Effects of Plant Extracts on Growth Promotion, Antioxidant Enzymes, and Secondary Metabolites in Rice (Oryza sativa) Plants
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Water Extracts Obtained from Different Agricultural Materials on the Growth of Rice
2.2. Effect of Selected Extracts by Different Extraction, Spraying and Planting Methods on Rice Growth
2.3. Effect of Persistence of Four Selected Extracts on Rice Growth
2.4. Effect of Selected Water Extracts on Application Times in Various Growth Stages of Rice
2.5. Effect of Selected Water Extracts on Secondary Metabolites in Rice at Different Application Times
3. Materials and Methods
3.1. Preparation of Plant Materials and Extraction Methods
3.2. Effect of Water Extracts from Various Agricultural Materials on Rice Growth
3.3. Effect of Selected Extracts on Rice Growth: Comparing Extraction, Spraying, and Planting Methods
3.4. Impact of Four Plant Extracts’ Persistence on Rice Growth
3.5. Optimizing Application Timing of Selected Water Extracts in Rice Cultivation
3.6. Temporal Effects of Selected Water Extracts on Rice Secondary Metabolite Production
3.6.1. Determination of Quantum Yield, Total Chlorophyll and Carotenoid Contents
3.6.2. Determination of DPPH Radical Scavenging Activity, Total Phenol, and Flavonoid Contents
3.6.3. Determination of Antioxidant Activities
3.7. Experimental Design and Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lakra, A.K.; Chitale, S.; Sao, F.C.; Pratap, B.; Lakra, P. To study the economic importance of rice (Oryza sativa L.) varieties sustainable for organic farming. J. Plant Dev. Sci. 2014, 6, 105017. [Google Scholar]
- World Agricultural Production; Global Market Analysis; Circular Series WAP; USDA Foreign Agricultural Service: Washington, DC, USA, 2023; pp. 8–23.
- Godlewska, K.; Ronga, D.; Michalak, I. Plant extracts—Importance in sustainable agriculture. Ital. J. Agron. 2021, 16, 1851. [Google Scholar] [CrossRef]
- Di Mola, I.; Ottaiano, L.; Cozzolino, E.; Senatore, M.; Giordano, M.; Elnakhel, C.; Sacco, A.; Rouphael, Y.; Colla, G. Plant-based biostimulants influence the agronomical, physiological, and qualitative responses of baby rocket leaves under diverse nitrogen conditions. Plants 2019, 8, 522. [Google Scholar] [CrossRef] [PubMed]
- Rouphael, Y.; Colla, G. Toward a sustainable agriculture through plant biostimulants: From experimental data to practical applications. Agronomy 2020, 10, 1461. [Google Scholar] [CrossRef]
- Zulfiqar, F.; Casadesús, A.; Brockman, H.; Munné-Bosch, S. An overview of plant-based natural biostimulants for sustainable horticulture with a particular focus on moringa leaf extracts. Plant Sci. 2019, 295, 110194. [Google Scholar] [CrossRef] [PubMed]
- De Pascale, S.; Rouphael, Y.; Colla, G. Plant biostimulants: Innovative tool for enhancing plant nutrition in organic farming. Eur. J. Hortic. Sci. 2017, 82, 277–285. [Google Scholar] [CrossRef]
- Dipak Kumar, H.; Aloke, P. Role of biostimulant formulations in crop production: An overview. Int. J. Agric. Sci. Vet. Med. 2020, 8, 8–46. [Google Scholar]
- Ertani, A.; Sambo, P.; Nicoletto, C.; Santagata, S.; Schiavon, M.; Nardi, S. The use of organic biostimulants in hot pepper plants to help low-input sustainable agriculture. Chem. Biol. Technol. Agric. 2015, 2, 11. [Google Scholar] [CrossRef]
