Pharmaceutical Potential Evaluation of Damask Rose By-Products from Volatile Oil Extraction
Abstract
:1. Introduction
2. Results and Discussion
2.1. Flower Morphological Characteristics
2.2. Aromatic Compound Profiling of Fresh Damask Rose and Volatile Fractions
2.3. Phytochemical Analysis of Damask Rose By-Products
2.4. Quantitative Analysis of Phenolic and Flavonoid
2.5. Antimicrobial Activity
2.6. Anti-Inflammatory Activity
2.7. Anti-Melanogenesis Activity
3. Materials and Methods
3.1. Chemicals
3.2. Plant Material
3.3. Analysis of the Chemical Composition of Aroma Compounds in Three Fresh Rose Varieties at all Three Stages
- The rose scent is a unique fragrance reminiscent of rose with slightly honey sweetness and occasionally resembling the aroma of laundry powder;
- Fruity scents typically include tropical fruit aromas, citrus fragrances, and neroli orange blossoms;
- Green scents include fresh herbal scents, eucalyptus, pine, wood, and green vegetables;
- Milk scents are reminiscent of powdered milk and possess similarities with the scents of starch and plant oils;
- Fresh scents refer to the smell of fresh air that is free of any smell (odourless).
3.4. The Distillate Extraction of Damask Rose
3.5. Analysis of Volatile Faction
3.6. Phytochemical Analysis
3.6.1. Total Phenolic Content
3.6.2. Total Flavonoid Content
3.6.3. Antioxidant Activities
Determination of 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) Radical Scavenging Activity
Determination of 2,2′-Azino-Bis (3-Ethylbenzothiazoline-6-Sulfonic Acid) (ABTS) Radical Scavenging Activity
Determination of Ferric Reducing Antioxidant Power (FRAP)
- A1 is the absorbance of the sample.
- A0 is the absorbance of the blank.
3.7. Quantitative Analysis of Phenolic and Flavonoid
3.8. Antimicrobial Activity
3.9. Anti-Inflammatory
3.10. Anti-Melanogenesis Activity
3.10.1. Cell Culture
3.10.2. MTT Assay for Cell Viability
3.10.3. Melanin Content Assay
3.11. Statistical Analysis
4. Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Farooq, A.; Kiani, M.; Khan, M.A.; Riaz, A.; Khan, A.A.; Anderson, N.; Byrne, D.H. Microsatellite analysis of Rosa damascena from Pakistan and Iran. Hortic. Environ. Biotechnol. 2013, 54, 141–147. [Google Scholar] [CrossRef]
- Kaul, V.; Virendra, S.; Bikram, S. Damask rose and marigold: Prospective industrial crops. J. Med. Aromat. Plant Sci. 2000, 22, 313–318. [Google Scholar]
- Kumar, R.; Sharma, S.; Sood, S.; Agnihotri, V.K.; Singh, B. Effect of diurnal variability and storage conditions on essential oil content and quality of damask rose (Rosa damascena Mill.) flowers in north western Himalayas. Sci. Hortic. 2013, 154, 102–108. [Google Scholar] [CrossRef]
- Jabbarzadeh, Z.; Khosh-Khui, M. Factors affecting tissue culture of Damask rose (Rosa damascena Mill.). Sci. Hortic. 2005, 105, 475–482. [Google Scholar] [CrossRef]
- Naquvi, K.J.; Ansari, S.; Ali, M.; Najmi, A. Volatile oil composition of Rosa damascena Mill. (Rosaceae). J. Pharmacogn. Phytochem. 2014, 2, 177–181. [Google Scholar]
- Ghavam, M.; Afzali, A.; Manca, M.L. Chemotype of damask rose with oleic acid (9 octadecenoic acid) and its antimicrobial effectiveness. Sci. Rep. 2021, 11, 8027. [Google Scholar] [CrossRef] [PubMed]
- Venkatesha, K.; Gupta, A.; Rai, A.N.; Jambhulkar, S.J.; Bisht, R.; Padalia, R.C. Recent developments, challenges, and opportunities in genetic improvement of essential oil-bearing rose (Rosa damascena): A review. Ind. Crops Prod. 2022, 184, 114984. [Google Scholar] [CrossRef]
- Aycı, F.; Aydınlı, M.; Bozdemir, Ö.A.; Tutaş, M. Gas chromatographic investigation of rose concrete, absolute and solid residue. Flavour Fragr. J. 2005, 20, 481–486. [Google Scholar] [CrossRef]
- Anonymous. Global “Rose Essential Oil Market” 2019 Industry Research Report. Available online: https://www.grandviewresearch.com/industry-analysis/rose-oil-market (accessed on 23 February 2024).
