Biostimulants Enhance the Nutritional Quality of Soilless Greenhouse Tomatoes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biostimulants Used in This Experiment
- T1: Control
- T2: Amino acid
- T3: PGPR
- T4: Fulvic acid
- T5: Chitosan
- T6: Vermicompost
2.2. Plant Growing Conditions
2.3. Plant Nutrition
2.4. Plant Growth Measurements
2.5. Fruit Harvest and Measurement of Fruit Properties and Quality Attributes
2.6. Determination of Total Soluble Solids, Titratable Acidity, EC, and pH in Tomato Fruits
2.7. Determination of Antioxidants in Tomato Fruits
2.8. Statistical Analysis
3. Results
3.1. Effects of the Biostimulants on Plant Growth
3.2. Effect of Biostimulants on Tomatoes Fruit Color Properties
3.3. Effects of Biostimulants on Physical Properties of Tomato Fruits
3.4. Impact of Biostimulants on the Nutritional Properties of Tomato Fruits
3.5. Heat Map Analysis of Biostimulant Influences on Tomato Quality and Nutritional Properties
3.6. Effects of the Biostimulants on Total Tomato Yield
3.7. Heat Map Analysis of Biostimulant Influences on Tomato Plant Growth, Yield
4. Discussion
4.1. Effects of Biostimulants on Plant Growth and Yield of Tomato Plant
4.2. Effects of Biostimulants on Fruit Quality Properties and Antioxidant Contents
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. 2020. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 1 August 2024).
- Amr, A.; Raie, W. Tomato components and quality parameters: A review. Jordan J. Agric. Sci. 2022, 18, 199–220. [Google Scholar] [CrossRef]
- Lal, B. A review study on tomato and its health benefits. Asian J. Res. Soc. Sci. Humanit. 2021, 11, 197–202. [Google Scholar] [CrossRef]
- Khan, U.M.; Sevindik, M.; Zarrabi, A.; Nami, M.; Ozdemir, B.; Kaplan, D.N.; Sharifi-Rad, J. Lycopene: Food sources, biological activities, and human health benefits. Oxid. Med. Cell. Longev. 2021, 2021, 2713511. [Google Scholar] [CrossRef] [PubMed]
- Gruda, N.S. Increasing sustainability of growing media constituents and stand-alone substrates in soilless culture systems. Agronomy 2019, 9, 298. [Google Scholar] [CrossRef]
- Gruda, N.S. Advances in soilless culture and growing media in today’s horticulture—An editorial. Agronomy 2022, 12, 2773. [Google Scholar] [CrossRef]
- Banerjee, A.; Paul, K.; Varshney, A.; Nandru, R.; Badhwar, R.; Sapre, A.; Dasgupta, S. Soilless indoor smart agriculture as an emerging enabler technology for food and nutrition security amidst climate change. In Plant Nutrition and Food Security in the Era of Climate Change; Academic Press: London, UK, 2022; pp. 179–225. [Google Scholar]
- Gruda, N.S.; Machado, R.M.A.; van Os, E.A. Is soilless culture a sustainable form of agriculture? Horticulturae 2023, 9, 1190. [Google Scholar] [CrossRef]
- Chanda, S.; Bhat, M.; Shetty, K.G.; Jayachandran, K. Technology, policy, and market adaptation mechanisms for sustainable fresh produce industry: The case of tomato production in Florida, USA. Sustainability 2021, 13, 5933. [Google Scholar] [CrossRef]
- De Pascale, S.; Rouphael, Y.; Colla, G. Plant biostimulants: Innovative tool for enhancing plant nutrition in organic farming. Eur. J. Hortic. Sci. 2018, 82, 277–285. [Google Scholar] [CrossRef]
- Kumar, T.S.; Mithra, R.S.; Shiyal, V.N. Biostimulants for sustainable crop production. In Sustainable Agriculture: Practices and Innovations; Naresh, R.K., Ed.; AkiNik Publications: New Delhi, India, 2023; Chapter 4; pp. 39–91. [Google Scholar]
- Suresh, I.J.; Lakshimi, I.V. Vermicompost: Enriching soil fertility by inviting the beneficial microbial community. Life Sci. Res. Dev. 2022, 17, 1–10. [Google Scholar]