- Parađiković, N.; Teklić, T.; Zeljković, S.; Lisjak, M.; Špoljarević, M. Biostimulants research in some horticultural plant species—A review. Food Energy Secur. 2018, 8, e00162. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G. Synergistic biostimulatory action: Designing the next generation of plant biostimulants for sustainable agriculture. Front. Plant Sci. 2018, 871, 426696. [Google Scholar] [CrossRef]
- Kapur, B.; Ali, M.; Celiktopuz, E.; Kafkas, E.; Payda, S. Health and taste related compounds in strawberries under various irrigation regimes and biostimulant application. Food Chem. 2018, 263, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Abbas, S.M.T.M.; Zaglool, M.A.; El-Ghadban, E.A.E.; El-Kareem, S.E.H.; Waly, A.A. Effect of foliar application with aloe leaf extracts (ALE) on vegetative growth, oil percentage and anatomical leaf structure of sage (Salvia officinalis L.) plant under sand soil conditions. Hortscience J. Suez Canal Univ. 2016, 5, 9–14. [Google Scholar] [CrossRef]
- Hussain, W.A. Effect of Spraying Garlic Extract, Licorice and Urea in the Characteristics of Flowering Growth of Cucumis sativus L. and the Yield of Cucumber Plant. Master’s Thesis, College of Agriculture, University of Baghdad, Baghdad, Iraq, 2002. [Google Scholar]
- Arfin, P.F.; Nurcholis, W.; Ridwan, T.; Faiza, L.L.; Susilowidodo, R.A.; Batubara, I.; Wsastra, R. Potential utilization of guava leaves and neem seeds extraction waste as organic compost fertilizer in Temulawak (Curcuma xanthorrhiza Roxb.) cultivation. Int. J. Agron. Agric. Res. 2017, 11, 30–36. [Google Scholar]
- Shikur, T.K. Effect of alfalfa (Medicago sativa) extract on yield and yield components of lettuce (Lactuca sativa), Beetroot (Beta vulgaris) and pepper (Capsicum annum). World J. Agric. Sci. 2015, 11, 83–93. [Google Scholar]
- RDA National Academy of Agricultural Science. List of Eco-Friendly Organic Products; RDA National Academy of Agricultural Science: Sangrocksa, Republic of Korea, 2016; 293p. (In Korean) [Google Scholar]
- Guh, J.O.; Kim, M.H.; Kim, Y.J. “Ongoijisin” for Modern Application of Technologies Used in Old Agriculture Books; RDA: Jeonju-si, Republic of Korea, 2011; 300p. (In Korean) [Google Scholar]
- Jang, S.J.; Kuk, Y.I. Growth promotion effects of plant extracts on various leafy vegetable crops. Hortic. Sci. Technol. 2019, 37, 322–336. [Google Scholar] [CrossRef]
- Muhammad, A.; Cheng, Z.; Sikandar, H.; Husain, A.; Muhammad, I.G.; Liu, T. Foliar spraying of aqueous garlic bulb extract stimulates growth and antioxidant enzyme activity in eggplant (Solanum melongena L.). J. Integr. Agric. 2019, 18, 1001–1013. [Google Scholar]
- Hamouda, A.M.A.; Hendi, D.M.; Abu-El-Leel, O.F. Improving basil growth, yield and oil production by Aloe vera extract and active dry yeast. Egypt. J. Hortic. 2012, 39, 45–71. [Google Scholar]
- Lariguet, P.; Ranocha, P.; Meyer, M.D.; Barbier, O.; Penel, C.; Dunand, C. Identification of a hydrogen peroxide signaling pathway in the control of light-dependent germination in Arabidopsis. Planta 2013, 238, 381–395. [Google Scholar] [CrossRef] [PubMed]
- Candan, N.; Tarhan, L. Relationship among chlorophyll carotenoid content, antioxidant enzyme activities, and lipid peroxidation levels by Mg2+ deficiency in the Mentha pulegium leaves. Plant Physiol. Biochem. 2003, 41, 35–40. [Google Scholar] [CrossRef]
- Han, X.; Cheng, Z.; Meng, H.; Yang, X.; Ahmad, I. Allelopathic effect of decomposed garlic (Allium sativum L.) stalk on lettuce (L. Sativa var. crispa L.). Pak. J. Bot. 2013, 45, 225–233. [Google Scholar]