- Baser, K. Turkish rose oil. Perfum. Flavorist 1992, 17, 45. [Google Scholar]
- Kovacheva, N.; Rusanov, K.; Atanassov, I. Industrial cultivation of oil bearing rose and rose oil production in Bulgaria during 21st century, directions and challenges. Biotechnol. Biotechnol. Equip. 2010, 24, 1793–1798. [Google Scholar] [CrossRef]
- Bashir, A.; Ahmad, T.; Farooq, S.; Lone, W.I.; Manzoor, M.M.; Nalli, Y.; Sultan, P.; Chaubey, A.; Ali, A.; Riyaz-Ul-Hassan, S. A Secondary Metabolite of Cercospora sp., Associated with Rosa damascena Mill., Inhibits Proliferation, Biofilm Production, Ergosterol Synthesis and Other Virulence Factors in Candida albicans. Microb. Ecol. 2022, 85, 1276–1287. [Google Scholar] [CrossRef] [PubMed]
- Ghavam, M. Relationships of irrigation water and soil physical and chemical characteristics with yield, chemical composition and antimicrobial activity of Damask rose essential oil. PLoS ONE 2021, 16, e0249363. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Sharma, S.; Kaundal, M.; Sood, S.; Agnihotri, V.K. Variation in essential oil content and composition of damask rose (Rosa damascena mill) flowers by salt application under mid hills of the western Himalayas. J. Essent. Oil Bear. Plants 2016, 19, 297–306. [Google Scholar] [CrossRef]
- Pal, P.K.; Mahajan, M. Pruning system and foliar application of MgSO4 alter yield and secondary metabolite profile of Rosa damascena under rainfed acidic conditions. Front. Plant Sci. 2017, 8, 507. [Google Scholar] [CrossRef] [PubMed]
- Fatemi, F.; Golbodagh, A.; Hojihosseini, R.; Dadkhah, A.; Akbarzadeh, K.; Salome, D.; Malayeri, M.R.M. Anti-inflammatory effects of deuterium-depleted water plus Rosa damascena mill. Essential oil via cyclooxygenase-2 pathway in rats. Turk. J. Pharm. Sci. 2020, 17, 99. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Qiao, Z.; Wang, H.; Zhu, L.; Zhang, L. Flavonoids: Promising anticancer agents. Med. Res. Rev. 2003, 23, 519–534. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, N.; Piacente, S.; Pizza, C.; Burke, A.; Khan, A.I.; Hay, A.J. The anti-HIV activity and mechanisms of action of pure compounds isolated from Rosa damascena. Biochem. Biophys. Res. Commun. 1996, 229, 73–79. [Google Scholar] [CrossRef]
- Tongnuanchan, P.; Benjakul, S. Essential oils: Extraction, bioactivities, and their uses for food preservation. J. Food Sci. 2014, 79, R1231–R1249. [Google Scholar] [CrossRef]
- Bao, X.-L.; Yuan, H.-H.; Wang, C.-Z.; Fan, W.; Lan, M.-B. Polysaccharides from Cymbopogon citratus with antitumor and immunomodulatory activity. Pharm. Biol. 2015, 53, 117–124. [Google Scholar] [CrossRef]
- Baydar, N.G.; Baydar, H. Phenolic compounds, antiradical activity and antioxidant capacity of oil-bearing rose (Rosa damascena Mill.) extracts. Ind. Crops Prod. 2013, 41, 375–380. [Google Scholar] [CrossRef]
- Catty, S. Hydrosols: The Next Aromatherapy; Inner Traditions/Bear & Co.: Rochester, VT, USA, 2001. [Google Scholar]
- Nunes, H.; Miguel, M.G. Rosa damascena essential oils: A brief review about chemical composition and biological properties. Trends Phytochem. Res. 2017, 1, 111–128. [Google Scholar]
- Sommano, S.; Suksathan, R.; Colelli, G.; Kumpuan, W. Potentials of Thai tropical edible flowers as fresh cut salad mix. In Proceedings of the VIII International Postharvest Symposium: Enhancing Supply Chain and Consumer Benefits—Ethical and Technological Issues, Cartagena, Spain, 21–24 June 2016; pp. 1187–1194. [Google Scholar]