- Naz, R.; Asif, T.; Mubeen, S.; Khushhal, S. Seed application with microbial inoculants for enhanced plant growth. In Sustainable Horticulture; Academic Press: London, UK, 2022; pp. 333–368. [Google Scholar]
- Maksoud, S.A.; Gad, K.I.; Hamed, E.Y. The potentiality of biostimulant (Lawsonia inermis L.) on some morpho-physiological, biochemical traits, productivity and grain quality of Triticum aestivum L. BMC Plant Biol. 2023, 23, 95. [Google Scholar] [CrossRef]
- Colla, G.; Hoagland, L.; Ruzzi, M.; Cardarelli, M.; Bonini, P.; Canaguier, R.; Rouphael, Y. Biostimulant action of protein hydrolysates: Unraveling their effects on plant physiology and microbiome. Front. Plant Sci. 2017, 8, 2202. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, T.; Kalozoumis, P.; Tampakaki, A.; Savvas, D.; Gatsios, A.; Baldi, L.; Bacenetti, J. Multiple eco-efficiency solutions in tomatoes simulating biostimulant effects. Clean. Environ. Syst. 2024, 12, 100165. [Google Scholar] [CrossRef]
- Altuntas, O.; Dasgan, H.Y.; Akhoundnejad, Y.; Nas, Y. Unlocking the potential of pepper plants under salt stress: Mycorrhizal effects on physiological parameters related to plant growth and gas exchange across tolerant and sensitive genotypes. Plants 2024, 13, 1380. [Google Scholar] [CrossRef] [PubMed]
- Dasgan, H.Y.; Temtek, T. Impact of biofertilizers on plant growth, physiological and quality traits of lettuce (Lactuca sativa L. var. Longifolia) grown under salinity stress. In Vegetation Dynamics, Changing Ecosystems and Human Responsibility; IntechOpen: London, UK, 2023. [Google Scholar]
- Gruda, N.S.; Dong, J.; Li, X. From salinity to nutrient-rich vegetables: Strategies for quality enhancement in protected cultivation. Crit. Rev. Plant Sci. 2024, 43, 327–347. [Google Scholar] [CrossRef]
- Ikiz, B.; Dasgan, H.Y.; Balik, S.; Kusvuran, S.; Gruda, N.S. The use of biostimulants as a key to sustainable hydroponic lettuce farming under saline water stress. BMC Plant Biol. 2024, 24, 808. [Google Scholar] [CrossRef]
- Wadduwage, J.; Egidi, E.; Singh, B.K.; Macdonald, C.A. Impacts of biostimulants on crop yield and biological activity under drought conditions. J. Sustain. Agric. Environ. 2024, 3, e12093. [Google Scholar] [CrossRef]
- Ergun, O.; Dasgan, H.Y.; Isık, O. Effects of microalgae Chlorella vulgaris on hydroponically grown lettuce. Acta Hortic. 2020, 1273, 169–176. [Google Scholar] [CrossRef]
- Dasgan, H.Y.; Aldiyab, A.; Elgudayem, F.; Ikiz, B.; Gruda, N.S. Effect of biofertilizers on leaf yield, nitrate amount, mineral content, and antioxidants of basil (Ocimum basilicum L.) in a floating culture. Sci. Rep. 2022, 12, 20917. [Google Scholar] [CrossRef]
- Ikiz, B.; Dasgan, H.Y.; Gruda, N.S. Utilizing the power of plant growth-promoting rhizobacteria on reducing mineral fertilizer, improved yield, and nutritional quality of Batavia lettuce in a floating culture. Sci. Rep. 2024, 14, 1616. [Google Scholar] [CrossRef]
- Dasgan, H.Y.; Kacmaz, S.; Arpaci, B.B.; İkiz, B.; Gruda, N.S. Biofertilizers improve the leaf quality of hydroponically grown baby spinach (Spinacia oleracea L.). Agronomy 2023, 13, 575. [Google Scholar] [CrossRef]
- Dasgan, H.Y.; Yilmaz, M.; Dere, S.; Ikiz, B.; Gruda, N.S. Bio-Fertilizers Reduced the Need for Mineral Fertilizers in Soilless-Grown Capia Pepper. Horticulturae 2023, 9, 188. [Google Scholar] [CrossRef]
- Kusvuran, A.; Kusvuran, S. The Defensive Role of Amino Acid in Guar (Cyamopsis tetragonoloba (L.) Taub.) against Stress Condition Induced by Drought. J. Plant Physiol. 2020, 175, 4302–4308. [Google Scholar]
