Hybrid Prediction in Horticulture Crop Breeding: Progress and Challenges
Abstract
:1. Introduction
2. Hybrid Prediction Indices: Direct and Indirect
3. Hybrid Prediction through Marker-Assisted Breeding
4. Hybrid Prediction through Genomic Prediction
5. Heterosis Prediction Based on Genetic Background Differences
6. Why Is Genetic Distance Not Always Effective for Heterosis Prediction?
7. Challenges and Prospects for Heterosis Prediction in Horticulture Crops
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
MPH | mid-parent heterosis |
SSR | simple sequence repeat |
dCAPSs | derived cleaved amplified polymorphic sequences |
MAS | marker-assisted selection |
QTL | quantitative trait loci |
LASSO | least absolute shrinkage and selection operator |
RR-BLUP | ridge-regression best linear unbiased prediction |
GBLUP | genomic best linear unbiased prediction |
LD | linkage disequilibrium |
LMM | mixed linear model |
RKHS | reproducing kernel Hilbert space |
RFLP | restriction fragment length polymorphism |
AFLP | amplified fragment length polymorphism |
RAPD | random amplified polymorphic DNA |
SNP | single-nucleotide polymorphism |
HPH | high-parent heterosis |
G×E | genotype × environment interaction |
References
- Liu, J.; Li, M.; Zhang, Q.; Wei, X.; Huang, X. Exploring the molecular basis of heterosis for plant breeding. J. Integr. Plant Biol. 2020, 62, 287–298. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Gu, X.; Zhang, S.; Dong, S.; Miao, H.; Gebretsadik, K.; Bo, K. Molecular basis of heterosis and related breeding strategies reveal its importance in vegetable breeding. Hortic. Res. 2021, 8, 120. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.J. Genomic and epigenetic insights into the molecular bases of heterosis. Nat. Rev. Genet. 2013, 14, 471–482. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Carver, B.F.; Cowger, C.; Bai, G.; Xu, X. Pm223899, A New Recessive Powdery Mildew Resist. Gene Identified Afghan. Landrace PI 223899. Theor. Appl. Genet. 2018, 131, 2775–2783. [Google Scholar] [CrossRef] [PubMed]
- Hochholdinger, F.; Yu, P. Molecular concepts to explain heterosis in crops. Trends Plant Sci. 2024, in press. [CrossRef] [PubMed]
- Melchinger, A.; Utz, H.; Piepho, H.; Zeng, Z.; Schon, C. The role of epistasis in the manifestation of heterosis: A systems-oriented approach. Genetics 2007, 177, 1815–1825. [Google Scholar] [CrossRef]
- Farinati, S.; Scariolo, F.; Palumbo, F.; Vannozzi, A.; Barcaccia, G.; Lucchin, M. Heterosis in horticultural crop breeding: Combining old theoretical bases with modern genomic views. Front. Hortic. 2023, 2, 1250875. [Google Scholar] [CrossRef]
- Guo, T.; Yu, X.; Li, X.; Zhang, H.; Zhu, C.; Flint-Garcia, S.; McMullen, M.D.; Holland, J.B.; Szalma, S.J.; Wisser, R.J.; et al. Optimal designs for genomic selection in hybrid crops. Mol. Plant 2019, 12, 390–401. [Google Scholar] [CrossRef]
- Krieger, U.; Lippman, Z.B.; Zamir, D. The flowering gene SINGLE FLOWER TRUSS Drives Heterosis Yield Tomato. Nat. Genet. 2010, 42, 459–463. [Google Scholar] [CrossRef]
- Yang, M.; Wang, X.; Ren, D.; Huang, H.; Xu, M.; He, G.; Deng, X.W. Genomic architecture of biomass heterosis in Arabidopsis. Proc. Natl. Acad. Sci. USA 2017, 114, 8101–8106. [Google Scholar] [CrossRef]
- Birdseye, D.; De Boer, L.A.; Bai, H.; Zhou, P.; Shen, Z.; Schmelz, E.A.; Springer, N.M.; Briggs, S.P. Plant height heterosis is quantitatively associated with expression levels of plastid ribosomal proteins. Proc. Natl. Acad. Sci. USA 2021, 118, e2109332118. [Google Scholar] [CrossRef] [PubMed]