- Waghmode, M.; Gunjal, A.; Nawani, N.; Patil, N. Management of floral waste by conversion to value-added products and their other applications. Waste Biomass Valorization 2018, 9, 33–43. [Google Scholar] [CrossRef]
- Tascone, O.; Fillatre, Y.; Roy, C.; Meierhenrich, U.J. Behavior of multiclass pesticide residue concentrations during the transformation from rose petals to rose absolute. J. Agric. Food Chem. 2015, 63, 4922–4932. [Google Scholar] [CrossRef] [PubMed]
- Suram, S. Rose species wealth: An overview. Pharma Innov. J. 2021, 10, 155–160. [Google Scholar]
- Rusanov, K.; Kovacheva, N.; Dobreva, A.; Atanassov, I. Rosa × damascena Mill. (Rose). In Medicinal, Aromatic and Stimulant Plants; Handbook of Plant Breeding Series; Springer: Cham, Switzerland, 2020; Volume 12, pp. 467–500. [Google Scholar]
- Iwata, H.; Kato, T.; Ohno, S. Triparental origin of Damask roses. Gene 2000, 259, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Charoimek, N.; Phusuwan, S.; Petcharak, C.; Huanhong, K.; Prasad, S.K.; Junmahasathien, T.; Khemacheewakul, J.; Sommano, S.R.; Sunanta, P. Do Abiotic Stresses Affect the Aroma of Damask Roses? Plants 2023, 12, 3428. [Google Scholar] [CrossRef] [PubMed]
- Labban, L.; Thallaj, N. The medicinal and pharmacological properties of Damascene Rose (Rosa damascena): A review. Int. J. Herb. Med. 2020, 8, 33–37. [Google Scholar]
- Thallaj, N. Evaluation of antimicrobial activities and bioactive compounds of different extracts related to syrian traditional products of damask rose (Rosa damascena). Open Access Libr. J. 2020, 7, 100028. [Google Scholar] [CrossRef]
- Khosh-Khui, M. Biotechnology of scented roses: A review. Int. J. Hortic. Sci. Technol. 2014, 1, 1–20. [Google Scholar]
- Austin, D. The English Roses; Hachette UK: Paris, France, 2017. [Google Scholar]
- Karami, A.; Khosh-Khui, M.; Salehi, H.; Saharkhiz, M.J.; Rowshan, V. Headspace analysis of floral scent from two distinct genotypes of Iranian Damask Rose (Rosa damascena Mill.). J. Essent. Oil Bear. Plants 2013, 16, 489–498. [Google Scholar] [CrossRef]
- Ren, J.; Yang, L.; Wang, Y.; Yao, H. Chemical profile of floral scent at different flower developmental stages of rose de rescht (Rosa damascena Mill.) cultivated in Beijing. J. Essent. Oil Bear. Plants 2016, 19, 433–443. [Google Scholar] [CrossRef]
- Dobreva, A.; Nedeltcheva-Antonova, D. Comparative Chemical Profiling and Citronellol Enantiomers Distribution of Industrial-Type Rose Oils Produced in China. Molecules 2023, 28, 1281. [Google Scholar] [CrossRef]
- Zhu, G.; Xiao, Z. Flavors and Fragrances: Structure of Various Flavors with Food Ingredients. In Flavors and Fragrances in Food Processing: Preparation and Characterization Methods; ACS Publications: Washington, DC, USA, 2022; pp. 21–188. [Google Scholar]
- Lidums, I.; Karklina, D.; Sabovics, M.; Kirse, A. Evaluation of aroma volatiles in naturally fermented kvass and kvass extract. Res. Rural. Dev. 2014, 1, 143–149. [Google Scholar]
- Khan, S.U.; Hamza, B.; Mir, R.H.; Fatima, K.; Malik, F. Lavender Plant: Farming and Health Benefits. Curr. Mol. Med. 2024, 24, 702–711. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Viljoen, A.M. Geraniol—A review of a commercially important fragrance material. S. Afr. J. Bot. 2010, 76, 643–651. [Google Scholar] [CrossRef]
- Prapalert, W.; Phottraithip, W. Active Ingredients, Bioactivities and Extraction Techniques of Essential Oils from Organic Roses Cultivated by the Farmers in Chiang Dao District, Chiang Mai Province Lead to Perfume and Cosmetic Products Application. Available online: http://cmruir.cmru.ac.th/handle/123456789/2237 (accessed on 24 November 2023).