- Hosseinifard, M.; Stefaniak, S.; Ghorbani Javid, M.; Soltani, E.; Wojtyla, Ł.; Garnczarska, M. Contribution of exogenous proline to abiotic stress tolerance in plants: A review. Int. J. Mol. Sci. 2022, 23, 5186. [Google Scholar] [CrossRef] [PubMed]
- Ingrisano, R.; Tosato, E.; Trost, P.; Gurrieri, L.; Sparla, F. Proline, cysteine, and branched-chain amino acids in abiotic stress response of land plants and microalgae. Plants 2023, 12, 3410. [Google Scholar] [CrossRef] [PubMed]
- Areche, F.; Aguilar, S.V.; López, J.M.M.; Chirre, E.T.C.; Sumarriva-Bustinza, L.A.; Pacovilca-Alejo, O.V.; Salas-Contreras, W.H. Recent and historical developments in chelated fertilizers as plant nutritional sources, their usage efficiency, and application methods. Braz. J. Biol. 2023, 83, e271055. [Google Scholar]
- Chakraborty, P.; Kumari, A. Role of compatible osmolytes in plant stress tolerance under the influence of phytohormones and mineral elements. In Improving Stress Resilience in Plants; Academic Press: London, UK, 2024; pp. 165–201. [Google Scholar]
- Abdelkader, M.; Voronina, L.; Puchkov, M.; Shcherbakova, N.; Pakina, E.; Zargar, M.; Lyashko, M. Seed priming with exogenous amino acids improves germination rates and enhances photosynthetic pigments of onion seedlings (Allium cepa L.). Horticulturae 2023, 9, 80. [Google Scholar] [CrossRef]
- Zhang, Z.; Shi, W.; Ma, H.; Zhou, B.; Li, H.; Lü, C.; He, J. Binding mechanism between fulvic acid and heavy metals: Integrated interpretation of binding experiments, fraction characterizations, and models. Water Air Soil Pollut. 2020, 231, 184. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, H.; Wu, G.; Chen, X.; Gruda, N.; Li, X.; Dong, J.; Duan, Z. Dose-dependent application of straw-derived fulvic acid on yield and quality of tomato plants grown in a greenhouse. Front. Plant Sci. 2021, 12, 736613. [Google Scholar] [CrossRef]
- Vašková, J.; Stupák, M.; Ugurbaş, M.V.; Žatko, D.; Vaško, L. Therapeutic efficiency of humic acids in intoxications. Life 2023, 13, 971. [Google Scholar] [CrossRef]
- Kanabar, P. Effect of Fulvic Acid on Yield and Quality of Organic Bell Pepper. Ph.D. Thesis, Tennessee State University, Nashville, TN, USA, 2022. [Google Scholar]
- Abou El Hassan, S.; Husein, M.E. Response of tomato plants to foliar application of humic, fulvic acid, and chelated calcium. Egypt. J. Soil Sci. 2016, 56, 141–401. [Google Scholar]
- Phooi, C.L.; Azman, E.A.; Ismail, R. Do it yourself: Humic acid. Pertanika J. Trop. Agric. Sci. 2022, 45, 547–564. [Google Scholar] [CrossRef]
- Dasgan, H.Y.; Yilmaz, D.; Zikaria, K.; Ikiz, B.; Gruda, N.S. Enhancing the yield, quality, and antioxidant content of lettuce through innovative and eco-friendly biofertilizer practices in hydroponics. Horticulturae 2023, 9, 1274. [Google Scholar] [CrossRef]
- Arthur, J.D.; Li, T.; Bi, G. Plant growth, yield, and quality of containerized heirloom chile pepper cultivars affected by three types of biostimulants. Horticulturae 2023, 9, 12. [Google Scholar] [CrossRef]
- Fal, S.; Aasfar, A.; Ouhssain, A.; Choukri, H.; Smouni, A.; El Arroussi, H. Aphanothece sp. as a promising biostimulant to alleviate heavy metal stress in Solanum lycopersicum L. by enhancing physiological, biochemical, and metabolic responses. Sci. Rep. 2023, 13, 6875. [Google Scholar] [CrossRef]
- Boubaker, H.; Saadaoui, W.; Dasgan, H.Y.; Tarchoun, N.; Gruda, N.S. Enhancing seed potato production from in vitro plantlets and microtubers through biofertilizer application: Investigating effects on plant growth, tuber yield, size, and quality. Agronomy 2023, 13, 2541. [Google Scholar] [CrossRef]