- Nyaga, C.; Gowda, M.; Beyene, Y.; Murithi, W.T.; Burgueno, J.; Toledo, F.; Makumbi, D.; Olsen, M.S.; Das, B.; LM, S.; et al. Hybrid breeding for MLN resistance: Heterosis, combining ability, and hybrid prediction. Plants 2020, 9, 468. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Xiong, L. General mechanisms of drought response and their application in drought resistance improvement in plants. Cell. Mol. Life Sci. 2015, 72, 673–689. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Guo, Y. Unraveling salt stress signaling in plants. J. Integr. Plant Biol. 2018, 60, 796–804. [Google Scholar] [CrossRef] [PubMed]
- Serpico, D. Beyond quantitative and qualitative traits: Three telling cases in the life sciences. Biol. Philos. 2020, 35, 34. [Google Scholar] [CrossRef]
- Paschold, A.; Jia, Y.; Marcon, C.; Lund, S.; Larson, N.B.; Yeh, C.T.; Ossowski, S.; Lanz, C.; Nettleton, D.; Schnable, P.S.; et al. Complementation contributes to transcriptome complexity in maize (Zea mays L.) hybrids relative to their inbred parents. Genome Res. 2012, 22, 2445–2454. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, P.; Della Coletta, R.; Zhang, T.; Brohammer, A.B.; H O’Connor, C.; Vaillancourt, B.; Lipzen, A.; Daum, C.; Barry, K.; et al. Single-parent expression drives dynamic gene expression complementation in maize hybrids. Plant J. 2021, 105, 93–107. [Google Scholar] [CrossRef]
- Hoecker, N.; Lamkemeyer, T.; Sarholz, B.; Paschold, A.; Fladerer, C.; Madlung, J.; Wurster, K.; Stahl, M.; Piepho, H.P.; Nordheim, A.; et al. Analysis of nonadditive protein accumulation in young primary roots of a maize (Zea mays L.) F1-hybrid compared to its parental inbred lines. Proteomics 2008, 8, 3882–3894. [Google Scholar] [CrossRef]
- Wang, D.; Mu, Y.; Hu, X.; Ma, B.; Wang, Z.; Zhu, L.; Xu, J.; Huang, C.; Pan, Y. Comparative proteomic analysis reveals that the Heterosis of two maize hybrids is related to enhancement of stress response and photosynthesis respectively. BMC Plant Biol. 2021, 21, 34. [Google Scholar] [CrossRef]
- Picard, C.; Bosco, M. Maize heterosis affects the structure and dynamics of indigenous rhizospheric auxins-producing Pseudomonas populations. FEMS Microbiol. Ecol. 2005, 53, 349–357. [Google Scholar] [CrossRef]
- Hale, A.L.; Farnham, M.W.; Nzaramba, M.N.; Kimbeng, C.A. Heterosis for horticultural traits in broccoli. Theor. Appl. Genet. 2007, 115, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Groszmann, M.; Gonzalez-Bayon, R.; Greaves, I.K.; Wang, L.; Huen, A.K.; Peacock, W.J.; Dennis, E.S. Intraspecific Arabidopsis hybrids show different patterns of heterosis despite the close relatedness of the parental genomes. Plant Physiol. 2014, 166, 265–280. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Meng, H.; Pan, Y.; Liang, X.; Jiao, J.; Li, Y.; Chen, S.; Cheng, Z. Fine genetic mapping of the white immature fruit color gene w to a 33.0-kb region in cucumber (Cucumis sativus L.). Theor. Appl. Genet. 2015, 128, 2375–2385. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Lian, Q.; Zhang, Z.; Fu, Q.; He, Y.; Ma, S.; Ruggieri, V.; Monforte, A.J.; Wang, P.; Julca, I.; et al. A comprehensive genome variation map of melon identifies multiple domestication events and loci influencing agronomic traits. Nat. Genet. 2019, 51, 1607–1615. [Google Scholar] [CrossRef]
- Qi, J.; Liu, X.; Shen, D.; Miao, H.; Xie, B.; Li, X.; Zeng, P.; Wang, S.; Shang, Y.; Gu, X.; et al. A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nat. Genet. 2013, 45, 1510–1515. [Google Scholar] [CrossRef]
- Singh, S.; Kalia, P.; Meena, R.K.; Mangal, M.; Islam, S.; Saha, S.; Tomar, B.S. Genetics and expression analysis of anthocyanin accumulation in curd portion of Sicilian purple to facilitate biofortification of Indian cauliflower. Front. Plant Sci. 2020, 10, 1766. [Google Scholar] [CrossRef]
- Han, Y.; Zhao, F.; Gao, S.; Wang, X.; Wei, A.; Chen, Z.; Liu, N.; Tong, X.; Fu, X.; Wen, C.; et al. Fine mapping of a male sterility gene Ms-3 in a novel cucumber (Cucumis sativus L.) mutant. Theor. Appl. Genet. 2018, 131, 449–460. [Google Scholar] [CrossRef]