- Leelarungrayub, N.; Rattanapanone, V.; Chanarat, N.; Gebicki, J.M. Quantitative evaluation of the antioxidant properties of garlic and shallot preparations. Nutrition 2016, 22, 266–274. [Google Scholar] [CrossRef]
- Tong, F.; Cheng, Z.H.; Jin, R.; Zhou, L.Y. Allelopathy of methanol dissolved ingredient from garlic plant aqueous extracts. J. Northwest A&F Univ. (Nat. Sci. Ed.) 2007, 35, 119–124. [Google Scholar]
- Kunicki, E.; Grabowska, A.; Sekara, A.; Wojciechowska, R. The effect of cultivar type, time of cultivation, and biostimulant treatment on the yield of spinach (Spinacia oleracea L.). Folia Hortic. Ann. 2010, 22, 9–13. [Google Scholar] [CrossRef]
- Leskovar, D.I.; Othman, Y.A. Direct seeding and transplanting influence root dynamics, morpho-physiology, yield, and heat quality of globe artichoke. Plants 2021, 10, 899. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.Y.; Wang, W.Q.; Aibin, H.; Nie, L.X. Correlation of leaf and root senescence during ripening in dry seeded and transplanted rice. Rice Sci. 2018, 25, 279–285. [Google Scholar]
- Fanadzo, M.; Chiduza, C.; Mnkeni, P. Comparative response of direct seeded and transplanted maize (Zea mays L.) to nitrogen fertilization at Zanyokwe irrigation scheme, Eastern Cape, South Africa. Afr. J. Agric. Res. 2009, 4, 689–694. [Google Scholar]
- Leskovar, D.; Cantliffe, D.; Stoffella, P. Root growth and root-shoot interaction in transplants and direct seeded pepper plants. Environ. Exp. Bot. 2019, 30, 349–354. [Google Scholar] [CrossRef]
- Nardi, S.; Carletti, P.; Pizzeghello, D.; Muscolo, A. Biological activities of humic substances. In Biophysico-Chemical Processes Involving Natural Nonliving Organic Matter in Environmental Systems; Part I. Fundamentals and Impact of Mineral-Organic Biota Interactions on the Formation, Transformation, Turnover, and Storage of Natural Nonliving Organic Matter (NOM); Senesi, N., Xing, B., Huang, P.M., Eds.; John Wiley: Hoboken, NJ, USA, 2009. [Google Scholar]
- Bhandari, S.R.; Yoon, M.K.; Kwak, J.H. Contents of phytochemical constituents and antioxidant activity of 19 garlic (Allium sativum L.) parental lines and cultivars. Hortic. Environ. Biotechnol. 2019, 55, 138–147. [Google Scholar] [CrossRef]
- El-Hamied, S.A.A.; El-Amary, E.I. Improving growth and productivity of “pear” trees using some natural plant extracts under North Sinai conditions. IOSR J. Agric. Vet. Sci. 2015, 8, 01–09. [Google Scholar]
- Nautiyal, P.; Lal, S.; Singh, C.P. Effect of shoot pruning severity and plant spacing on leaf nutrient status and yield of guava cv. Pant Prabhat. Int. J. Basic Appl. Agric. Res. 2016, 14, 288–294. [Google Scholar]
- Zhou, Y.L.; Cheng, Z.H.; Meng, H.W.; Gao, H.C. Allelopathy of garlic root aqueous extracts and root exudates. J. Northwest A&F Univ. (Nat. Sci. Ed.) 2007, 35, 87–92. (In Chinese) [Google Scholar]
- Baliyan, S.; Mukherjee, R.; Priyadarshini, A.; Vibhuti, A.; Gupta, A.; Pandey, R.P.; Chang, C.M. Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus religiose. J. Mol. 2022, 27, 1326. [Google Scholar] [CrossRef]
- Akullo, J.O.; Kiage-Mokua, B.N.; Nakimbugwe, D.; Ng’ang’a, J.; Kinyuru, J. Phytochemical profile and antioxidant activity of various solvent extracts of two varieties of ginger and garlic. Heliyon 2023, 9, e18806. [Google Scholar] [CrossRef] [PubMed]
- Aryal, S.; Baniya, M.K.; Danekhu, K.; Kunwar, P.; Gurung, R.; Koirala, N. Total phenolic content, flavonoid content, and antioxidant potential of wild vegetables from Western Nepal. J. Plants 2019, 8, 96. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, X.; Shen, D.; Oiu, Y.; Song, J. Diversity evaluation of morphological traits and allicin content in garlic (Allium sativum L.) from China. Euphytica 2014, 198, 243–254. [Google Scholar] [CrossRef]
