Effect of Drought and Rehydration on Physiological Characteristics of Agriophyllum squarrosum (L.) Moq. in Different Habitats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Location and Plant Material
2.2. Treatments and Experimental Design
2.3. Analytical Methods and Statistical Analysis
3. Results
3.1. Changes in Chlorophyll, Fv/Fm, and Malondialhyde
3.2. Changes in Antioxidant Enzymes
3.3. Changes in Osmoregulator
3.4. Correlation Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, J.L.; Zhao, X.Y.; Liu, X.P.; Zhang, Y.Q.; Luo, Y.Y.; Luo, Y.Q.; He, Z.Q.; Zhang, R. Growth and physiology of two psammophytes to precipitation manipulation in Horqin Sandy Land, eastern China. Plants 2019, 8, 244. [Google Scholar] [CrossRef] [PubMed]
- Jin, R.; Shi, H.T.; Han, C.Y.; Zhong, B.; Wang, Q.; Chan, Z.L. Physiological changes of purslane (Portulaca oleracea L.) after progressive drought stress and rehydration. Sci. Hortic. 2015, 194, 215–221. [Google Scholar] [CrossRef]
- Lin, R.P.; Zhou, T.J.; Qian, Y. Evaluation of global monsoon precipitation changes based on five reanalysis datasets. J. Clim. 2014, 27, 1271–1289. [Google Scholar] [CrossRef]
- Huang, J.P.; Yu, H.P.; Guan, X.D.; Wang, G.Y.; Guo, R.X. Accelerated dryland expansion under climate change. Nat. Clim. Chang. 2015, 6, 166–171. [Google Scholar] [CrossRef]
- Shi, Z.; Thomey, M.L.; Mowll, W.; Litvak, M.; Brunsell, N.A.; Collins, S.L.; Pockman, W.T.; Smith, M.D.; Knapp, A.K.; Luo, Y. Differential effects of extreme drought on production and respiration: Synthesis and modeling analysis. Biogeosciences 2014, 11, 621–633. [Google Scholar] [CrossRef]
- John, G.P.; Henry, C.; Sack, L. Leaf rehydration capacity: Associations with other indices of drought tolerance and environment. Plant Cell Environ. 2018, 41, 2638–2653. [Google Scholar] [CrossRef]
- Williams, J.L.; Jacquemyn, H.; Ochocki, B.; Brys, R.; Miller, T. Life history evolution under climate change and its influence on the population dynamics of a long-lived plant. J. Ecol. 2015, 103, 798–808. [Google Scholar] [CrossRef]
- Pinheiro, C.; Chaves, M.M. Photosynthesis and drought: Can we make metabolic connections from available data? J. Exp. Bot. 2011, 62, 869–882. [Google Scholar] [CrossRef]
- Rascio, N.; Rocca, N.L. Resurrection plants: The puzzle of surviving extreme vegetative desiccation. Crit. Rev. Plant Sci. 2005, 24, 209–225. [Google Scholar] [CrossRef]
- Peco, J.D.; Pérez–López, D.; Centeno, A.; Moreno, M.M.; Villena, J.; Moratiel, R. Comparison of physiological and biochemical responses of local and commercial tomato varieties under water stress and rehydration. Agric. Water Manag. 2023, 289, 108529. [Google Scholar] [CrossRef]
- Chen, J.L.; Zhao, X.Y.; Li, Y.Q.; Luo, Y.Q.; Zhang, Y.Q.; Liu, M.; Li, Y. Physiological responses of Agriophyllum squarrosum and Setaria viridis to drought and re-watering. Sci. Rep. 2021, 11, 18663. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.L.; Zhao, X.Y.; Zhang, Y.Q.; Li, Y.Q.; Luo, Y.Q.; Ning, Z.Y.; Wang, R.X.; Wang, P.Y.; Cong, A.Q. Effects of drought and rehydration on the physiological responses of Artemisia halodendron. Water 2019, 11, 793. [Google Scholar] [CrossRef]
- Wang, N.; Gao, J.; Zhang, S.Q. Overcompensation or limitation to photosynthesis and root hydraulic conductance altered by rehydration in seedlings of sorghum and maize. Crop J. 2017, 5, 337–344. [Google Scholar] [CrossRef]
- Chen, G.X.; Zhao, J.C.; Zhao, X.; Zhao, P.S.; Duan, R.J.; Nevo, E.; Ma, X.F. A psammophyte Agriophyllum squarrosum (L.) Moq.: A potential food crop. Genet. Resour. Crop Evol. 2014, 61, 669–676. [Google Scholar] [CrossRef]