- Chen, L.; Liu, Y.G. Male sterility and fertility restoration in crops. Annu. Rev. Plant Biol. 2014, 65, 579–606. [Google Scholar] [CrossRef]
- Chang, Z.; Chen, Z.; Wang, N.; Xie, G.; Lu, J.; Yan, W.; Zhou, J.; Tang, X.; Deng, X.W. Construction of a male sterility system for hybrid rice breeding and seed production using a nuclear male sterility gene. Proc. Natl. Acad. Sci. USA 2016, 113, 14145–14150. [Google Scholar] [CrossRef]
- Cockerton, H.M.; Karlström, A.; Johnson, A.W.; Li, B.; Stavridou, E.; Hopson, K.J.; Whitehouse, A.B.; Harrison, R.J. Genomic informed breeding strategies for strawberry yield and fruit quality traits. Front. Plant Sci. 2021, 12, 724847. [Google Scholar] [CrossRef]
- Shi, A.; Bhattarai, G.; Xiong, H.; Avila, C.A.; Feng, C.; Liu, B.; Joshi, V.; Stein, L.; Mou, B.; du Toit, L.J.; et al. Genome-wide association study and genomic prediction of white rust resistance in USDA GRIN spinach germplasm. Hortic. Res. 2022, 9, uhac069. [Google Scholar] [CrossRef] [PubMed]
- Jiang, N.; Gao, D.; Xiao, H.; Van Der Knaap, E. Genome organization of the tomato sun locus and characterization of the unusual retrotransposon Rider. Plant J. 2009, 60, 181–193. [Google Scholar] [CrossRef]
- Pan, Y.; Liang, X.; Gao, M.; Liu, H.; Meng, H.; Weng, Y.; Cheng, Z. Round fruit shape in WI7239 cucumber is controlled by two interacting quantitative trait loci with one putatively encoding a tomato SUN homolog. Theor. Appl. Genet. 2017, 130, 573–586. [Google Scholar] [CrossRef] [PubMed]
- Laila, R.; Park, J.I.; Robin, A.H.K.; Natarajan, S.; Vijayakumar, H.; Shirasawa, K.; Isobe, S.; Kim, H.T.; Nou, I.S. Mapping of a novel clubroot resistance QTL using ddRAD-seq in Chinese cabbage (Brassica rapa L.). BMC Plant Biol. 2019, 19, 13. [Google Scholar] [CrossRef] [PubMed]
- Paliwal, R.; Singh, G.; Mir, R.R.; Gueye, B. Genomic-assisted breeding for abiotic stress tolerance in horticultural crops. In Stress Tolerance in Horticultural Crops; Elsevier: Amsterdam, The Netherlands, 2021; pp. 91–118. [Google Scholar]
- Gupta, P.; Kumar, J.; Mir, R.; Kumar, A. 4 Marker-assisted selection as a component of conventional plant breeding. Plant Breed. Rev. 2010, 33, 145–217. [Google Scholar]
- Gupta, P.K.; Balyan, H.S.; Gahlaut, V.; Saripalli, G.; Pal, B.; Basnet, B.R.; Joshi, A.K. Hybrid wheat: Past, present and future. Theor. Appl. Genet. 2019, 132, 2463–2483. [Google Scholar] [CrossRef]
- Fernández, J.A.; Messina, C.D.; Salinas, A.; Prasad, P.V.; Nippert, J.B.; Ciampitti, I.A. Kernel weight contribution to yield genetic gain of maize: A global review and US case studies. J. Exp. Bot. 2022, 73, 3597–3609. [Google Scholar] [CrossRef]
- Fu, D.; Mason, A.S.; Xiao, M.; Yan, H. Effects of genome structure variation, homeologous genes and repetitive DNA on polyploid crop research in the age of genomics. Plant Sci. 2016, 242, 37–46. [Google Scholar] [CrossRef]
- Meuwissen, T.H.; Hayes, B.J.; Goddard, M. Prediction of total genetic value using genome-wide dense marker maps. Genetics 2001, 157, 1819–1829. [Google Scholar] [CrossRef]
- Xu, Y.; Ma, K.; Zhao, Y.; Wang, X.; Zhou, K.; Yu, G.; Li, C.; Li, P.; Yang, Z.; Xu, C.; et al. Genomic selection: A breakthrough technology in rice breeding. Crop J. 2021, 9, 669–677. [Google Scholar] [CrossRef]
- Voss-Fels, K.P.; Cooper, M.; Hayes, B.J. Accelerating crop genetic gains with genomic selection. Theor. Appl. Genet. 2019, 132, 669–686. [Google Scholar] [CrossRef] [PubMed]
- Crossa, J.; Pérez-Rodríguez, P.; Cuevas, J.; Montesinos-López, O.; Jarquín, D.; De Los Campos, G.; Burgueño, J.; González-Camacho, J.M.; Pérez-Elizalde, S.; Beyene, Y.; et al. Genomic selection in plant breeding: Methods, models, and perspectives. Trends Plant Sci. 2017, 22, 961–975. [Google Scholar] [CrossRef] [PubMed]
- Heffner, E.L.; Sorrells, M.E.; Jannink, J.L. Genomic selection for crop improvement. Crop Sci. 2009, 49, 1–12. [Google Scholar] [CrossRef]