- Park, H.H. Increasement of Growth and Secondary Metabolites in Chicory (Cichorium intybus L.) Plants by Extraction and Application Methods of Agricultural By-Products. Mater’s Dissertation, Sunchon National University, Suncheon-si, Republic of Korea, 2021; p. 56. (In Korean). [Google Scholar]
- Mahmood, S.K.; Abdulla, S.M.; Hassan, K.I.; Mahmood, A.B. Effect of some processing methods on the physiochemical properties of black mulberry. Euphrates J. Agric. Sci. 2024, 16, 440–451. [Google Scholar]
- Giannopolitis, C.N.; Ries, S.K. Superoxide dismutase. 1. Occurrence in higher plants. Plant Physiol. 1977, 59, 309–314. [Google Scholar] [CrossRef]
- Chowdhury, S.R.; Choudhuri, M.A. Hydrogen peroxide metabolism as an index of water stress tolerance in jute. Physiol. Plant. 1985, 65, 476–489. [Google Scholar] [CrossRef]
- Zhang, J.; Cui, S.; Li, J.; Kirkham, M.B. Protoplasmic factors, antioxidant responses, and chilling resistance in maize. Plant Physiol. Biochem. 1995, 33, 567–575. [Google Scholar]
- Chance, B.; Maehly, A.C. Assay of catalases and peroxidases. Methods Enzymol. 1995, 2, 764–775. [Google Scholar]
- Fu, J.; Huang, B. Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress. Environ. Exp. Bot. 2001, 45, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Asada, K. Ascorbate peroxidase in tea leaves: Occurrence of two isozymes and the differences in their enzymatic and molecular properties. Plant Cell Physiol. 1989, 30, 987–998. [Google Scholar]
Growth Promotion Rates (% of Control) | Shoot Length | Root Length | Seedling Length (Shoot + Root) |
---|---|---|---|
10–20 | Mentha arvensis Rheum undulatum Cyperus rountus Perilla frutescens Oryza sativa (hull) Vigna unguiculata | Vigna unguiculata | |
21–30 | Centella asiatica Allium sativum Medicago sativa Moringa oleifera Vigna radiata | Mentha arvensis Cyperus rountus Perilla frutescens Oryza sativa (straw) Vigna radiata Vigna unguiculata | Mentha arvensis Cyperus rountus Centella asiatica Perilla frutescens Oryza sativa (straw) Oryza sativa (hull) Vigna radiata |
31–40 | Allium tuberosum Oryza sativa (straw) Glycine max (leaves) | Rheum undulatum Centella asiatica Aloe vera Oryza sativa (hull) Moringa oleifera | Rheum undulatum Aloe vera Medicago sativa Moringa oleifera Allium tuberosum |
41–50 | Psidium guajava Aloe vera Glycine max (stem) | Medicago sativa Allium tuberosum Glycine max (leaves) Glycine max (stem) | Psidium guajava Allium sativum Glycine max (stems) Glycine max (leaves) |
51–60 | Psidium guajava | ||
61–70 | Allium sativum |
Shoot Length (cm) | Root Length (cm) | Seedling Length (cm) | |
---|---|---|---|
Extract | |||
Water | 3.60 b | 5.70 a | 9.29 a |
Boiling water | 3.13 c | 5.07 c | 8.19 c |
Ethanol | 3.79 a | 5.26 b | 9.05 b |
HSD0.05 | 0.10 | 0.10 | 0.15 |
Concentration (%) | |||
0 (control) | 3.05 b | 4.14 d | 7.46 d |
0.05 | 3.80 a | 5.96 a | 9.76 a |
0.1 | 3.85 a | 5.89 ab | 9.74 a |
0.5 | 3.70 a | 5.76 b | 9.46 b |
1 | 3.15 b | 4.66 c | 7.81 c |
HSD0.05 | 0.16 | 0.15 | 0.23 |
Treatment | |||
P. guajava | 3.53 a | 5.54 a | 9.07 a |
A. vera | 3.50 a | 5.14 cd | 8.64 b |
A. sativum | 3.55 a | 5.05 d | 8.59 b |
M. sativa | 3.53 a | 5.48 a | 9.02 a |
A. tuberosum | 3.51 a | 5.26 bc | 8.83 ab |
G. max (leaves) | 3.39 a | 5.45 ab | 8.84 ab |