- Liu, Z.M.; Yan, Q.L.; Baskin, C.C.; Ma, J.L. Burial of canopy-stored seeds in the annual psammophyte Agriophyllum squarrosum Moq.(Chenopodiaceae) and its ecological significance. Plant Soil 2006, 288, 71–80. [Google Scholar] [CrossRef]
- Nemoto, M.; Lu, X.Y. Ecological characteristics of Agriophyllum squarrosum, a pioneer annual on sand dunes in eastern Inner Mongolia, China. Ecol. Res. 1992, 7, 183–186. [Google Scholar] [CrossRef]
- Liu, Z.I.; Yan, Q.L.; Liu, B.; Ma, J.L.; Luo, Y.M. Persistent soil seed bank in Agriophyllum squarrosum (Chenopodiaceae) in a deep sand profile: Variation along a transect of an active sand dune. J. Arid Environ. 2007, 71, 236–242. [Google Scholar] [CrossRef]
- Bi, M.H.; Jiang, C.; Yao, G.Q.; Turner, N.C.; Scoffoni, C.; Fang, X. Rapid drought-recovery of gas exchange in Caragana species adapted to low mean annual precipitation. Plant Cell Environ. 2023, 46, 2296–2309. [Google Scholar] [CrossRef]
- Yue, P.; Zuo, X.A.; Li, K.H.; Li, X.Y.; Wang, S.K.; Misselbrook, T. No significant change noted in annual nitrous oxide flux under precipitation changes in a temperate desert steppe. Land Degrad. Dev. 2022, 33, 94–103. [Google Scholar] [CrossRef]
- Zhang, R.; Zhao, X.R.; Zuo, X.A.; Degen, A.A.; Shang, Z.H.; Luo, Y.Q.; Zhang, Y.G.; Chen, J. Effect of manipulated precipitation during the growing season on soil respiration in the desert-grasslands in Inner Mongolia, China. Catena 2019, 176, 73–80. [Google Scholar] [CrossRef]
- Du, H.Q.; Zuo, X.A.; Li, S.; Wang, T.; Xue, X. Wind erosion changes induced by different grazing intensities in the desert steppe, Northern China. Agric. Ecosyst. Environ. 2019, 274, 1–13. [Google Scholar] [CrossRef]
- Lian, J.; Zhao, X.Y.; Zhang, J.; Knops, J.; Zhou, X. Changes in carbon and nitrogen storage along a restoration gradient in a semiarid sandy grassland. Acta Oecol. 2015, 69, 1–8. [Google Scholar]
- Li, J.; Qu, H.; Zhao, H.L.; Zhou, R.L.; Yun, J.Y.; Pan, C.C. Growth and physiological responses of Agriophyllum squarrosum to sand burial stress. J. Arid Land 2015, 7, 94–100. [Google Scholar] [CrossRef]
- Cui, J.Y.; Li, Y.L.; Zhao, H.L.; Su, Y.Z.; Drake, S. Comparison of seed germination of Agriophyllum squarrosum (L.) Moq. and Artemisia halodendron Turcz. ex Bess, two dominant species of Horqin Desert, China. Arid Land Res. Manag. 2007, 21, 165–179. [Google Scholar] [CrossRef]
- Debeaujon, I.; Koornneef, M. Gibberellin requirement for arabidopsis seed germination is determined both by testa characteristics and embryonic abscisic acid. Plant Physiol. 2000, 122, 415–424. [Google Scholar] [CrossRef]
- Shi, J.S.; Hao, X.M.; Wang, Z.K.; Jiang, M.; Peng, M.W.; Bai, J.Q.; Zhuang, L. Effects of great gerbil disturbance on photosynthetic characteristics and nutrient status of Haloxylon ammodendron. Plants 2024, 13, 1457. [Google Scholar] [CrossRef]
- Furlan, A.; Llanes, A.; Luna, V.; Castro, S. Physiological and biochemical responses to drought stress and subsequent rehydration in the symbiotic association Peanut Bradyrhizobium sp. ISRN Agron. 2014, 2012, 1091–1097. [Google Scholar] [CrossRef]
- Jan, A.U.; Hadi, F.; Ditta, A.; Suleman, M.; Ullah, M. Zinc-induced anti-oxidative defense and osmotic adjustments to enhance drought stress tolerance in sunflower (Helianthus annuus L.). Environ. Exp. Bot. 2022, 193, 104682. [Google Scholar] [CrossRef]
- An, Y.Y.; Liang, Z.S. Drought tolerance of Periploca sepium during seed germination: Antioxidant defense and compatible solutes accumulation. Acta Physiol. Plant. 2013, 35, 959–967. [Google Scholar] [CrossRef]