- Zhao, Y.; Mette, M.F.; Reif, J.C. Genomic selection in hybrid breeding. Plant Breed. 2015, 134, 1–10. [Google Scholar] [CrossRef]
- Dadousis, C.; Veerkamp, R.F.; Heringstad, B.; Pszczola, M.; Calus, M.P. A comparison of principal component regression and genomic REML for genomic prediction across populations. Genet. Sel. Evol. 2014, 46, 60. [Google Scholar] [CrossRef] [PubMed]
- Chun, H.; Keleş, S. Sparse partial least squares regression for simultaneous dimension reduction and variable selection. J. R. Stat. Soc. Ser. B Stat. Methodol. 2010, 72, 3–25. [Google Scholar] [CrossRef]
- Heslot, N.; Yang, H.P.; Sorrells, M.E.; Jannink, J.L. Genomic selection in plant breeding: A comparison of models. Crop Sci. 2012, 52, 146–160. [Google Scholar] [CrossRef]
- Lorenz, A.J.; Chao, S.; Asoro, F.G.; Heffner, E.L.; Hayashi, T.; Iwata, H.; Smith, K.P.; Sorrells, M.E.; Jannink, J.L. Genomic selection in plant breeding: Knowledge and prospects. Adv. Agron. 2011, 110, 77–123. [Google Scholar]
- Ogutu, J.O.; Schulz-Streeck, T.; Piepho, H.P. Genomic selection using regularized linear regression models: Ridge regression, lasso, elastic net and their extensions. BMC Proc. 2012, 6, S10. [Google Scholar] [CrossRef]
- Pérez, P.; de Los Campos, G. Genome-wide regression and prediction with the BGLR statistical package. Genetics 2014, 198, 483–495. [Google Scholar] [CrossRef]
- Arouisse, B.; Theeuwen, T.P.; Van Eeuwijk, F.A.; Kruijer, W. Improving genomic prediction using high-dimensional secondary phenotypes. Front. Genet. 2021, 12, 667358. [Google Scholar] [CrossRef] [PubMed]
- Moser, G.; Tier, B.; Crump, R.E.; Khatkar, M.S.; Raadsma, H.W. A comparison of five methods to predict genomic breeding values of dairy bulls from genome-wide SNP markers. Genet. Sel. Evol. 2009, 41, 56. [Google Scholar] [CrossRef] [PubMed]
- Merrick, L.F.; Lozada, D.N.; Chen, X.; Carter, A.H. Classification and regression models for genomic selection of skewed phenotypes: A case for disease resistance in winter wheat (Triticum aestivum L.). Front. Genet. 2022, 13, 835781. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Qiu, Z.; Song, J.; Li, J.; Cheng, Q.; Zhai, J.; Ma, C. A deep convolutional neural network approach for predicting phenotypes from genotypes. Planta 2018, 248, 1307–1318. [Google Scholar] [CrossRef] [PubMed]
- Maldonado, C.; Mora-Poblete, F.; Contreras-Soto, R.I.; Ahmar, S.; Chen, J.T.; do Amaral Júnior, A.T.; Scapim, C.A. Genome-wide prediction of complex traits in two outcrossing plant species through Deep Learning and Bayesian Regularized Neural Network. Front. Plant Sci. 2020, 11, 593897. [Google Scholar] [CrossRef]
- Montesinos-López, O.A.; Montesinos-López, A.; Pérez-Rodríguez, P.; Barrón-López, J.A.; Martini, J.W.; Fajardo-Flores, S.B.; Gaytan-Lugo, L.S.; Santana-Mancilla, P.C.; Crossa, J. A review of deep learning applications for genomic selection. BMC Genom. 2021, 22, 19. [Google Scholar] [CrossRef]
- Meher, P.K.; Rustgi, S.; Kumar, A. Performance of Bayesian and BLUP alphabets for genomic prediction: Analysis, comparison and results. Heredity 2022, 128, 519–530. [Google Scholar] [CrossRef]
- Cericola, F.; Jahoor, A.; Orabi, J.; Andersen, J.R.; Janss, L.L.; Jensen, J. Optimizing training population size and genotyping strategy for genomic prediction using association study results and pedigree information. A case of study in advanced wheat breeding lines. PLoS ONE 2017, 12, e0169606. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, X.; Ding, X.; Zheng, X.; Yang, Z.; Xu, C.; Hu, Z. Genomic selection of agronomic traits in hybrid rice using an NCII population. Rice 2018, 11, 32. [Google Scholar] [CrossRef]
- Zhong, S.; Dekkers, J.C.; Fernando, R.L.; Jannink, J.L. Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines: A barley case study. Genetics 2009, 182, 355–364. [Google Scholar] [CrossRef]
