Temporal Comparative Transcriptome Analysis on Wheat Response to Acute Cd Toxicity at the Seedling Stage
Abstract
:1. Introduction
2. Results
2.1. Primary Root Length at Different Time Points
2.2. Illumina RNA Sequencing and Assembly Analysis
2.3. Comparative Transcriptome Analysis
2.4. Functional Categorization of DEGs
2.4.1. GO Enrichment Analysis
2.4.2. COG Enrichment Analysis
2.4.3. KEGG Enrichment Analysis
2.4.4. KOG Enrichment Analysis
2.4.5. eggNOG Enrichment Analysis
2.5. DEGs in Key Pathway Associated with Cd
2.5.1. ABA Hormone-Related Genes
2.5.2. Specific Heavy Metal Genes
2.5.3. Metal Ion Transport-Related Genes
2.5.4. Auxin-Related Genes
2.5.5. ABC Transporter Pathway Genes
2.5.6. Peroxidase Activity-Related Genes
2.6. Validation of Transcript Abundance
3. Discussion
4. Material and Methods
4.1. Plant Material and Cd Stress Treatment
4.2. RNA Isolation and Transcriptome Sequencing
4.3. Quality Check, Filtering and Alignment of RNA Sequence Data
4.4. Identification and Cluster Analysis of Differentially Expressed Genes (DEGs)
4.5. GO and KEGG Enrichment Analysis
4.6. Validation of RNA Sequencing Results Using qRT-PCR
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luo, L.; Ma, Y.; Zhang, S.; Wei, D.; Zhu, Y.-G. An inventory of trace element inputs to agricultural soils in China. J. Environ. Manag. 2009, 90, 2524–2530. [Google Scholar] [CrossRef] [PubMed]
- Wei, B.; Yang, L. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem. J. 2010, 94, 99–107. [Google Scholar] [CrossRef]
- Blanchet, R.; Bosc, M.; Maertens, C. Some aspects of the soil-plant relationships in mineral nutrition of crops. In Proceedings of the 9th Congress of the International Potash Institute, Antibes, France, 17 August 1970; Volume 1970, pp. 81–94. [Google Scholar]
- Jalil, A.; Selles, F.; Clarke, J. Effect of cadmium on growth and the uptake of cadmium and other elements by durum wheat. J. Plant Nutr. 1994, 17, 1839–1858. [Google Scholar] [CrossRef]
- Rizwan, M.; Ali, S.; Abbas, T.; Zia-ur-Rehman, M.; Hannan, F.; Keller, C.; Al-Wabel, M.I.; Ok, Y.S. Cadmium minimization in wheat: A critical review. Ecotoxicol. Environ. Saf. 2016, 130, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Raza, A.; Tabassum, J.; Zahid, Z.; Charagh, S.; Bashir, S.; Barmukh, R.; Khan, R.S.A.; Barbosa, F., Jr.; Zhang, C.; Chen, H.; et al. Advances in “omics” approaches for improving toxic metals/metalloids tolerance in plants. Front. Plant Sci. 2022, 12, 794373. [Google Scholar] [CrossRef]
- Khan, N.A.; Samiullah; Singh, S.; Nazar, R. Activities of antioxidative enzymes, sulphur assimilation, photosynthetic activity and growth of wheat (Triticum aestivum) cultivars differing in yield potential under cadmium stress. J. Agron. Crop Sci. 2007, 193, 435–444. [Google Scholar] [CrossRef]
- Zaid, I.U.; Zheng, X.; Li, X. Breeding low-cadmium wheat: Progress and perspectives. Agronomy 2018, 8, 249. [Google Scholar] [CrossRef]
- Liu, W.; Liang, L.; Zhang, X.; Zhou, Q. Cultivar variations in cadmium and lead accumulation and distribution among 30 wheat (Triticum aestivum L.) cultivars. Environ. Sci. Pollut. Res. 2015, 22, 8432–8441. [Google Scholar] [CrossRef]