G. max (stem) | 3.50 a | 5.45 ab | 8.94 a |
HSD0.05 | 0.20 | 0.20 | 0.29 |
Pr ≥ F | |||
E | *** | *** | *** |
C | *** | *** | *** |
T | ns | *** | *** |
E × T × C. | *** | *** | *** |
CV% | 10.56 | 6.87 | 6.19 |
PH at 7 DAT (cm) | PH at 14 DAT (cm) | SFW at 14 DAT (g/3 Plants) | |
---|---|---|---|
Planting method | |||
Direct seeding | 4.34 b | 14.59 b | 0.181 b |
Transplanting | 26.68 a | 35.99 a | 0.974 a |
HSD0.05 | 0.142 | 0.153 | 0.018 |
Extract | |||
Water | 15.78 a | 26.88 a | 0.682 a |
Boiling water | 15.76 a | 23.64 c | 0.607 b |
Ethanol | 14.98 b | 25.36 b | 0.442 c |
HSD0.05 | 0.208 | 0.224 | 0.026 |
Concentration (%) | |||
0 (control) | 12.945 d | 21.15 d | 0.456 d |
0.6 (Urea) | 13.73 c | 23.18 c | 0.501 c |
0.05 | 16.63 ab | 26.99 a | 0.653 a |
0.1 | 16.74 a | 27.27 a | 0.637 ab |
0.5 | 16.68 ab | 25.46 a | 0.622 ab |
1 | 16.35 b | 26.21 b | 0.596 b |
HSD0.05 | 0.358 | 0.385 | 0.044 |
Treatment | |||
P. guajava | 15.71 a | 25.49 a | 0.585 a |
A. vera | 15.32 ab | 25.15 ab | 0.594 a |
A. sativum | 15.58 ab | 25.46 a | 0.582 a |
M. sativa | 15.65 ab | 25.46 a | 0.589 a |
A. tuberosum | 15.45 ab | 25.21 ab | 0.566 a |
G. max (leaves) | 15.56 ab | 25.31 ab | 0.556 a |
G. max (stem) | 15.29 b | 24.96 b | 0.569 a |
HSD0.05 | 0.400 | 0.430 | 0.049 |
Pr ≥ F | |||
P | *** | *** | *** |
E | *** | *** | *** |
T | ** | *** | ns |
C | *** | *** | *** |
P × A × E × T × C | ns | *** | ns |
CV% | 7.43 | 4.89 | 24.48 |
Scientific Name | Common Name | Family Name | Parts Used |
---|---|---|---|
Allium sativum | Garlic | Amaryllidaceae | Tubers |
Allium tuberosum | Chinese (garlic) chives or Chinese leeks | Amaryllidaceae | Leaves |
Centella asiatica | Pennywort (Gotu Kola) | Apiaceae | Leaves |
Aloe vera | Aloe | Asphodelaceae | Leaves |
Cyperus rountus | Nutgrass | Cyperaceae | Aboveground plant parts |
Mentha arvensis | Wild Mint | Lamiaceae | Leaves |
Perilla frutescens | Chinese basil, wild basil, perilla mint | Lamiaceae | Aboveground plant parts |
Medicago sativa | Alfalfa | Leguminosae | Aboveground plant parts |
Vigna radiata | Mung bean | Leguminosae | Leaves |
Vigna unguiculata | Cowpea | Leguminosae | Leaves |
Glycine max | Soybean | Leguminosae | Leaves |
Glycine max | Soybean | Leguminosae | Stems |
Oryza sativa | Rice straw | Gramineae | Straws |
Oryza sativa | Rice hull | Gramineae | Hulls |
Moringa oleifera | Drumstick | Moringaceae | Leaves |
Psidium guajava | Guava | Myrtaceae | Leaves |
Rheum undulatum | - | Polygonaceae | Roots |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ei, E.; Park, H.H.; Kuk, Y.I. Effects of Plant Extracts on Growth Promotion, Antioxidant Enzymes, and Secondary Metabolites in Rice (Oryza sativa) Plants. Plants 2024, 13, 2727. https://doi.org/10.3390/plants13192727
Ei E, Park HH, Kuk YI. Effects of Plant Extracts on Growth Promotion, Antioxidant Enzymes, and Secondary Metabolites in Rice (Oryza sativa) Plants. Plants. 2024; 13(19):2727. https://doi.org/10.3390/plants13192727
Chicago/Turabian StyleEi, Ei, Hyun Hwa Park, and Yong In Kuk. 2024. "Effects of Plant Extracts on Growth Promotion, Antioxidant Enzymes, and Secondary Metabolites in Rice (Oryza sativa) Plants" Plants 13, no. 19: 2727. https://doi.org/10.3390/plants13192727
APA StyleEi, E., Park, H. H., & Kuk, Y. I. (2024). Effects of Plant Extracts on Growth Promotion, Antioxidant Enzymes, and Secondary Metabolites in Rice (Oryza sativa) Plants. Plants, 13(19), 2727. https://doi.org/10.3390/plants13192727