- Hochholdinger, F.; Baldauf, J.A. Heterosis in plants. Curr. Biol. 2018, 28, R1089–R1092. [Google Scholar] [CrossRef] [PubMed]
- Alves, F.C.; Granato, Í.S.C.; Galli, G.; Lyra, D.H.; Fritsche-Neto, R.; de Los Campos, G. Bayesian analysis and prediction of hybrid performance. Plant Methods 2019, 15, 14. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.Y.; Tung, C.W.; Lee, C.Y.; Liao, C.T. Genomic prediction of pumpkin hybrid performance. Plant Genome 2019, 12, 180082. [Google Scholar] [CrossRef] [PubMed]
- Dias, K.O.D.G.; Gezan, S.A.; Guimarães, C.T.; Nazarian, A.; da Costa e Silva, L.; Parentoni, S.N.; de Oliveira Guimarães, P.E.; de Oliveira Anoni, C.; Pádua, J.M.V.; de Oliveira Pinto, M.; et al. Improving accuracies of genomic predictions for drought tolerance in maize by joint modeling of additive and dominance effects in multi-environment trials. Heredity 2018, 121, 24–37. [Google Scholar] [CrossRef]
- Derbyshire, M.C.; Khentry, Y.; Severn-Ellis, A.; Mwape, V.; Saad, N.S.M.; Newman, T.E.; Taiwo, A.; Regmi, R.; Buchwaldt, L.; Denton-Giles, M.; et al. Modeling first order additive × additive epistasis improves accuracy of genomic prediction for sclerotinia stem rot resistance in canola. Plant Genome 2021, 14, e20088. [Google Scholar] [CrossRef]
- Haile, J.K.; N’Diaye, A.; Clarke, F.; Clarke, J.; Knox, R.; Rutkoski, J.; Bassi, F.M.; Pozniak, C.J. Genomic selection for grain yield and quality traits in durum wheat. Mol. Breed. 2018, 38, 75. [Google Scholar] [CrossRef]
- Liu, X.; Wang, H.; Wang, H.; Guo, Z.; Xu, X.; Liu, J.; Wang, S.; Li, W.X.; Zou, C.; Prasanna, B.M.; et al. Factors affecting genomic selection revealed by empirical evidence in maize. Crop J. 2018, 6, 341–352. [Google Scholar] [CrossRef]
- Meuwissen, T.; Hayes, B.; Goddard, M. Genomic selection: A paradigm shift in animal breeding. Anim. Front. 2016, 6, 6–14. [Google Scholar] [CrossRef]
- Solberg, T.; Sonesson, A.; Woolliams, J.; Meuwissen, T. Genomic selection using different marker types and densities. J. Anim. Sci. 2008, 86, 2447–2454. [Google Scholar] [CrossRef]
- VanRaden, P.M. Efficient methods to compute genomic predictions. J. Dairy Sci. 2008, 91, 4414–4423. [Google Scholar] [CrossRef]
- Hickey, J.M.; Chiurugwi, T.; Mackay, I.; Powell, W. Genomic prediction unifies animal and plant breeding programs to form platforms for biological discovery. Nat. Genet. 2017, 49, 1297–1303. [Google Scholar] [CrossRef] [PubMed]
- Riedelsheimer, C.; Czedik-Eysenberg, A.; Grieder, C.; Lisec, J.; Technow, F.; Sulpice, R.; Altmann, T.; Stitt, M.; Willmitzer, L.; Melchinger, A.E. Genomic and metabolic prediction of complex heterotic traits in hybrid maize. Nat. Genet. 2012, 44, 217–220. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Zhu, D.; Zhang, Q. Predicting hybrid performance in rice using genomic best linear unbiased prediction. Proc. Natl. Acad. Sci. USA 2014, 111, 12456–12461. [Google Scholar] [CrossRef] [PubMed]
- Muranty, H.; Troggio, M.; Sadok, I.B.; Rifaï, M.A.; Auwerkerken, A.; Banchi, E.; Velasco, R.; Stevanato, P.; Van De Weg, W.E.; Di Guardo, M.; et al. Accuracy and responses of genomic selection on key traits in apple breeding. Hortic. Res. 2015, 2, 75. [Google Scholar] [CrossRef]
- Roth, M.; Muranty, H.; Di Guardo, M.; Guerra, W.; Patocchi, A.; Costa, F. Genomic prediction of fruit texture and training population optimization towards the application of genomic selection in apple. Hortic. Res. 2020, 7, 148. [Google Scholar] [CrossRef]
- Brault, C.; Segura, V.; This, P.; Le Cunff, L.; Flutre, T.; François, P.; Pons, T.; Péros, J.P.; Doligez, A. Across-population genomic prediction in grapevine opens up promising prospects for breeding. Hortic. Res. 2022, 9, uhac041. [Google Scholar] [CrossRef]