- Perrier, F.; Yan, B.; Candaudap, F.; Pokrovsky, O.; Gourdain, E.; Meleard, B.; Bussiere, S.; Coriou, C.; Robert, T.; Nguyen, C. Variability in grain cadmium concentration among durum wheat cultivars: Impact of aboveground biomass partitioning. Plant Soil 2016, 404, 307–320. [Google Scholar] [CrossRef]
- Rebekić, A.; Lončarić, Z. Genotypic difference in cadmium effect on agronomic traits and grain zinc and iron concentration in winter wheat. Emir. J. Food Agric. 2016, 28, 772–778. [Google Scholar] [CrossRef]
- Naeem, A.; Saifullah; Rehman, M.Z.-U.; Akhtar, T.; Ok, Y.S.; Rengel, Z. Genetic variation in cadmium accumulation and tolerance among wheat cultivars at the seedling stage. Commun. Soil Sci. Plant Anal. 2016, 47, 554–562. [Google Scholar] [CrossRef]
- Xiong, Z.; Li, J.; Zhao, H.; Ma, Y. Accumulation and translocation of cadmium in different wheat cultivars in farmland. J. Agro-Environ. Sci. 2018, 37, 36–44. [Google Scholar]
- Khan, N.; Ahmad, I.; Singh, S.; Nazar, R. Variation in growth, photosynthesis and yield of five wheat cultivars exposed to cadmium stress. World J. Agric. Sci. 2006, 2, 223–226. [Google Scholar]
- Ci, D.; Jiang, D.; Wollenweber, B.; Dai, T.; Jing, Q.; Cao, W. Cadmium stress in wheat seedlings: Growth, cadmium accumulation and photosynthesis. Acta Physiol. Plant. 2010, 32, 365–373. [Google Scholar] [CrossRef]
- Farid, M.; Shakoor, M.B.; Ehsan, S.; Ali, S.; Zubair, M.; Hanif, M. Morphological, physiological and biochemical responses of different plant species to Cd stress. Int. J. Chem. Biochem. Sci. 2013, 3, 53–60. [Google Scholar]
- AbuHammad, W.A.; Mamidi, S.; Kumar, A.; Pirseyedi, S.; Manthey, F.A.; Kianian, S.F.; Alamri, M.S.; Mergoum, M.; Elias, E.M. Identification and validation of a major cadmium accumulation locus and closely associated SNP markers in North Dakota durum wheat cultivars. Mol. Breed. 2016, 36, 112. [Google Scholar] [CrossRef]
- Oono, Y.; Yazawa, T.; Kanamori, H.; Sasaki, H.; Mori, S.; Handa, H.; Matsumoto, T. Genome-wide transcriptome analysis of cadmium stress in rice. BioMed Res. Int. 2016, 2016, e9739505. [Google Scholar] [CrossRef]
- Sun, L.; Wang, J.; Song, K.; Sun, Y.; Qin, Q.; Xue, Y. Transcriptome analysis of rice (Oryza sativa L.) shoots responsive to cadmium stress. Sci. Rep. 2019, 9, 10177. [Google Scholar] [CrossRef]
- Chen, H.; Li, Y.; Ma, X.; Guo, L.; He, Y.; Ren, Z.; Kuang, Z.; Zhang, X.; Zhang, Z. Analysis of potential strategies for cadmium stress tolerance revealed by transcriptome analysis of upland cotton. Sci. Rep. 2019, 9, 86. [Google Scholar] [CrossRef]
- Fang, X.; Wang, L.; Deng, X.; Wang, P.; Ma, Q.; Nian, H.; Wang, Y.; Yang, C. Genome-wide characterization of soybean P 1B-ATPases gene family provides functional implications in cadmium responses. BMC Genom. 2016, 17, 376. [Google Scholar] [CrossRef]
- Chmielowska-Bąk, J.; Izbiańska, K.; Ekner-Grzyb, A.; Bayar, M.; Deckert, J. Cadmium stress leads to rapid increase in RNA oxidative modifications in soybean seedlings. Front. Plant Sci. 2018, 8, 2219. [Google Scholar] [CrossRef] [PubMed]