- Abdel-Hameed, E.-S.S.; Bazaid, S.A.; Sabra, A.N.A. Total phenolic, in vitro antioxidant activity and safety assessment (acute, sub-chronic and chronic toxicity) of industrial taif rose water by-product in mice. Der. Pharm. Lett 2015, 7, 251–259. [Google Scholar]
- Dina, E.; Sklirou, A.D.; Chatzigeorgiou, S.; Manola, M.S.; Cheilari, A.; Louka, X.P.; Argyropoulou, A.; Xynos, N.; Skaltsounis, A.-L.; Aligiannis, N. An enriched polyphenolic extract obtained from the by-product of Rosa damascena hydrodistillation activates antioxidant and proteostatic modules. Phytomedicine 2021, 93, 153757. [Google Scholar] [CrossRef]
- Trendafilova, A.; Staleva, P.; Petkova, Z.; Ivanova, V.; Evstatieva, Y.; Nikolova, D.; Rasheva, I.; Atanasov, N.; Topouzova-Hristova, T.; Veleva, R. Phytochemical Profile, Antioxidant Potential, Antimicrobial Activity, and Cytotoxicity of Dry Extract from Rosa damascena Mill. Molecules 2023, 28, 7666. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Bhandari, P.; Singh, B.; Gupta, A.P.; Kaul, V.K. Reversed phase-HPLC for rapid determination of polyphenols in flowers of rose species. J. Sep. Sci. 2008, 31, 262–267. [Google Scholar] [CrossRef]
- Li, Y.; Kong, D.; Fu, Y.; Sussman, M.R.; Wu, H. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol. Biochem. 2020, 148, 80–89. [Google Scholar] [CrossRef]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.; Mohamed, A.; Sahena, F.; Jahurul, M.; Ghafoor, K.; Norulaini, N.; Omar, A. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Memariani, Z.; Amin, G.; Moghaddam, G.; Hajimahmoodi, M. Comparative analysis of phenolic compounds in two samples of Rosa damascena by HPLC. Int. J. Biosci. 2015, 7, 112–118. [Google Scholar]
- Bayhan, G.I.; Gumus, T.; Alan, B.; Savas, I.K.; Cam, S.A.; Sahin, E.A.; Arslan, S.O. Influence of Rosa damascena hydrosol on skin flora (contact culture) after hand-rubbing. GMS Hyg. Infect. Control 2020, 15, 2196–5226. [Google Scholar]
- Maruyama, N.; Tansho-Nagakawa, S.; Miyazaki, C.; Shimomura, K.; Ono, Y.; Abe, S. Inhibition of neutrophil adhesion and antimicrobial activity by diluted hydrosol prepared from Rosa damascena. Biol. Pharm. Bull. 2017, 40, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Chroho, M.; Bouymajane, A.; Oulad El Majdoub, Y.; Cacciola, F.; Mondello, L.; Aazza, M.; Zair, T.; Bouissane, L. Phenolic composition, antioxidant and antibacterial activities of extract from flowers of Rosa damascena from morocco. Separations 2022, 9, 247. [Google Scholar] [CrossRef]
- Latifi, G.; Ghannadi, A.; Minaiyan, M. Anti-inflammatory effect of volatile oil and hydroalcoholic extract of Rosa damascena Mill. on acetic acid-induced colitis in rats. Res. Pharm. Sci. 2015, 10, 514–522. [Google Scholar] [PubMed]
- Hajhashemi, V.; Ghannadi, A.; Hajiloo, M. Analgesic and anti-inflammatory effects of Rosa damascena hydroalcoholic extract and its essential oil in animal models. Iran. J. Pharm. Res. 2010, 9, 163. [Google Scholar]
- Safia, A.; Aamir, Z.; Iqbal, A.; Rafi, S.; Zafar, M. Assessment of rose water and evaluation of antioxidant and anti-inflammatory properties of a rose water based cream formulation. Int. J. Pharm. Clin. Res 2019, 11, 43–48. [Google Scholar]
