angira, B., Famoso, A., & Ham, J. H. (2023). Genetic Characterization of the Partial Disease Resistance of Rice to Bacterial Panicle Blight and Sheath Blight by Combined QTL Linkage and QTL-seq Analyses. Plants, 12(3), 559. https://doi.org/10.3390/plants12030559