- Yue, R.; Lu, C.; Qi, J.; Han, X.; Yan, S.; Guo, S.; Liu, L.; Fu, X.; Chen, N.; Yin, H. Transcriptome analysis of cadmium-treated roots in maize (Zea mays L.). Front. Plant Sci. 2016, 7, 1298. [Google Scholar] [CrossRef]
- Gao, J.; Luo, M.; Peng, H.; Chen, F.; Li, W. Characterization of cadmium-responsive MicroRNAs and their target genes in maize (Zea mays) roots. BMC Mol. Biol. 2019, 20, 14. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Jia, W.; Lv, S.; Bao, H.; Miao, F.; Zhang, X.; Wang, J.; Li, J.; Li, D.; Zhu, C. Comparative transcriptome combined with morpho-physiological analyses revealed key factors for differential cadmium accumulation in two contrasting sweet sorghum genotypes. Plant Biotechnol. J. 2018, 16, 558–571. [Google Scholar] [CrossRef]
- Kintlová, M.; Blavet, N.; Cegan, R.; Hobza, R. Transcriptome of barley under three different heavy metal stress reaction. Genom. Data 2017, 13, 15–17. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Du, Z.; Qi, X.; Wu, H.; Guo, W.; Zhao, Z. RNA-sequencing analysis reveals transcriptional changes in the roots of low-cadmium-accumulating winter wheat under cadmium stress. Acta Physiol. Plant. 2019, 41, 13. [Google Scholar] [CrossRef]
- Zhou, M.; Zheng, S.; Liu, R.; Lu, L.; Zhang, C.; Zhang, L.; Yant, L.; Wu, Y. The genome-wide impact of cadmium on microRNA and mRNA expression in contrasting Cd responsive wheat genotypes. BMC Genom. 2019, 20, 615. [Google Scholar] [CrossRef] [PubMed]
- Zaid, I.U.; Muhammad, S.H.; Zhang, N.; Zheng, X.; Wang, L.; Li, X. Phenotypic variations of wheat cultivars from the North China Plain in response to cadmium stress and associated single nucleotide polymorphisms identified by a genome-wide association study. Pedosphere 2022, 32, 555–564. [Google Scholar] [CrossRef]
- Chaitankar, V.; Karakülah, G.; Ratnapriya, R.; Giuste, F.O.; Brooks, M.J.; Swaroop, A. Next generation sequencing technology and genomewide data analysis: Perspectives for retinal research. Prog. Retin. Eye Res. 2016, 55, 1–31. [Google Scholar] [CrossRef]
- Zheng, X.; Chen, L.; Li, X. Arabidopsis and rice showed a distinct pattern in ZIPs genes expression profile in response to Cd stress. Bot. Stud. 2018, 59, 22. [Google Scholar] [CrossRef]
- Ismael, M.A.; Elyamine, A.M.; Moussa, M.G.; Cai, M.; Zhao, X.; Hu, C. Cadmium in plants: Uptake, toxicity, and its interactions with selenium fertilizers. Metallomics 2019, 11, 255–277. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zeng, X.; Song, Q.; Sun, Y.; Feng, Y.; Lai, Y. Identification of key genes and modules in response to Cadmium stress in different rice varieties and stem nodes by weighted gene co-expression network analysis. Sci. Rep. 2020, 10, 9525. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Lu, Y.; Zhang, X.; Yang, G.; Chao, D.; Wang, Z.; Shi, M.; Chen, J.; Chao, D.-Y.; Li, R. The ABC transporter ABCG36 is required for cadmium tolerance in rice. J. Exp. Bot. 2019, 70, 5909–5918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishimaru, Y.; Takahashi, R.; Bashir, K.; Shimo, H.; Senoura, T.; Sugimoto, K.; Ono, K.; Yano, M.; Ishikawa, S.; Arao, T.; et al. Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport. Sci. Rep. 2012, 2, 286. [Google Scholar] [CrossRef]