- Gezan, S.A.; Osorio, L.F.; Verma, S.; Whitaker, V.M. An experimental validation of genomic selection in octoploid strawberry. Hortic. Res. 2017, 4, 16070. [Google Scholar] [CrossRef]
- Petrasch, S.; Mesquida-Pesci, S.D.; Pincot, D.D.; Feldmann, M.J.; López, C.M.; Famula, R.; Hardigan, M.A.; Cole, G.S.; Knapp, S.J.; Blanco-Ulate, B. Genomic prediction of strawberry resistance to postharvest fruit decay caused by the fungal pathogen Botrytis cinerea. G3 2022, 12, jkab378. [Google Scholar] [CrossRef]
- Sun, M.; Zhang, M.; Kumar, S.; Qin, M.; Liu, Y.; Wang, R.; Qi, K.; Zhang, S.; Chang, W.; Li, J.; et al. Genomic selection of eight fruit traits in pear. Hortic. Plant J. 2024, 10, 318–326. [Google Scholar] [CrossRef]
- Covarrubias-Pazaran, G.; Schlautman, B.; Diaz-Garcia, L.; Grygleski, E.; Polashock, J.; Johnson-Cicalese, J.; Vorsa, N.; Iorizzo, M.; Zalapa, J. Multivariate GBLUP improves accuracy of genomic selection for yield and fruit weight in biparental populations of Vaccinium macrocarpon Ait. Front. Plant Sci. 2018, 9, 1310. [Google Scholar] [CrossRef]
- Adunola, P.; Ferrão, L.F.V.; Benevenuto, J.; Azevedo, C.F.; Munoz, P.R. Genomic selection optimization in blueberry: Data-driven methods for marker and training population design. Plant Genome 2024, 17, e20488. [Google Scholar] [CrossRef] [PubMed]
- Duangjit, J.; Causse, M.; Sauvage, C. Efficiency of genomic selection for tomato fruit quality. Mol. Breed. 2016, 36, 29. [Google Scholar] [CrossRef]
- Cappetta, E.; Andolfo, G.; Guadagno, A.; Di Matteo, A.; Barone, A.; Frusciante, L.; Ercolano, M.R. Tomato genomic prediction for good performance under high-temperature and identification of loci involved in thermotolerance response. Hortic. Res. 2021, 8, 212. [Google Scholar] [CrossRef] [PubMed]
- Yeon, J.; Nguyen, T.T.P.; Kim, M.; Sim, S.C. Prediction accuracy of genomic estimated breeding values for fruit traits in cultivated tomato (Solanum lycopersicum L.). BMC Plant Biol. 2024, 24, 222. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Liu, X.; Han, Y.; Wang, X.; Ding, Y.; Meng, H.; Cheng, Z. Genomic prediction and the practical breeding of 12 quantitative-inherited traits in cucumber (Cucumis sativus L.). Front. Plant Sci. 2021, 12, 729328. [Google Scholar] [CrossRef]
- Hong, J.P.; Ro, N.; Lee, H.Y.; Kim, G.W.; Kwon, J.K.; Yamamoto, E.; Kang, B.C. Genomic selection for prediction of fruit-related traits in pepper (Capsicum spp.). Front. Plant Sci. 2020, 11, 570871. [Google Scholar] [CrossRef]
- Thorwarth, P.; Yousef, E.A.; Schmid, K.J. Genomic prediction and association mapping of curd-related traits in gene bank accessions of cauliflower. G3 Genes Genomes Genet. 2018, 8, 707–718. [Google Scholar] [CrossRef]
- Zhang, X.; Su, J.; Jia, F.; He, Y.; Liao, Y.; Wang, Z.; Jiang, J.; Guan, Z.; Fang, W.; Chen, F.; et al. Genetic architecture and genomic prediction of plant height-related traits in chrysanthemum. Hortic. Res. 2024, 11, uhad236. [Google Scholar] [CrossRef]
- Lubanga, N.; Massawe, F.; Mayes, S.; Gorjanc, G.; Bančič, J. Genomic selection strategies to increase genetic gain in tea breeding programs. Plant Genome 2023, 16, e20282. [Google Scholar] [CrossRef]
- Lubanga, N.; Massawe, F.; Mayes, S. Genomic and pedigree-based predictive ability for quality traits in tea (Camellia sinensis (L.) O. Kuntze). Euphytica 2021, 217, 32. [Google Scholar] [CrossRef]
- Endelman, J.B.; Carley, C.A.S.; Bethke, P.C.; Coombs, J.J.; Clough, M.E.; da Silva, W.L.; De Jong, W.S.; Douches, D.S.; Frederick, C.M.; Haynes, K.G.; et al. Genetic variance partitioning and genome-wide prediction with allele dosage information in autotetraploid potato. Genetics 2018, 209, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Amadeu, R.R.; Ferrão, L.F.V.; Oliveira, I.d.B.; Benevenuto, J.; Endelman, J.B.; Munoz, P.R. Impact of dominance effects on autotetraploid genomic prediction. Crop Sci. 2020, 60, 656–665. [Google Scholar] [CrossRef]