- Luo, Y.Y.; Zhao, X.; Zhou, R.L.; Zuo, X.A.; Zhang, J.H.; Li, Y.Q. Physiological acclimation of two psammophytes to repeated soil drought and rewatering. Acta Physiol. Plant. 2011, 33, 79–91. [Google Scholar] [CrossRef]
- Hu, Y.; Li, X.Y.; Guo, A.X.; Yue, P.; Guo, X.X.; Lv, P.; Zhao, S.L.; Zuo, X.A. Species diversity is a strong predictor of ecosystem multifunctionality under altered precipitation in desert steppes. Ecol. Indic. 2022, 137, 108762. [Google Scholar] [CrossRef]
- Lv, P.; Sun, S.S.; Zhao, X.Y.; Li, Y.Q.; Zhao, S.L.; Zhang, J.; Hu, Y.; Guo, A.X.; Yue, P.; Zuo, X.A. Effects of altered precipitation patterns on soil nitrogen transformation in different landscape types during the growing season in northern China. Catena 2023, 222, 106813. [Google Scholar] [CrossRef]
- Zuo, X.A.; Zhao, S.L.; Cheng, H.; Hu, Y.; Wang, S.K.; Yue, P.; Liu, R.T.; Knapp, A.K.; Smith, M.D.; Yu, Q. Functional diversity response to geographic and experimental precipitation gradients varies with plant community type. Funct. Ecol. 2021, 35, 2119–2132. [Google Scholar] [CrossRef]
- Moradi, F.; Ismail, A.M. Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. Ann. Bot. 2007, 99, 1161–1173. [Google Scholar] [CrossRef]
- Kalaji, H.M.; Jajoo, A.; Oukarroum, A.; Brestic, M.; Zivcak, M.; Samborska, I.A.; Cetner, M.D.; Łukasik, I.; Goltsev, V.; Ladle, R.J. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol. Plant. 2016, 38, 102. [Google Scholar] [CrossRef]
- Souza, R.P.; Machado, E.C.; Silva, J.A.; Lagôa, A.M.; Silveira, J.A. Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. Environ. Exp. Bot. 2004, 51, 45–56. [Google Scholar] [CrossRef]
- Wang, W.S.; Wang, C.; Pan, D.Y.; Zhang, Y.K.; Luo, B.; Ji, J.W. Effects of drought stress on photosynthesis and chlorophyll fluorescence images of soybean (Glycine max) seedlings. Int. J. Agric. Biol. Eng. 2018, 11, 196–201. [Google Scholar] [CrossRef]
- Zlatev, Z. Drought-induced changes in chlorophyll fluorescence of young wheat plants. Biotechnol. Biotechnol. Equip. 2009, 23 (Suppl. S1), 438–441. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Buschmann, C.; Knapp, M. How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio R Fd of leaves with the PAM fluorometer. Photosynthetica 2005, 43, 379–393. [Google Scholar] [CrossRef]
- Li, Z.; Tan, X.F.; Lu, K.; Liu, Z.M.; Wu, L.L. The effect of CaCl2 on calcium content, photosynthesis, and chlorophyll fluorescence of tung tree seedlings under drought conditions. Photosynthetica 2016, 55, 553–560. [Google Scholar] [CrossRef]
- Huang, X.X.; Zhou, G.L.; Yang, W.G.; Wang, A.H.; Hu, Z.H.; Lin, C.F.; Chen, X. Drought-inhibited ribulose-1,5-bisphosphate carboxylase activity is mediated through increased release of ethylene and changes in the ratio of polyamines in pakchoi. J. Plant Physiol. 2014, 171, 1392–1400. [Google Scholar] [CrossRef]
- Ogbaga, C.C.; Stepien, P.; Johnson, G.N. Sorghum (Sorghum bicolor) varieties adopt strongly contrasting strategies in response to drought. Physiol. Plant. 2014, 152, 389–401. [Google Scholar] [CrossRef] [PubMed]
- Nikolaeva, M.K.; Maevskaya, S.N.; Shugaev, A.G.; Bukhov, N.G. Effect of drought on chlorophyll content and antioxidant enzyme activities in leaves of three wheat cultivars varying in productivity. Russ. J. Plant Physiol. 2010, 57, 87–95. [Google Scholar] [CrossRef]
- Yang, T.T.; Cao, J.; Wang, Y.C.; Liu, Y. Soil moisture influences vegetation distribution patterns in sand dunes of the Horqin Sandy Land, Northeast China. Ecol. Eng. 2017, 105, 95–101. [Google Scholar]