- Sangwan, S.; Sharma, P.; Wati, L.; Mehta, S. Effect of chitosan nanoparticles on growth and physiology of crop plants. In Engineered Nanomaterials for Sustainable Agricultural Production, Soil Improvement and Stress Management; Academic Press: London, UK, 2023; pp. 99–123. [Google Scholar]
- Iqbal, A.; Hussain, Q.; Mo, Z.; Hua, T.; Mustafa, A.E.-Z.M.A.; Tang, X. Vermicompost Supply Enhances Fragrant-Rice Yield by Improving Soil Fertility and Eukaryotic Microbial Community Composition under Environmental Stress Conditions. Microorganisms 2024, 12, 1252. [Google Scholar] [CrossRef]
- Kilic, N.; Dasgan, H.Y.; Gruda, N.S. A novel approach for organic strawberry cultivation: Vermicompost-based fertilization and microbial complementary nutrition. Horticulturae 2023, 9, 642. [Google Scholar] [CrossRef]
- Yadav, S.K.; Babu, S.; Singh, R.; Yadav, D.; Rajanna, G.A. The role of organic and natural ecosystems in the food industry. In Sustainable Development and Pathways for Food Ecosystems; Academic Press: London, UK, 2023; pp. 115–128. [Google Scholar]
- Aydoner Coban, G.; Dasgan, H.Y.; Akhoundnejad, Y.; Ak Cimen, B. Use of microalgae (Chlorella vulgaris) to save mineral nutrients in soilless grown tomato. Acta Hortic. 2020, 1273, 161–168. [Google Scholar] [CrossRef]
- Dasgan, H.Y.; Bol, A.; Gruda, N.S. Mycorrhiza improves yield and some quality properties of soilless-grown tomatoes under reduced mineral fertilization. Acta Hortic. 2024, 1391, 605–612. [Google Scholar] [CrossRef]
- Melini, F.; Melini, V.; Luziatelli, F.; Ficca, A.G.; Ruzzi, M. Effect of microbial plant biostimulants on fruit and vegetable quality: Current research lines and future perspectives. Front. Plant Sci. 2023, 14, 1251544. [Google Scholar] [CrossRef]
- Jiang, Y.; Yue, Y.; Wang, Z.; Lu, C.; Yin, Z.; Li, Y.; Ding, X. Plant biostimulant as an environmentally friendly alternative to modern agriculture. J. Agric. Food Chem. 2024, 72, 5107–5121. [Google Scholar] [CrossRef] [PubMed]
- Grammenou, A.; Petropoulos, S.A.; Thalassinos, G.; Rinklebe, J.; Shaheen, S.M.; Antoniadis, V. Biostimulants in the Soil–Plant Interface: Agro-Environmental Implications—A Review. Earth Syst. Environ. 2023, 7, 583–600. [Google Scholar] [CrossRef]
- Munaro, D.; Mazo, C.H.; Bauer, C.M.; da Silva Gomes, L.; Teodoro, E.B.; Mazzarino, L.; Fraga, R.; Maraschin, M. A novel biostimulant from chitosan nanoparticles and microalgae-based protein hydrolysate: Improving crop performance in tomato. Sci. Hortic. 2024, 323, 112491. [Google Scholar] [CrossRef]
- Spanos, G.A.; Wrolstad, R.E. Influence of processing and storage on the phenolic composition of Thompson seedless grape juice. J. Agric. Food Chem. 1990, 38, 1565–1571. [Google Scholar] [CrossRef]
- Quettier-Deleu, C.; Gressier, B.; Vasseur, J.; Dine, T.; Brunet, C.; Luyckx, M.; Cazin, M.; Bailleul, F.; Trotin, F. Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. J. Ethnopharmacol. 2000, 72, 35–42. [Google Scholar] [CrossRef]
- Elgailani, I.E.H.; Elkareem, M.A.M.G.; Noh, E.; Adam, O.; Alghamdi, A. Comparison of two methods for the determination of vitamin C (ascorbic acid) in some fruits. Am. J. Chem. 2017, 2, 1–7. [Google Scholar] [CrossRef]
- Bisbis, M.B.; Gruda, N.S.; Blanke, M.M. Securing horticulture in a changing climate—A mini review. Horticulturae 2019, 5, 56. [Google Scholar] [CrossRef]
- Gruda, N.S.; Bisbis, M.; Katsoulas, N.; Kittas, C. Smart greenhouse production practices to manage and mitigate the impact of climate change in protected cultivation. Acta Hortic. 2021, 1320, 189–196. [Google Scholar] [CrossRef]
