Soil Effects on the Bioactivity of Hydroxycoumarins as Plant Allelochemicals
Abstract
:1. Introduction
2. Results
2.1. Petri Dish Bioassays
2.2. Adsorption and Dissipation of Umbelliferone in the Soils
2.3. Soil Bioassays
3. Discussion
4. Materials and Methods
4.1. Hydroxycoumarins and Soils
4.2. Petri Dish Bioassays
4.3. Umbelliferone Adsorption and Dissipation in the Soils
4.4. Soil Bioassays
4.5. Data Treatment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Razavi, S.M. Plant coumarins as allelopathic agents. Int. J. Biol. Chem. 2011, 5, 86–90. [Google Scholar] [CrossRef] [Green Version]
- Matos, M.J.; Santana, L.; Uriarte, E.; Abreu, O.A.; Molina, E.; Yordi, E.G. Coumarins—An Important Class of Phytochemicals. In Phytochemicals—Isolation, Characterisation and Role in Human Health; Rao, A.V., Rao, L.G., Eds.; IntechOpen: London, UK, 2015; pp. 113–140. [Google Scholar]
- Jain, P.K.; Joshi, H. Coumarin: Chemical and pharmacological profile. J. Appl. Pharm. Sci. 2012, 2, 236–240. [Google Scholar]
- Pan, L.; Li, X.Z.; Yan, Z.Q.; Guo, H.R.; Qin, B. Phytotoxicity of umbelliferone and its analogs: Structure-activity relationships and action mechanisms. Plant Physiol. Biochem. 2015, 97, 272–277. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Aparicio, M.; Cimmino, A.; Evidente, A.; Rubiales, D. Inhibition of Orobanche crenata seed germination and radicle growth by allelochemicals identified in cereals. J. Agric. Food Chem. 2013, 61, 9797–9803. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Cui, H.; Jin, H.; Yan, Z.; Ding, L.; Qin, B. Potential allelochemicals in root zone soils of Stellera chamaejasme L. and variations at different geographical growing sites. Plant Growth Regul. 2015, 77, 335–342. [Google Scholar] [CrossRef]
- Graña, E.; Costas-Gil, A.; Longueira, S.; Celeiro, M.; Teijeira, M.; Reigosa, M.J.; Sánchez-Moreiras, A.M. Auxin-like effects of the natural coumarin scopoletin on Arabidopsis cell structure and morphology. J. Plant Physiol. 2017, 218, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Bachheti, A.; Sharma, A.; Bachheti, R.K.; Husen, A.; Pandey, D.P. Plant Allelochemicals and Their Various Applications. In Co-Evolution of Secondary Metabolites; Reference Series in Phytochemistry; Merillon, J.M., Ramawat, K., Eds.; Springer: Cham, Switzerland, 2019; pp. 1–25. [Google Scholar]
- Hijazin, T.; Radwan, A.; Abouzeid, S.; Dräger, G.; Selmar, D. Uptake and modification of umbelliferone by various seedlings. Phytochemistry 2019, 157, 194–199. [Google Scholar] [CrossRef]
- Galán-Pérez, J.A.; Gámiz, B.; Celis, R. Determining the effect of soil properties on the stability of scopoletin and its toxicity to target plants. Biol. Fertil. Soils 2021, 57, 643–655. [Google Scholar] [CrossRef]
- Yan, Z.Q.; Wang, D.D.; Cui, H.Y.; Zhang, D.H.; Sun, H.Y.; Jin, H.; Li, X.Z.; Yang, X.Y.; Guo, H.R.; He, X.F.; et al. Phytotoxicity mechanisms of two coumarin allelochemicals from Stellera chamaejasme in lettuce seedlings. Acta Physiol. Plant. 2016, 38, 248. [Google Scholar] [CrossRef]
- Pardo-Muras, M.; Puig, C.G.; Pedrol, N. Complex synergistic interactions among volatile and phenolic compounds underlie the effectiveness of allelopathic residues added to the soil for weed control. Plants 2022, 11, 1114. [Google Scholar] [CrossRef] [PubMed]
- Inderjit. Soil: Environmental effect on allelochemical activity. Agron. J. 2001, 93, 79–84. [Google Scholar] [CrossRef]
- Kobayashi, K. Factors affecting phytotoxic activity of allelochemicals in soil. Weed Biol. Manag. 2004, 4, 1–7. [Google Scholar] [CrossRef]