- Wang, Z.S.; Zhu, Y.Q.; Li, N.; Wang, W.P.; Liu, Y. Composition and diversity of endophytic bacterial communities in the seeds of upland rice resources from different origin habitats in China. J. Plant Growth Regul. 2021, 42, 2433–2442. [Google Scholar] [CrossRef]
- Mutlu, S.; Ilhan, V.; Turkoglu, H.I. Mistletoe (Viscum album) infestation in the scots pine stimulates drought-dependent oxidative damage in summer. Tree Physiol. 2016, 36, 479–489. [Google Scholar] [CrossRef]
- Zhang, J.X.; Kirkham, M.B. Antioxidant responses to drought in sunflower and sorghum seedlings. New Phytol. 1996, 132, 361–373. [Google Scholar] [CrossRef]
- Xiao, X.W.; Yang, F.; Zhang, S.; Korpelainen, H.; Li, C.Y. Physiological and proteomic responses of two contrasting Populus cathayana populations to drought stress. Physiol. Plant. 2009, 136, 150–168. [Google Scholar] [CrossRef]
- Ranjbar, A.; Imani, A.; Piri, S.; Abdoosi, V. Grafting commercial cultivars of almonds on accurate rootstocks mitigates adverse effects of drought stress. Sci. Hortic. 2022, 293, 110725. [Google Scholar] [CrossRef]
- Xu, Y.; Burgess, P.; Zhang, X.Z.; Huang, B.R. Enhancing cytokinin synthesis by overexpressing ipt alleviated drought inhibition of root growth through activating ROS-scavenging systems in Agrostis stolonifera. J. Exp. Bot. 2016, 67, 1979–1992. [Google Scholar] [CrossRef]
- Reddy, A.R.; Chaitanya, K.; Vivekanandan, M. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J. Plant Physiol. 2004, 161, 1189–1202. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.L.; Yang, L.; Yang, X.; Zhang, T.; Yang, L.M. Drought stress induces biosynthesis of flavonoids in leaves and saikosaponins in roots of Bupleurum chinense DC. Phytochemistry 2020, 177, 112434. [Google Scholar] [CrossRef] [PubMed]
- Pi, X.X.; Xi, C.; Zhong, N.Y.; Zheng, T.; Wang, Y.M.; Wu, G.; Zhang, H.; He, B. Response of Vicia faba to short-term uranium exposure: Chelating and antioxidant system changes in roots. J. Plant Res. 2023, 136, 413–421. [Google Scholar]
Item | Height (cm) | Weight (g) | Color | |||
---|---|---|---|---|---|---|
UD | HS | UD | HS | UD | HS | |
Control | 28.80 ± 2.24 a | 32.70 ± 2.36 a | 7.18 ± 0.56 a | 8.85 ± 0.29 a | Chartreuse | Chartreuse |
MD | 29.10 ± 1.36 a | 32.30 ± 1.09 a | 7.66 ± 1.34 ab | 8.34 ± 0.33 a | Chartreuse | Green |
SD | 29.320 ± 0.98 a | 31.90 ± 1.20 a | 8.15 ± 0.35 b | 7.63 ± 0.78 b | Green | Green |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Luo, Y.; Zhao, X.; Li, Y.; Mu, J. Effect of Drought and Rehydration on Physiological Characteristics of Agriophyllum squarrosum (L.) Moq. in Different Habitats. Plants 2024, 13, 2601. https://doi.org/10.3390/plants13182601
Chen J, Luo Y, Zhao X, Li Y, Mu J. Effect of Drought and Rehydration on Physiological Characteristics of Agriophyllum squarrosum (L.) Moq. in Different Habitats. Plants. 2024; 13(18):2601. https://doi.org/10.3390/plants13182601
Chicago/Turabian StyleChen, Juanli, Yongqing Luo, Xueyong Zhao, Yan Li, and Junpeng Mu. 2024. "Effect of Drought and Rehydration on Physiological Characteristics of Agriophyllum squarrosum (L.) Moq. in Different Habitats" Plants 13, no. 18: 2601. https://doi.org/10.3390/plants13182601
APA StyleChen, J., Luo, Y., Zhao, X., Li, Y., & Mu, J. (2024). Effect of Drought and Rehydration on Physiological Characteristics of Agriophyllum squarrosum (L.) Moq. in Different Habitats. Plants, 13(18), 2601. https://doi.org/10.3390/plants13182601