- Alfosea-Simón, M.; Ruiz, J.M.; García, P.C.; Olivares, J.; Martínez, V.; García, J.M. Physiological, nutritional and metabolomic responses of tomato plants after the foliar application of amino acids aspartic acid, glutamic acid and alanine. Front. Plant Sci. 2021, 11, 581234. [Google Scholar] [CrossRef]
- Naidu, A.K.; Kushwah, S.S.; Mehta, A.K.; Jain, P.K. Study of organic, inorganic and biofertilizers in relation to growth and yield of tomato. JNKVV Res. J. 2001, 35, 36–37. [Google Scholar]
- Wako, F.-L.; Muleta, H.-D. The role of vermicompost application for tomato production: A review. J. Plant Nutr. 2022, 46, 129–144. [Google Scholar] [CrossRef]
- Akef Bziouech, S.; Dhen, N.; Ben Ammar, I.; Haouala, F.; Al Mohandes Dridi, B. Valorization of vermicompost: Effects on morpho-physiological parameters of organic tomato plantlets (Solanum lycopersicum L.). J. Plant Nutr. 2024, 47, 2149–2164. [Google Scholar] [CrossRef]
- Truong, H.D.; Wang, C.H.; Kien, T.T. Effect of vermicompost in media on growth, yield and fruit quality of cherry tomato (Lycopersicon esculentum Mill.) under net house conditions. Compost Sci. Util. 2018, 26, 52–58. [Google Scholar] [CrossRef]
- Ahmadpour, R.; Armand, N. Effect of ecophysiological characteristics of tomato (Lycopersicon esculentum L.) in response to organic fertilizers (compost and vermicompost). Notulae Bot. Horti Agrobot. 2020, 48, 1248–1259. [Google Scholar] [CrossRef]
- Qasim, M.; Ju, J.; Zhao, H.; Bhatti, S.M.; Saleem, G.; Memon, S.P.; Ali, S.; Younas, M.U.; Rajput, N.; Jamali, Z.H. Morphological and physiological response of tomato to sole and combined application of vermicompost and chemical fertilizers. Agronomy 2023, 13, 1508. [Google Scholar] [CrossRef]
- Tikoria, R.; Kaur, A.; Ohri, P. Physiological, biochemical and structural changes in tomato plants by vermicompost application in different exposure periods under glass house conditions. Plant Physiol. Biochem. 2023, 197, 107656. [Google Scholar] [CrossRef]
- Raksun, A.; Ilhamdi, M.L.; Merta, I.W.; Mertha, I.G. Analysis of bean (Phaseolus vulgaris) growth due to treatment of vermicompost and different types of mulch. J. Biol. Trop. 2022, 22, 907–913. [Google Scholar] [CrossRef]
- Muñoz-Ucros, J.; Panke-Buisse, K.; Robe, J. Bacterial community composition of vermicompost-treated tomato rhizospheres. PLoS ONE 2020, 15, e0230577. [Google Scholar] [CrossRef]
- Amiri, H.; Ismaili, A.; Hosseinzadeh, S.R. Influence of vermicompost fertilizer and water deficit stress on morpho-physiological features of chickpea (Cicer arietinum L. cv. Karaj). Compost Sci. Util. 2017, 25, 152–165. [Google Scholar] [CrossRef]
- Khan, S.; Yu, H.; Li, Q.; Gao, Y.; Sallam, B.N.; Wang, H.; Zhang, X.; Wang, X.; Xu, X.; Li, L. Exogenous application of amino acids improves the growth and yield of lettuce by enhancing photosynthetic assimilation and nutrient availability. Agronomy 2019, 9, 266. [Google Scholar] [CrossRef]
- Alfosea-Simón, M.; Simón-Grao, S.; Zavala-Gonzalez, E.A.; Cámara-Zapata, J.M.; Simón, I.; Martínez-Nicolás, J.J.; Lidón, V.; Rodríguez-Ortega, W.M.; García-Sánchez, F. Application of Biostimulants Containing Amino Acids to Tomatoes Could Favor Sustainable Cultivation: Implications for Tyrosine, Lysine, and Methionine. Sustainability 2020, 12, 9729. [Google Scholar] [CrossRef]
- Teixeira, W.F.; Fagan, E.B.; Soares, L.H.; Reichardt, K.; Silva, L.G.; Dourado-Neto, D. Dry Mass Increment, Foliar Nutrientes and Soybean Yield as Affected by Aminoacid Application. J. Agric. Sci. 2019, 11, 230–242. [Google Scholar] [CrossRef]