- Kaur, H.; Kaur, R.; Kaur, S.; Baldwin, I.T.; Inderjit. Taking ecological function seriously: Soil microbial communities can obviate allelopathic effects of released metabolites. PLoS ONE 2009, 4, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Reigosa-Roger, M.J.; Sánchez-Moreiras, A.M. Role of Phenolics in Allelopathy in the Soil. In Soil Phenols; Muscolo, A., Sidari, M., Eds.; Nova Science Publishers, Inc.: New York, NY, USA, 2010; pp. 87–115. [Google Scholar]
- Trezzi, M.M.; Vidal, R.A.; Balbinot Junior, A.A.; von Hertwig Bittencourt, H.; da Silva Souza Filho, A.P. Allelopathy: Driving mechanisms governing its activity in agriculture. J. Plant Interact. 2016, 11, 53–60. [Google Scholar] [CrossRef]
- Bertin, C.; Harmon, R.; Akaogi, M.; Weidenhamer, J.D.; Weston, L.A. Assessment of the phytotoxic potential of m-tyrosine in laboratory soil bioassays. J. Chem. Ecol. 2009, 35, 1288–1294. [Google Scholar] [CrossRef]
- Hickman, D.T.; Rasmussen, A.; Ritz, K.; Birkett, M.A.; Neve, P. Review: Allelochemicals as multi-kingdom plant defence compounds: Towards an integrated approach. Pest Manag. Sci. 2021, 77, 1121–1131. [Google Scholar] [CrossRef]
- Macías, F.A.; Mejías, F.J.R.; Molinillo, J.M.G. Recent advances in allelopathy for weed control: From knowledge to applications. Pest Manag. Sci. 2019, 75, 2413–2436. [Google Scholar] [CrossRef]
- Galán-Pérez, J.A.; Gámiz, B.; Pavlovic, I.; Celis, R. Enantiomer-selective characterization of the adsorption, dissipation, and phytotoxicity of the plant monoterpene pulegone in soils. Plants 2022, 11, 1296. [Google Scholar] [CrossRef]
- Hussain, M.I.; Danish, S.; Sánchez-Moreiras, A.M.; Vicente, O.; Jabran, K.; Chaudhry, U.K.; Branca, F.; Reigosa, M.J. Unraveling sorghum allelopathy in agriculture: Concepts and implications. Plants 2021, 10, 1795. [Google Scholar] [CrossRef]
- Bravetti, M.M.M.; Carpinella, M.C.; Palacios, S.M. Phytotoxicity of Cortaderia speciosa extract, active principles, degradation in soil and effectiveness in field tests. Chemoecology 2020, 30, 15–24. [Google Scholar] [CrossRef]
- Hiradate, S.; Ohse, K.; Furubayashi, A.; Fujii, Y. Quantitative evaluation of allelopathic potentials in soils: Total activity approach. Weed Sci. 2010, 58, 258–264. [Google Scholar]
- Travaini, M.L.; Sosa, G.M.; Ceccarelli, E.A.; Walter, H.; Cantrell, C.L.; Carrillo, N.J.; Dayan, F.E.; Meepagala, K.M.; Duke, S.O. Khellin and visnagin, furanochromones from Ammi visnaga (L.) Lam., as potential bioherbicides. J. Agric. Food Chem. 2016, 64, 9475–9487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parepa, M.; Bossdorf, O. Testing for allelopathy in invasive plants: It all depends on the substrate! Biol. Invasions 2016, 18, 2975–2982. [Google Scholar] [CrossRef]
- Xiao, Z.; Le, C.; Xu, Z.; Gu, Z.; Lv, J.; Shamsi, I.H. Vertical leaching of allelochemicals affecting their bioactivity and the microbial community of soil. J. Agric. Food Chem. 2017, 65, 7847–7853. [Google Scholar] [CrossRef] [PubMed]
- Di Marsico, A.; Scrano, L.; Amato, M.; Gámiz, B.; Real, M.; Cox, L. Mucilage from seeds of chia (Salvia hispanica L.) used as soil conditioner; effects on the sorption-desorption of four herbicides in three different soils. Sci. Total Environ. 2018, 625, 531–538. [Google Scholar] [CrossRef]
- Real, M.; Gámiz, B.; López-Cabeza, R.; Celis, R. Sorption, persistence, and leaching of the allelochemical umbelliferone in soils treated with nanoengineered sorbents. Sci. Rep. 2019, 9, 9764. [Google Scholar] [CrossRef] [Green Version]
- Real, M.; Facenda, G.; Celis, R. Sorption and dissipation of the allelochemical umbelliferone and salicylic acid in a Mediterranean soil environment: Effect of olive-mill waste addition. Sci. Total Environ. 2021, 774, 145027. [Google Scholar]