- Maleev, A.; Neshtev, G.; Stoianov, S.; Sheikov, N. The ulcer protective and anti-inflammatory effect of Bulgarian rose oil. Eksperimentalna Meditsina Morfol. 1972, 11, 55–60. [Google Scholar]
- Karimi, M.; Asadi, Y.; Parsaei, P.; Rafieian-Kopaei, M.; Ghaheri, H.; Ezzati, S. The Effect of Ethanol Extract of Rose (Rosa damascena) on Intra-abdominal Adhesions After Laparotomy in Rats. Wounds A Compend. Clin. Res. Pract. 2016, 28, 167–174. [Google Scholar]
- Solimine, J.; Garo, E.; Wedler, J.; Rusanov, K.; Fertig, O.; Hamburger, M.; Atanassov, I.; Butterweck, V. Tyrosinase inhibitory constituents from a polyphenol enriched fraction of rose oil distillation wastewater. Fitoterapia 2016, 108, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Hadipour, E.; Kafash, M.R.; Emami, S.A.; Asili, J.; Boghrati, Z.; Tayarani-Najaran, Z. Evaluation of anti-oxidant and antimelanogenic effects of the essential oil and extracts of Rosa× damascena in B16F10 murine melanoma cell line. Iran. J. Basic Med. Sci. 2023, 26, 1076. [Google Scholar] [PubMed]
- Wongkaew, M.; Sommano, S.R.; Tangpao, T.; Rachtanapun, P.; Jantanasakulwong, K. Mango peel pectin by microwave-assisted extraction and its use as fat replacement in dried Chinese sausage. Foods 2020, 9, 450. [Google Scholar] [CrossRef] [PubMed]
- Mohsen, E.; Younis, I.Y.; Farag, M.A. Metabolites profiling of Egyptian Rosa damascena Mill. flowers as analyzed via ultra-high-performance liquid chromatography-mass spectrometry and solid-phase microextraction gas chromatography-mass spectrometry in relation to its anti-collagenase skin effect. Ind. Crops Prod. 2020, 155, 112818. [Google Scholar]
- Issa-Issa, H.; Lipan, L.; Cano-Lamadrid, M.; Nemś, A.; Corell, M.; Calatayud-García, P.; Carbonell-Barrachina, Á.A.; López-Lluch, D. Effect of aging vessel (clay-tinaja versus oak barrel) on the volatile composition, descriptive sensory profile, and consumer acceptance of red wine. Beverages 2021, 7, 35. [Google Scholar] [CrossRef]
- Xiao, Y.; He, J.; Zeng, J.; Yuan, X.; Zhang, Z.; Wang, B. Application of citronella and rose hydrosols reduced enzymatic browning of fresh-cut taro. J. Food Biochem. 2020, 44, e13283. [Google Scholar] [CrossRef] [PubMed]
- Lei, G.; Song, C.; Luo, Y. Chemical composition of hydrosol volatiles of flowers from ten Paeonia× suffruticosa Andr. cultivars from Luoyang, China. Nat. Prod. Res. 2021, 35, 3509–3513. [Google Scholar] [CrossRef]
- de Lira, C.S.; Pontual, E.V.; de Albuquerque, L.P.; Paiva, L.M.; Paiva, P.M.G.; de Oliveira, J.V.; Napoleão, T.H.; Navarro, D.M.d.A.F. Evaluation of the toxicity of essential oil from Alpinia purpurata inflorescences to Sitophilus zeamais (maize weevil). Crop Prot. 2015, 71, 95–100. [Google Scholar] [CrossRef]
- Sunanta, P.; Kontogiorgos, V.; Leksawasdi, N.; Phimolsiripol, Y.; Wangtueai, S.; Wongkaew, M.; Sommano, S.R. Loss Assessment during Postharvest and Handling of Thai Garlic Used for Processing. Horticulturae 2023, 9, 482. [Google Scholar] [CrossRef]