- Wang, T.; Liu, Q.; Wang, N.; Dai, J.; Lu, Q.; Jia, X.; Lin, L.; Yu, F.; Zuo, Y. Foliar Arginine Application Improves Tomato Plant Growth, Yield, and Fruit Quality via Nitrogen Accumulation. Plant Growth Regul. 2021, 95, 421–428. [Google Scholar] [CrossRef]
- Pervaiz, A.; Iqbal, A.; Khalid, A.; Manzoor, A.; Noreen, S.; Ayaz, A.; Hussain, M.; Ahmad, S.; Nawaz, R.; Ali, A. Proline Induced Modulation in Physiological Responses in Wheat Plants. J. Agric. Environ. Sci. 2019, 8, 112–119. [Google Scholar] [CrossRef]
- Rehan, M.; Al-Turki, A.; Abdelmageed, A.H.A.; Abdelhameid, N.M.; Omar, A.F. Performance of Plant-Growth-Promoting Rhizobacteria (PGPR) Isolated from Sandy Soil on Growth of Tomato (Solanum lycopersicum L.). Plants 2023, 12, 1588. [Google Scholar] [CrossRef]
- Katsenios, N.; Andreou, V.; Sparangis, P.; Djordjevic, N.; Giannoglou, M.; Chanioti, S.; Stergiou, P.; Xanthou, M.-Z.; Kakabouki, I.; Vlachakis, D.; et al. Evaluation of Plant Growth Promoting Bacteria Strains on Growth, Yield and Quality of Industrial Tomato. Microorganisms 2021, 9, 2099. [Google Scholar] [CrossRef]
- Adedayo, A.A.; Babalola, O.O.; Prigent-Combaret, C.; Cruz, C.; Stefan, M.; Kutu, F.; Glick, B.R. The Application of Plant Growth-Promoting Rhizobacteria in Solanum lycopersicum Production in the Agricultural System: A Review. PeerJ 2022, 10, e13405. [Google Scholar] [CrossRef]
- Yagmur, B.; Gunes, A. Evaluation of the Effects of Plant Growth Promoting Rhizobacteria (PGPR) on Yield and Quality Parameters of Tomato Plants in Organic Agriculture by Principal Component Analysis (PCA). Gesunde Pflanz. 2021, 73, 219–228. [Google Scholar] [CrossRef]
- Widnyana, I.K. PGPR (Plant Growth Promoting Rhizobacteria) Benefits in Spurring Germination, Growth and Increase the Yield of Tomato Plants. In Recent Advances in Tomato Breeding and Production; IntechOpen: London, UK, 2018; pp. 17–25. [Google Scholar]
- Liu, J.; Li, H.; Yuan, Z.; Feng, J.; Chen, S.; Sun, G.; Wei, Z.; Hu, T. Effects of Microbial Fertilizer and Irrigation Amount on Growth, Physiology and Water Use Efficiency of Tomato in Greenhouse. Sci. Hortic. 2024, 323, 112553. [Google Scholar] [CrossRef]
- Canellas, L.P.; Olivares, F.L.; Aguiar, N.O.; Jones, D.L.; Nebbioso, A.; Mazzei, P.; Piccolo, A. Humic and Fulvic Acids as Biostimulants in Horticulture. Sci. Hortic. 2015, 196, 15–27. [Google Scholar] [CrossRef]
- Suh, H.Y.; Yoo, K.S.; Suh, S.G. Effect of Foliar Application of Fulvic Acid on Plant Growth and Fruit Quality of Tomato (Lycopersicon esculentum L.). Hortic. Environ. Biotechnol. 2014, 55, 455–461. [Google Scholar] [CrossRef]
- Husein, M.E.; El-Hassan, S.A.; Shahein, M.M. Effect of Humic, Fulvic Acid and Calcium Foliar Application on Growth and Yield of Tomato Plants. J. Plant Nutr. 2015, 7, 132–140. [Google Scholar]
- Shi, X.; Zhang, L.; Li, Z.; Xiao, X.; Zhan, N.; Cui, X. Improvement of Tomato Fruit Quality and Soil Nutrients through Foliar Spraying Fulvic Acid under Stress of Copper and Cadmium. Agronomy 2023, 13, 275. [Google Scholar] [CrossRef]
- Parvin, M.A.; Paul, S.; Sarker, B.C.; Mollah, M.I.; Hossain, M.K.; Alam, M.M. Effects of Different Application Methods of Chitosan on Growth, Yield and Quality of Tomato (Lycopersicon esculentum Mill.). Arch. Agric. Environ. Sci. 2019, 4, 261–267. [Google Scholar] [CrossRef]
- Mondal, M.; Puteh, A.B.; Dafader, N.C. Foliar Application of Chitosan Improved Morphophysiological Attributes and Yield in Summer Tomato (Solanum lycopersicum). Pak. J. Agric. Sci. 2016, 53, 231–239. [Google Scholar]