- Giles, C.H.; MacEwan, T.H.; Nakhwa, S.N.; Smith, D. Studies in adsorption. Part XII. A system of classification of solution adsorption isotherms and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. J. Chem. Soc. 1960, 3, 3973–3993. [Google Scholar]
- United States Department of Agriculture (USDA). Examination and Description of Soil Profiles. In Soil Survey Manual; USDA Soil Science Division Staff, Agriculture Handbook No. 18: Washington, DC, USA, 2017; pp. 83–233. [Google Scholar]
- Gupta, S.; Gajbhiye, V.T. Effect of concentration, moisture and soil type on the dissipation of flufenacet from soil. Chemosphere 2002, 47, 901–906. [Google Scholar] [CrossRef]
- Hiradate, S.; Morita, S.; Furubayashi, A.; Fujii, Y.; Harada, J. Plant growth inhibition by cis-cinnamoyl glucosides and cis-cinnamic acid. J. Chem. Ecol. 2005, 31, 591–601. [Google Scholar] [CrossRef]
- Hu, H.; Hong, Y. Algal-bloom control by allelopathy of aquatic macrophytes—A review. Front. Environ. Sci. Eng. China 2008, 2, 421–438. [Google Scholar] [CrossRef]
- Dimetry, N.Z. Different Plant Families as Bioresource for Pesticides. In Advances in Plant Biopesticides; Singh, D., Ed.; Springer: Cham, Switzerland, 2014; pp. 1–20. [Google Scholar]
- Seefeldt, S.S.; Jensen, J.E.; Fuerst, E.P. Log-logistic analysis of herbicide dose-response relationships. Weed Technol. 1995, 9, 218–227. [Google Scholar] [CrossRef]
- OECD. Test No. 106: Adsorption—Desorption Using a Batch Equilibrium Method. In OECD Guidelines for the Testing of Chemicals; Section 1; OECD Publishing: Paris, France, 2000; pp. 1–45. [Google Scholar] [CrossRef]
Soil | Texture 1 | Sand (%) | Silt (%) | Clay (%) | CaCO3 (%) | Organic C (%) | E.C. 2 (mS/cm) | pH |
---|---|---|---|---|---|---|---|---|
Soil 1 | Sandy loam | 66 ± 1 3 | 23 ± 1 | 11 ± 1 | 0.7 ± 0.1 | 0.99 ± 0.01 | 0.053 ± 0.03 | 5.8 ± 0.1 |
Soil 2 | Sandy clay loam | 75 ± 1 | 4 ± 1 | 20 ± 1 | 0.7 ± 0.1 | 0.40 ± 0.03 | 0.062 ± 0.02 | 8.4 ± 0.1 |
y0 | b | IC50 | R2 | Soil Factor | |
---|---|---|---|---|---|
(%) | (mg/L) | ||||
Lactuca sativa | |||||
Soilless (Petri dishes) | 100 ± 2 1 | 2.240 ± 0.125 | 6 ± 1 | 0.999 | - |
Soil 1 | 99 ± 1 | 1.364 ± 0.448 | 68 ± 2 | 0.964 | 0.088 |
Soil 2 | 99 ± 2 | 3.972 ± 0.488 | 334 ± 9 | 0.992 | 0.018 |
Eruca sativa | |||||
Soilless (Petri dishes) | 106 ± 6 | 1.541 ± 0.270 | 12 ± 2 | 0.980 | - |
Soil 1 | 100 ± 3 | 2.333 ± 0.241 | 66 ± 3 | 0.997 | 0.182 |
Soil 2 | 97 ± 4 | 2.242 ± 0.615 | 435 ± 40 | 0.958 | 0.028 |
Hordeum vulgare | |||||
Soilless (Petri dishes) | 94 ± 6 | 1.501 ± 0.410 | 50 ± 9 | 0.969 | - |
Soil 1 | 102 ± 6 | 1.243 ± 0.275 | 285 ± 40 | 0.963 | 0.175 |
Soil 2 | 101 ± 3 | 1.558 ± 0.467 | 656 ± 126 | 0.948 | 0.076 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Facenda, G.; Real, M.; Galán-Pérez, J.A.; Gámiz, B.; Celis, R. Soil Effects on the Bioactivity of Hydroxycoumarins as Plant Allelochemicals. Plants 2023, 12, 1278. https://doi.org/10.3390/plants12061278
Facenda G, Real M, Galán-Pérez JA, Gámiz B, Celis R. Soil Effects on the Bioactivity of Hydroxycoumarins as Plant Allelochemicals. Plants. 2023; 12(6):1278. https://doi.org/10.3390/plants12061278
Chicago/Turabian StyleFacenda, Gracia, Miguel Real, Jose A. Galán-Pérez, Beatriz Gámiz, and Rafael Celis. 2023. "Soil Effects on the Bioactivity of Hydroxycoumarins as Plant Allelochemicals" Plants 12, no. 6: 1278. https://doi.org/10.3390/plants12061278
APA StyleFacenda, G., Real, M., Galán-Pérez, J. A., Gámiz, B., & Celis, R. (2023). Soil Effects on the Bioactivity of Hydroxycoumarins as Plant Allelochemicals. Plants, 12(6), 1278. https://doi.org/10.3390/plants12061278