- You, S.-Z.; Yang, H.-Q.; Zhang, L.; Shao, X.-J. Effects of cadmium stress on fatty acid composition and lipid peroxidation of Malus hupehensis. Ying Yong Sheng Tai Xue Bao (J. Appl. Ecol.) 2009, 20, 2032–2037. [Google Scholar]
- Chaffai, R.; Seybou, T.; Marzouk, B.; Ferjani, E. A comparative analysis of fatty acid composition of root and shoot lipids in Zea mays under copper and cadmium stress. Acta Biol. Hung. 2009, 60, 109–125. [Google Scholar] [CrossRef]
- Wang, X.; Wang, C.; Sheng, H.; Wang, Y.; Zeng, J.; Kang, H.; Fan, X.; Sha, L.; Zhang, H.; Zhou, Y. Transcriptome-wide identification and expression analyses of ABC transporters in dwarf polish wheat under metal stresses. Biol. Plant. 2017, 61, 293–304. [Google Scholar] [CrossRef]
- Briat, J.-F.; Curie, C.; Gaymard, F. Iron utilization and metabolism in plants. Curr. Opin. Plant Biol. 2007, 10, 276–282. [Google Scholar] [CrossRef]
- Park, J.; Song, W.Y.; Ko, D.; Eom, Y.; Hansen, T.H.; Schiller, M.; Lee, T.G.; Martinoia, E.; Lee, Y. The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. Plant J. 2012, 69, 278–288. [Google Scholar] [CrossRef]
- Bhati, K.K.; Sharma, S.; Aggarwal, S.; Kaur, M.; Shukla, V.; Kaur, J.; Mantri, S.; Pandey, A.K. Genome-wide identification and expression characterization of ABCC-MRP transporters in hexaploid wheat. Front. Plant Sci. 2015, 6, 488. [Google Scholar] [CrossRef]
- Zelinová, V.; Alemayehu, A.; Bočová, B.; Huttová, J.; Tamás, L. Cadmium-induced reactive oxygen species generation, changes in morphogenic responses and activity of some enzymes in barley root tip are regulated by auxin. Biologia 2015, 70, 356–364. [Google Scholar] [CrossRef]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data; Babraham Bioinformatics, Babraham Institute: Cambridge, UK, 2010. [Google Scholar]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef] [PubMed]
- Pertea, M.; Pertea, G.M.; Antonescu, C.M.; Chang, T.-C.; Mendell, J.T.; Salzberg, S.L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 2015, 33, 290–295. [Google Scholar] [CrossRef] [Green Version]
- Anders, S.; Huber, W. Differential expression analysis for sequence count data. Nat. Preced. 2010, 11, R106. [Google Scholar]
- Alexa, A.; Rahnenfuhrer, J. topGO: Enrichment analysis for gene ontology. R Package Version 2010, 2, 2010. [Google Scholar]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Mao, X.; Cai, T.; Olyarchuk, J.G.; Wei, L. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 2005, 21, 3787–3793. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
Treatment | Total Raw Reads | Mapped Reads (%) | Unique Match (%) | Multiple Position Match (%) | % ≥Q30 | GC Content (%) |
---|---|---|---|---|---|---|
A1_Cd stress | 114,896,042 | 87.1 | 82.5 | 4.5 | 93.2 | 56.2 |
A2_Cd stress | 112,982,852 | 89.1 | 85 | 4 | 92.9 | 55.7 |
A3_Cd stress | 146,509,466 | 91.1 | 86.7 | 4.3 | 92.8 | 55.8 |
Average | 124,796,120 | 89.1 | 84.7 | 4.3 | 93.0 | 55.9 |
B1_Normal | 134,077,278 | 90.6 | 85.9 | 4.6 | 92.9 | 56.3 |