- Reyes-Pérez, J.J.; Enríquez-Acosta, E.A.; Ramírez-Arrebato, M.Á.; Zúñiga Valenzuela, E.; Lara-Capistrán, L.; Hernández-Montiel, L.G. Effect of Chitosan on Variables of Tomato Growth, Yield and Nutritional Content. Rev. Mex. Cienc. Agrícolas 2020, 11, 457–465. [Google Scholar]
- El Amerany, F.; Rhazi, M.; Balcke, G.; Wahbi, S.; Meddich, A.; Taourirte, M.; Hause, B. The Effect of Chitosan on Plant Physiology, Wound Response, and Fruit Quality of Tomato. Polymers 2022, 14, 5006. [Google Scholar] [CrossRef]
- Pérez-Rodriguez, M.M.; Vázquez, M.A.; Fernández, L.; López, M.A.; Turrini, A.; Bermejo, V. Pseudomonas fluorescens and Azospirillum brasilense Increase Yield and Fruit Quality of Tomato under Field Conditions. J. Soil Sci. Plant Nutr. 2020, 20, 1614–1624. [Google Scholar] [CrossRef]
- Wang, J.; Yang, J.; Liu, X.; Li, H.; Zhang, W.; Hu, S. Exogenous Application of 5-Aminolevulinic Acid Promotes Coloration and Improves the Quality of Tomato Fruit by Regulating Carotenoid Metabolism. Front. Plant Sci. 2021, 12, 683868. [Google Scholar] [CrossRef]
- Zheng, J.; Chen, H.; Wang, T.; Mustafa, G.; Liu, L.; Wang, Q.; Shao, Z. Quality Improvement of Tomato Fruits by Preharvest Application of Chitosan Oligosaccharide. Horticulturae 2023, 9, 300. [Google Scholar] [CrossRef]
- Li, R.; Li, J.; Zheng, X.; Wu, X.; Zhang, Y.; Hu, X. Exogenous Application of ALA Enhanced Sugar, Acid and Aroma Qualities in Tomato Fruit. Front. Plant Sci. 2023, 14, 1323048. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi Chah-Nasir, A.; Mazinani, S.; Saidi, I.; Karami, A.; Ghahramani, S.; Miri, M. Effect of Humic Acid and Amino Acid Foliar Applications on the Growth Characteristics, Yield, and Fruit Quality of Tomato (Solanum lycopersicum L.). Int. J. Hortic. Sci. Technol. 2023, 10, 309–318. [Google Scholar]
- Jin, N.; Jin, L.; Wang, S.; Meng, X.; Ma, X.; He, X.; Zhang, G.; Luo, S.; Lyu, J.; Yu, J. A Comprehensive Evaluation of Effects on Water-Level Deficits on Tomato Polyphenol Composition, Nutritional Quality and Antioxidant Capacity. Antioxidants 2022, 11, 1585. [Google Scholar] [CrossRef] [PubMed]
- Granato, D.; Shahidi, F.; Wrolstad, R.E.; Finglas, P. Antioxidant Activity, Total Phenolics and Flavonoids Contents: Should We Ban In Vitro Screening Methods? Food Chem. 2018, 264, 471–475. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B. Free Radicals and Antioxidants: Updating a Personal View. Nutr. Rev. 2012, 70, 257–265. [Google Scholar] [CrossRef]
- Williams, R.J.; Spencer, J.P.E.; Rice-Evans, C. Flavonoids: Antioxidants or Signaling Molecules? Free Radic. Biol. Med. 2004, 36, 838–849. [Google Scholar] [CrossRef]
- Palozza, P.; Serini, S.; Calviello, G. Carotenoids as Modulators of Intracellular Signaling Pathways. Curr. Signal Transduct. Ther. 2006, 1, 125–132. [Google Scholar] [CrossRef]
- Nithya, S.; Sethuraman, O.S.; Sasikumar, K. Effect of Vermicompost and Organic Fertilizer on Improved Growth, Productivity and Quality of Tomato (Solanum lycopersicum) Plant. Indian J. Sci. Technol. 2024, 17, 142–148. [Google Scholar] [CrossRef]
- Doseděl, M.; Jirkovský, E.; Macáková, K.; Krčmová, L.K.; Javorská, L.; Pourová, J.; Mercolini, L.; Remião, F.; Nováková, L.; Mladěnka, P. Vitamin C—Sources, Physiological Role, Kinetics, Deficiency, Use, Toxicity, and Determination. Nutrients 2021, 13, 615. [Google Scholar] [CrossRef]
- Lee, S.K.; Kader, A.A. Preharvest and Postharvest Factors Influencing Vitamin C Content of Horticultural Crops. Postharvest Biol. Technol. 2000, 20, 207–220. [Google Scholar] [CrossRef]
- Kocira, S.; Szparaga, A.; Hara, P.; Treder, K.; Findura, P.; Bartoš, P.; Filip, M. Biochemical and Economical Effect of Application Biostimulants Containing Seaweed Extracts and Amino Acids as an Element of Agroecological Management of Bean Cultivation. Sci. Rep. 2020, 10, 17759. [Google Scholar] [CrossRef] [PubMed]