- Khamsaw, P.; Sommano, S.R.; Wongkaew, M.; Willats, W.G.; Bakshani, C.R.; Sirilun, S.; Sunanta, P. Banana Peel (Musa ABB cv. Nam Wa Mali-Ong) as a Source of Value-Adding Components and the Functional Properties of Its Bioactive Ingredients. Plants 2024, 13, 593. [Google Scholar] [CrossRef]
- Sunanta, P.; Pankasemsuk, T.; Jantanasakulwong, K.; Chaiyaso, T.; Leksawasdi, N.; Phimolsiripol, Y.; Rachtanapun, P.; Seesuriyachan, P.; Sommano, S.R. Does curing moisture content affect black garlic physiochemical quality? Horticulturae 2021, 7, 535. [Google Scholar] [CrossRef]
- Sangta, J.; Wongkaew, M.; Tangpao, T.; Withee, P.; Haituk, S.; Arjin, C.; Sringarm, K.; Hongsibsong, S.; Sutan, K.; Pusadee, T. Recovery of polyphenolic fraction from arabica coffee pulp and its antifungal applications. Plants 2021, 10, 1422. [Google Scholar] [CrossRef] [PubMed]
- Prasad, S.K.; Veeresh, P.M.; Ramesh, P.S.; Natraj, S.M.; Madhunapantula, S.V.; Devegowda, D. Phytochemical fractions from Annona muricata seeds and fruit pulp inhibited the growth of breast cancer cells through cell cycle arrest at G0/G1 phase. J. Cancer Res. Ther. 2020, 16, 1235–1249. [Google Scholar] [PubMed]
- Butrungrod, W.; Chaiyasut, C.; Makhamrueang, N.; Peerajan, S.; Chaiyana, W.; Sirilun, S. Postbiotic Metabolite of Lactiplantibacillus plantarum PD18 against Periodontal Pathogens and Their Virulence Markers in Biofilm Formation. Pharmaceutics 2023, 15, 1419. [Google Scholar] [CrossRef] [PubMed]
- Chao, L.K.; Hua, K.-F.; Hsu, H.-Y.; Cheng, S.-S.; Liu, J.-Y.; Chang, S.-T. Study on the antiinflammatory activity of essential oil from leaves of Cinnamomum osmophloeum. J. Agric. Food Chem. 2005, 53, 7274–7278. [Google Scholar] [CrossRef] [PubMed]
- Hua, K.-F.; Yang, T.-J.; Chiu, H.-W.; Ho, C.-L. Essential oil from leaves of Liquidambar formosana ameliorates inflammatory response in lipopolysaccharide-activated mouse macrophages. Nat. Prod. Commun. 2014, 9, 869–872. [Google Scholar] [CrossRef] [PubMed]
- Hsu, J.-Y.; Lin, H.-H.; Li, T.-S.; Tseng, C.-Y.; Wong, Y.; Chen, J.-H. Anti-melanogenesis effects of lotus seedpod in vitro and in vivo. Nutrients 2020, 12, 3535. [Google Scholar] [CrossRef]
- Chan, Y.; Kim, K.; Cheah, S. Inhibitory effects of Sargassum polycystum on tyrosinase activity and melanin formation in B16F10 murine melanoma cells. J. Ethnopharmacol. 2011, 137, 1183–1188. [Google Scholar] [CrossRef]
Sample | Scientific Name, Morphology, and Basic Odour Characteristics | Moisture Content (%) | Scent Intensity | ||
---|---|---|---|---|---|
Bud Stage 1 | Initial Opening Stage 2 | Full Bloom Stage 3 | |||
Mon Dang Prasert | Family: Rosaceae Species name: Rosa damascena Shrubs, stems, and thorny branches. The leaves are composed of feathers, arranged alternately; the leaves are oval-shaped, rounded, and pointed at the tip; the edge of the leaf is serrated like a saw-tooth. The diameter is 2.5–3.5 cm. The flowers are clustered into clusters of 3–5 flowers at the tip of the top. With dark red petals when exposed to sunlight and pink petal base, the petals are stacked in several layers. When the flowers are in full bloom, they are 5–7 cm. in diameter and have a mild fragrance. | 86.34 | + | ++ | ++ |