B2_Normal | 130,033,680 | 85.2 | 80.5 | 4.6 | 93.1 | 56.1 |
B3_Normal | 148,821,300 | 90.8 | 86.3 | 4.4 | 92.5 | 56.1 |
Average | 137,644,086 | 88.9 | 84.2 | 4.5 | 92.8 | 56.2 |
C1_Cd stress | 149,042,956 | 88.9 | 84.6 | 4.3 | 92.8 | 56.2 |
C2_Cd stress | 148,930,020 | 88.1 | 83.3 | 4.7 | 93.1 | 56.2 |
C3_Cd stress | 140,024,870 | 86.1 | 81.4 | 4.7 | 94 | 55.9 |
Average | 145,999,282 | 87.7 | 83.1 | 4.6 | 93.3 | 56.1 |
D1_Normal | 146,473,396 | 88.3 | 83.7 | 4.5 | 92.5 | 55.1 |
D2_Normal | 146,020,820 | 86.8 | 82.7 | 4.1 | 93.9 | 54.5 |
D3_Normal | 144,616,196 | 79.3 | 75.1 | 4.2 | 93 | 54.8 |
Average | 145,703,471 | 84.8 | 80.5 | 4.3 | 93.1 | 54.8 |
E1_Cd stress | 118,898,766 | 86.4 | 82.6 | 3.8 | 94 | 54.7 |
E2_Cd stress | 133,663,600 | 87.6 | 84 | 3.7 | 93 | 56 |
E3_Cd stress | 148,122,704 | 85.4 | 81.7 | 3.7 | 92.6 | 55.9 |
Average | 133,561,690 | 86.5 | 82.8 | 3.7 | 93.2 | 55.5 |
F1_Normal | 134,618,642 | 90.6 | 85.9 | 4.6 | 92.6 | 56.6 |
F2_Normal | 139,259,934 | 88.3 | 84.3 | 3.9 | 93.2 | 54.6 |
F3_Normal | 145,833,104 | 88.9 | 84.8 | 4 | 93.2 | 55 |
Average | 139,903,893 | 89.3 | 85.0 | 4.2 | 93.0 | 55.4 |
DEG Set | DEG Number | Up-Regulated | Down-Regulated |
---|---|---|---|
Cd stress _vs_ Normal at 7d | 1644 | 462 | 1182 |
Cd stress _vs_ Normal at 14d | 1704 | 245 | 1459 |
Cd stress _vs_ Normal at 30d | 2873 | 836 | 2037 |
Average | 2074 | 514 | 1559 |
Treatments | All | Up-reg. | Down-reg. | COG | GO | KEGG | KOG | pfam | SWISS | eggNOg | Nr |
---|---|---|---|---|---|---|---|---|---|---|---|
A123 vs. B123 | 1615 | 456 | 1159 | 714 | 1295 | 554 | 786 | 1421 | 1286 | 1286 | 1612 |
% | 98.2 | 27.7 | 70.5 | 43.4 | 78.7 | 33.7 | 47.8 | 86.4 | 78.2 | 78.2 | 98 |
C123 vs. D123 | 1680 | 237 | 1443 | 848 | 1442 | 658 | 903 | 1514 | 1433 | 1615 | 1675 |
% | 98.5 | 13.9 | 84.6 | 49.7 | 84.6 | 38.6 | 52.9 | 88.8 | 84.1 | 94.7 | 98 |
E123 vs. F123 | 2816 | 806 | 2010 | 1106 | 2231 | 891 | 1291 | 2389 | 2187 | 2641 | 2809 |
% | 98 | 28 | 69.9 | 38.5 | 77.6 | 31 | 44.9 | 83.1 | 76.1 | 91.9 | 97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaid, I.U.; Faheem, M.; Zia, M.A.; Abbas, Z.; Noor, S.; Ali, G.M.; Haider, Z. Temporal Comparative Transcriptome Analysis on Wheat Response to Acute Cd Toxicity at the Seedling Stage. Plants 2023, 12, 642. https://doi.org/10.3390/plants12030642
Zaid IU, Faheem M, Zia MA, Abbas Z, Noor S, Ali GM, Haider Z. Temporal Comparative Transcriptome Analysis on Wheat Response to Acute Cd Toxicity at the Seedling Stage. Plants. 2023; 12(3):642. https://doi.org/10.3390/plants12030642
Chicago/Turabian StyleZaid, Imdad Ullah, Mohammad Faheem, Muhammad Amir Zia, Zaheer Abbas, Sabahat Noor, Ghulam Muhammad Ali, and Zeeshan Haider. 2023. "Temporal Comparative Transcriptome Analysis on Wheat Response to Acute Cd Toxicity at the Seedling Stage" Plants 12, no. 3: 642. https://doi.org/10.3390/plants12030642
APA StyleZaid, I. U., Faheem, M., Zia, M. A., Abbas, Z., Noor, S., Ali, G. M., & Haider, Z. (2023). Temporal Comparative Transcriptome Analysis on Wheat Response to Acute Cd Toxicity at the Seedling Stage. Plants, 12(3), 642. https://doi.org/10.3390/plants12030642