- Gruda, N. Impact of Environmental Factors on Product Quality of Greenhouse Vegetables for Fresh Consumption. Crit. Rev. Plant Sci. 2005, 24, 227–247. [Google Scholar] [CrossRef]
Biostimulant | Root Application Dosage | Foliar Application Dosage |
---|---|---|
Amino acid | 1.75 g L−1 | 0.6 g L−1 |
Benificial bacteria (PGPR) | 1 mL L−1 | 3 mL L−1 |
Fulvic Acid | 1.5 g L−1 | 1 g L−1 |
Chitosan | 0.3 mL L−1 | 0.6 mL L−1 |
Vermicompost | 2 mL L−1 | 3.5 mL L−1 |
Stock A | Stock B |
---|---|
Calcium nitrate | Potassium sulfate |
Fe—EDDHA | Mono potassium phosphate |
Potassium nitrate | Magnesium sulfate |
Microelements | |
Zinc sulfate | |
Boric acid | |
Manganese sulfate | |
Copper sulfate | |
Ammonium molybdate |
Treatments | Plant Height (cm) | Leaf Number per Plant | Leaf Area (cm2 Plant−1) | Stem Diameter (mm) | Leaf Dry Matter (%) | Leaf SPAD-Chlorophyll |
---|---|---|---|---|---|---|
Control | 170 c | 68.00 c | 12,387 d | 14.95 e | 10.79 bc | 37.13 d |
Amino acid | 173 bc | 90.33 b | 21,433 a | 15.93 bc | 11.55 b | 44.00 bc |
PGPR | 177 b | 73.00 c | 19,916 ab | 15.38 d | 11.01 bc | 44.90 bc |
Fulvic acid | 183 a | 85.33 b | 17,483 c | 15.84 c | 10.88 bc | 41.42 c |
Chitosan | 178 ab | 68.88 c | 18,138 bc | 16.48 a | 10.39 c | 45.70 b |
Vermicompost | 179 ab | 96.66 a | 21,600 a | 16.29 ab | 13.14 a | 53.96 a |
p | 0.0011 | 0.0001 | <0.0001 | <0.0001 | 0.0023 | <0.0001 |
LSD0.05 | 6.583 | 10.302 | 2157 | 0.419 | 1.062 | 4.07 |
Treatments | L | a | b |
---|---|---|---|
Control | 40.94 a | 26.70 c | 32.45 c |
Amino acid | 37.40 cd | 28.94 ab | 37.38 b |
PGPR | 39.22 abc | 28.46 abc | 37.62 b |
Fulvic acid | 35.41 d | 29.62 ab | 36.69 b |
Chitosan | 39.62 ab | 27.58 bc | 33.63 c |
Vermicompost | 38.56 bc | 30.32 a | 39.92 a |
p | 0.0014 | 0.0191 | <0.0001 |
LSD0.05 | 2.18 | 2.16 | 1.97 |
Treatments | Fruit Weight (g) | Fruit Length (mm) | Fruit Equatorial Diameter (mm) | Fruit Volume (cm3) | Fruit Skin Elasticity (kg cm−2) | Fruit Flesh Firmness (kg cm−2) |
---|---|---|---|---|---|---|
Control | 164.74 c | 36.91 b | 57.81 b | 146.62 c | 6.31 b | 2.91 bc |
Amino acid | 187.31 b | 35.78 b | 52.79 bc | 173.38 b | 8.31 a | 3.37 ab |
PGPR | 257.49 a | 47.07 a | 73.23 a | 228.45 a | 8.70 a | 3.46 ab |
Fulvic acid | 189.39 b | 32.38 c | 51.22 c | 168.37 b | 8.62 a | 2.91 bc |
Chitosan | 189.74 b | 33.07 c | 52.94 bc | 172.18 b | 7.04 b | 2.40 c |
Vermicompost | 169.79 c | 30.36 d | 47.45 c | 169.05 b | 8.07 a | 3.67 a |
p | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.0013 | 0.0188 |
LSD0.05 | 19.98 | 1.38 | 5.82 | 12.05 | 0.96 | 0.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dasgan, H.Y.; Aksu, K.S.; Zikaria, K.; Gruda, N.S. Biostimulants Enhance the Nutritional Quality of Soilless Greenhouse Tomatoes. Plants 2024, 13, 2587. https://doi.org/10.3390/plants13182587
Dasgan HY, Aksu KS, Zikaria K, Gruda NS. Biostimulants Enhance the Nutritional Quality of Soilless Greenhouse Tomatoes. Plants. 2024; 13(18):2587. https://doi.org/10.3390/plants13182587
Chicago/Turabian StyleDasgan, Hayriye Yildiz, Kahraman S. Aksu, Kamran Zikaria, and Nazim S. Gruda. 2024. "Biostimulants Enhance the Nutritional Quality of Soilless Greenhouse Tomatoes" Plants 13, no. 18: 2587. https://doi.org/10.3390/plants13182587
APA StyleDasgan, H. Y., Aksu, K. S., Zikaria, K., & Gruda, N. S. (2024). Biostimulants Enhance the Nutritional Quality of Soilless Greenhouse Tomatoes. Plants, 13(18), 2587. https://doi.org/10.3390/plants13182587