Mon Klai Kangwon | Family: Rosaceae Species name: Rosa damascena Shrubs, stems, and branches have thorns. Characteristics of feathered compound leaves arranged alternately and short-paired leaves. The leaves are oval-shaped, 2–3 cm in diameter, with a rounded, pointed tip and a saw-tooth serrated edge. The flowers are clustered into clusters of 3–5 flowers at the tip of the top. The light-coloured pinkish petals are neatly stacked in several layers. When the flowers are in full bloom, they are 5–7 cm. in diameter and have a strong fragrance. | 87.37 | ++ | +++ | +++ |
Bishop’s Castle | Family: Rosaceae Species name: Rosa ‘Ausbecks’ Shrubs, stems, and thorny branches. The leaves are compound, feathery, alternate, oval-shaped, 3–5 cm in diameter, rounded at the base, pointed at the edge, serrated, and saw-toothed. The flowers are clustered into clusters of 2–3 flowers at the tip of the top. The petals are light pink and stacked tightly in several layers. When the flowers are in full bloom, they are about 5–7 cm. in diameter and have a powdery fragrance. | 86.04 | + | ++ | +++ |
Samples | Flavonoids (mg catechin/g Dried Sample) | Phenolics (mg gallic/g Dried Sample) | ABTS | DPPH | FRAP | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
% Inhibition | IC50 (μg/mL) | TEAC (mg/g) | % Inhibition | IC50 (μg/mL) | TEAC (mg/g) | % Inhibition | IC50 (μg/mL) | TEAC (mg/g) | |||
HMD | 6.93 ± 0.41 Aa | 10.08 ± 0.55 Aa | 58.87 ± 1.67 Ba | 0.97 ± 0.03 Dc | 0.12 ± 0.00 Aa | 55.91 ± 1.75 ABa | 0.95 ± 0.02 Cc | 0.12 ± 0.00 Aa | 52.49 ± 0.36 Ba | 0.67 ± 0.01 Dc | 3.89 ± 0.11 Aa |
HMK | 4.61 ± 0.17 Bb | 10.56 ± 0.71 Aa | 52.85 ± 0.85 Cb | 1.10 ± 0.01 CDb | 0.11 ± 0.00 Bb | 50.95 ± 0.46 BCb | 1.03 ± 0.00 Cb | 0.11 ± 0.00 Bb | 46.60 ± 0.43 Cb | 0.73 ± 0.01 CDb | 3.45 ± 0.28 Bb |
HMB | 4.39 ± 0.12 Bb | 8.14 ± 0.62 Bb | 43.85 ± 1.80 Dc | 1.36 ± 0.06 Ca | 0.09 ± 0.00 Cc | 45.25 ± 1.62 Cc | 1.17 ± 0.04 Ca | 0.10 ± 0.00 Cc | 41.48 ± 0.86 Cc | 0.81 ± 0.02 Ca | 3.15 ± 0.47 Cc |
RMD | 3.22 ± 0.24 Ca | 5.89 ± 0.46 Ca | 65.80 ± 3.47 Aa | 2.22 ± 0.12 Bb | 0.05 ± 0.00 Da | 58.03 ± 2.46 ABa | 2.31 ± 0.09 Bb | 0.05 ± 0.00 Da | 54.22 ± 1.85 Aba | 1.67 ± 0.04 Bb | 1.62 ± 0.66 Da |
RMK | 2.23 ± 0.08 Db | 5.13 ± 0.19 Ca | 57.90 ± 1.60 BCb | 1.97 ± 0.21 Bb | 0.05 ± 0.00 Db | 60.85 ± 4.75 Aa | 2.15 ± 0.14 Bb | 0.05 ± 0.00 Da | 58.24 ± 3.40 Aa | 1.63 ± 0.08 Bb | 1.82 ± 0.15 Da |
RMB | 1.58 ± 0.09 Ec | 3.75 ± 0.14 Db | 44.24 ± 0.75 Dc | 3.32 ± 0.06 Aa | 0.04 ± 0.00 Ec | 44.63 ± 0.55 Cb | 2.80 ± 0.03 Aa | 0.04 ± 0.00 Eb | 42.88 ± 0.64 Cb | 2.03 ± 0.09 Aa | 1.29 ± 0.01 Eb |
DMD | 0.00 ± 0.00 Fa | 0.00 ± 0.00 Ea | 18.77 ± 0.35 Fb | n/a | 0.02 ± 0.01 Fa | 8.28 ± 2.81 Da | n/a | 0.01 ± 0.00 Fa | 4.40 ± 0.58 Fb | n/a | 0.79 ± 0.01 FGb |
DMK | 0.00 ± 0.00 Fa | 0.00 ± 0.00 Ea | 17.81 ± 3.55 Fb | n/a | 0.00 ± 0.00 Gb | 5.29 ± 3.49 Dab | n/a | 0.01 ± 0.00 Fa | 6.47 ± 1.16 Fb | n/a | 0.87 ± 0.15 Fa |
DMB | 0.00 ± 0.00 Fa | 0.00 ± 0.00 Ea | 30.88 ± 2.28 Ea | n/a | 0.01 ± 0.01 FGab | 0.13 ± 0.76 Db | n/a | 0.00 ± 0.00 Fb | 14.95 ± 1.46 Ea | n/a | 0.87 ± 0.01 Fa |
VMD | 0.06 ± 0.00 Fa | 0.02 ± 0.02 Ea | 21.94 ± 0.48 Fa | n/a | 0.00 ± 0.00 Ga | 3.81 ± 0.06 Da | n/a | 0.01 ± 0.00 Fa | 14.85 ± 0.85 Eb | n/a | 0.86 ± 0.01 Fb |