- Tayeh, N.; Klein, A.; Le Paslier, M.C.; Jacquin, F.; Houtin, H.; Rond, C.; Chabert-Martinello, M.; Magnin-Robert, J.B.; Marget, P.; Aubert, G.; et al. Genomic prediction in pea: Effect of marker density and training population size and composition on prediction accuracy. Front. Plant Sci. 2015, 6, 941. [Google Scholar] [CrossRef] [PubMed]
- Biscarini, F.; Nazzicari, N.; Bink, M.; Arús, P.; Aranzana, M.J.; Verde, I.; Micali, S.; Pascal, T.; Quilot-Turion, B.; Lambert, P.; et al. Genome-enabled predictions for fruit weight and quality from repeated records in European peach progenies. BMC Genom. 2017, 18, 432. [Google Scholar] [CrossRef] [PubMed]
- Werner, C.R.; Voss-Fels, K.P.; Miller, C.N.; Qian, W.; Hua, W.; Guan, C.Y.; Snowdon, R.J.; Qian, L. Effective genomic selection in a narrow-genepool crop with low-density markers: Asian rapeseed as an example. Plant Genome 2018, 11, 170084. [Google Scholar] [CrossRef]
- Stewart-Brown, B.B.; Song, Q.; Vaughn, J.N.; Li, Z. Genomic selection for yield and seed composition traits within an applied soybean breeding program. G3 Genes Genomes Genet. 2019, 9, 2253–2265. [Google Scholar] [CrossRef]
- Torres, L.G.; Vilela de Resende, M.D.; Azevedo, C.F.; Fonseca e Silva, F.; de Oliveira, E.J. Genomic selection for productive traits in biparental cassava breeding populations. PLoS ONE 2019, 14, e0220245. [Google Scholar] [CrossRef]
- Hayes, B.J.; Wei, X.; Joyce, P.; Atkin, F.; Deomano, E.; Yue, J.; Nguyen, L.; Ross, E.M.; Cavallaro, T.; Aitken, K.S.; et al. Accuracy of genomic prediction of complex traits in sugarcane. Theor. Appl. Genet. 2021, 134, 1455–1462. [Google Scholar] [CrossRef]
- Ravelombola, W.; Shi, A.; Huynh, B.L. Loci discovery, network-guided approach, and genomic prediction for drought tolerance index in a multi-parent advanced generation intercross (MAGIC) cowpea population. Hortic. Res. 2021, 8, 24. [Google Scholar] [CrossRef]
- Roy, J.; del Río Mendoza, L.E.; Bandillo, N.; McClean, P.E.; Rahman, M. Genetic mapping and genomic prediction of sclerotinia stem rot resistance to rapeseed/canola (Brassica napus L.) at seedling stage. Theor. Appl. Genet. 2022, 135, 2167–2184. [Google Scholar] [CrossRef]
- Diamond, J. Evolution, consequences and future of plant and animal domestication. Nature 2002, 418, 700–707. [Google Scholar] [CrossRef] [PubMed]
- Moran, G. Patterns of genetic diversity in Australian tree species. New For. 1992, 6, 49–66. [Google Scholar] [CrossRef]
- Chan, K.; Sun, M. Genetic diversity and relationships detected by isozyme and RAPD analysis of crop and wild species of Amaranthus. Theor. Appl. Genet. 1997, 95, 865–873. [Google Scholar] [CrossRef]
- Sen, D. An evaluation of mitochondrial heterosis and in vitro mitochondrial complementation in wheat, barley and maize. Theor. Appl. Genet. 1981, 59, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Idrees, M.; Irshad, M. Molecular markers in plants for analysis of genetic diversity: A review. Eur. Acad. Res. 2014, 2, 1513–1540. [Google Scholar]
- Xiao, J.; Li, J.; Yuan, L.; McCouch, S.; Tanksley, S. Genetic diversity and its relationship to hybrid performance and heterosis in rice as revealed by PCR-based markers. Theor. Appl. Genet. 1996, 92, 637–643. [Google Scholar] [CrossRef]
- Rajendrakumar, P.; Hariprasanna, K.; Seetharama, N. Prediction of heterosis in crop plants–status and prospects. Am. J. Exp. Agric. 2015, 9, 1–16. [Google Scholar] [CrossRef]
- Huang, X.; Huang, S.; Han, B.; Li, J. The integrated genomics of crop domestication and breeding. Cell 2022, 185, 2828–2839. [Google Scholar] [CrossRef]
- Kalia, R.K.; Rai, M.K.; Kalia, S.; Singh, R.; Dhawan, A. Microsatellite markers: An overview of the recent progress in plants. Euphytica 2011, 177, 309–334. [Google Scholar] [CrossRef]