VMK | 0.05 ± 0.01 Fa | 0.01 ± 0.01 Ea | 4.50 ± 0.24 Gc | n/a | 0.00 f ± 0.00 Ga | 2.48 ± 0.72 Da | n/a | 0.01 ± 0.00 Fa | 26.23 ± 3.65 Da | n/a | 1.00 ± 0.05 Fa |
VMB | 0.05 ± 0.01 Fa | 0.01 ± 0.00 Ea | 8.29 ± 0.57 Gb | n/a | 0.00 ± 0.00 Ga | 8.26 ± 6.66 Da | n/a | 0.01 ± 0.01 Fa | 24.60 ± 2.40 Da | n/a | 0.98 ± 0.03 Fab |
Sample (mg/g Dried Sample) | HMD | HMK | HBC | RMD | RMK | RBC |
---|---|---|---|---|---|---|
Gallic acid | 8.71 ± 0.09 E | 14.17 ± 0.03 A | 10.68 ± 0.11 D | 11.65 ± 0.16 C | 12.84 ± 0.07 B | 8.08 ± 0.03 F |
Epicatechin | nd | nd | nd | nd | nd | nd |
Catechin/ caffeic acid | 1.93 ± 0.03 F | 7.83 ± 0.06 A | 3.54 ± 0.06 D | 3.56 ± 0.05 C | 5.19 ± 0.02 B | 3.09 ± 0.01 E |
Naringin | 2.92 ± 0.02 B | 2.71 ± 0.02 C | 3.38 ± 0.02 A | 2.50 ± 0.03 D | 1.78 ± 0.02 E | 2.53 ± 0.02 D |
p-Coumaric acid | 7.38 ± 0.02 A | 6.48 ± 0.04 B | nd | nd | 4.35 ± 0.02 C | nd |
Rosmarinic acid | 3.45 ± 0.01 B | 6.58 ± 0.01 A | 2.92 ± 0.02 C | 2.66 ± 0.02 D | 2.04 ± 0.02 E | 1.92 ± 0.04 F |
Vanillic acid | 1.57 ± 0.01 C | 1.68 ± 0.00 B | 4.07 ± 0.02 A | 1.27 ± 0.01 E | 1.37 ± 0.01 D | 0.87 ± 0.01 F |
Quercetin | nd | nd | nd | nd | 2.71 ± 0.02 B | 3.77 ± 0.03 A |
o-Coumaric acid | nd | nd | nd | nd | nd | nd |
Tests | S. aureus | C. acnes | S. epidermidis | C. albicans | P. aeruginosa | E. coli |
---|---|---|---|---|---|---|
HMD | n/a * | n/a | n/a | n/a | n/a | n/a |
HMK | n/a | n/a | n/a | n/a | n/a | n/a |
HMB | n/a | n/a | n/a | n/a | n/a | n/a |
RMD | n/a | n/a | n/a | n/a | n/a | n/a |
RMK | n/a | n/a | n/a | n/a | n/a | n/a |
RMB | n/a | n/a | n/a | n/a | n/a | n/a |
Clinda M | ≥1:2 ** | ≥1:512 | ≥1:2 | n/a | n/a | n/a |
Penicillin G (µg/mL) | 0. 625 | 0.078 | 0.156 | n/a | n/a | n/a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Charoimek, N.; Sunanta, P.; Tangpao, T.; Suksathan, R.; Chanmahasathien, W.; Sirilun, S.; Hua, K.-F.; Chung, H.-H.; Sommano, S.R.; Junmahasathien, T. Pharmaceutical Potential Evaluation of Damask Rose By-Products from Volatile Oil Extraction. Plants 2024, 13, 1605. https://doi.org/10.3390/plants13121605
Charoimek N, Sunanta P, Tangpao T, Suksathan R, Chanmahasathien W, Sirilun S, Hua K-F, Chung H-H, Sommano SR, Junmahasathien T. Pharmaceutical Potential Evaluation of Damask Rose By-Products from Volatile Oil Extraction. Plants. 2024; 13(12):1605. https://doi.org/10.3390/plants13121605
Chicago/Turabian StyleCharoimek, Nutthawut, Piyachat Sunanta, Tibet Tangpao, Ratchuporn Suksathan, Wisinee Chanmahasathien, Sasithorn Sirilun, Kuo-Feng Hua, Hsiao-Hang Chung, Sarana Rose Sommano, and Taepin Junmahasathien. 2024. "Pharmaceutical Potential Evaluation of Damask Rose By-Products from Volatile Oil Extraction" Plants 13, no. 12: 1605. https://doi.org/10.3390/plants13121605
APA StyleCharoimek, N., Sunanta, P., Tangpao, T., Suksathan, R., Chanmahasathien, W., Sirilun, S., Hua, K. -F., Chung, H. -H., Sommano, S. R., & Junmahasathien, T. (2024). Pharmaceutical Potential Evaluation of Damask Rose By-Products from Volatile Oil Extraction. Plants, 13(12), 1605. https://doi.org/10.3390/plants13121605