- Reif, J.; Melchinger, A.; Xia, X.; Warburton, M.; Hoisington, D.; Vasal, S.; Srinivasan, G.; Bohn, M.; Frisch, M. Genetic distance based on simple sequence repeats and heterosis in tropical maize populations. Crop Sci. 2003, 43, 1275–1282. [Google Scholar] [CrossRef]
- Dreisigacker, S.; Melchinger, A.; Zhang, P.; Ammar, K.; Flachenecker, C.; Hoisington, D.; Warburton, M. Hybrid performance and heterosis in spring bread wheat, and their relations to SSR-based genetic distances and coefficients of parentage. Euphytica 2005, 144, 51–59. [Google Scholar] [CrossRef]
- Tian, H.Y.; Channa, S.A.; Hu, S.W. Relationships between genetic distance, combining ability and heterosis in rapeseed (Brassica napus L.). Euphytica 2017, 213, 1. [Google Scholar] [CrossRef]
- Nie, Y.; Ji, W.; Ma, S. Assessment of heterosis based on genetic distance estimated using SNP in common wheat. Agronomy 2019, 9, 66. [Google Scholar] [CrossRef]
- Singh, S.; Gupta, S.; Thudi, M.; Das, R.R.; Vemula, A.; Garg, V.; Varshney, R.; Rathore, A.; Pahuja, S.; Yadav, D.V. Genetic diversity patterns and heterosis prediction based on SSRs and SNPs in hybrid parents of pearl millet. Crop Sci. 2018, 58, 2379–2390. [Google Scholar] [CrossRef]
- Geng, X.; Qu, Y.; Jia, Y.; He, S.; Pan, Z.; Wang, L.; Du, X. Assessment of heterosis based on parental genetic distance estimated with SSR and SNP markers in upland cotton (Gossypium hirsutum L.). BMC Genom. 2021, 22, 123. [Google Scholar] [CrossRef]
- Yue, L.; Zhang, S.; Zhang, L.; Liu, Y.; Cheng, F.; Li, G.; Zhang, S.; Zhang, H.; Sun, R.; Li, F. Heterotic prediction of hybrid performance based on genome-wide SNP markers and the phenotype of parental inbred lines in heading Chinese cabbage (Brassica rapa L. ssp. pekinensis). Sci. Hortic. 2022, 296, 110907. [Google Scholar] [CrossRef]
- Liu, C.; Liu, X.; Han, Y.; Meng, H.; Cheng, Z. Heterosis prediction system based on non-additive genomic prediction models in cucumber (Cucumis sativus L.). Sci. Hortic. 2022, 293, 110677. [Google Scholar] [CrossRef]
- José, M.A.; Iban, E.; Silvia, A.; Pere, A. Inheritance mode of fruit traits in melon: Heterosis for fruit shape and its correlation with genetic distance. Euphytica 2005, 144, 31–38. [Google Scholar] [CrossRef]
- Geleta, L.; Labuschagne, M.; Viljoen, C. Relationship between heterosis and genetic distance based on morphological traits and AFLP markers in pepper. Plant Breed. 2004, 123, 467–473. [Google Scholar] [CrossRef]
- Kaushik, P.; Plazas, M.; Prohens, J.; Vilanova, S.; Gramazio, P. Diallel genetic analysis for multiple traits in eggplant and assessment of genetic distances for predicting hybrids performance. PLoS ONE 2018, 13, e0199943. [Google Scholar] [CrossRef]
- Espósito, M.A.; Bermejo, C.; Gatti, I.; Guindón, M.F.; Cravero, V.; Cointry, E.L. Prediction of heterotic crosses for yield in Pisum sativum L. Sci. Hortic. 2014, 177, 53–62. [Google Scholar] [CrossRef]
- Jagosz, B. The relationship between heterosis and genetic distances based on RAPD and AFLP markers in carrot. Plant Breed. 2011, 130, 574–579. [Google Scholar] [CrossRef]
- Luo, X.; Ma, C.; Yi, B.; Tu, J.; Shen, J.; Fu, T. Genetic distance revealed by genomic single nucleotide polymorphisms and their relationships with harvest index heterotic traits in rapeseed (Brassica napus L.). Euphytica 2016, 209, 41–47. [Google Scholar] [CrossRef]
- Betrán, F.; Ribaut, J.; Beck, D.; De León, D.G. Genetic diversity, specific combining ability, and heterosis in tropical maize under stress and nonstress environments. Crop Sci. 2003, 43, 797–806. [Google Scholar] [CrossRef]
- Ndhlela, T.; Herselman, L.; Semagn, K.; Magorokosho, C.; Mutimaamba, C.; Labuschagne, M.T. Relationships between heterosis, genetic distances and specific combining ability among CIMMYT and Zimbabwe developed maize inbred lines under stress and optimal conditions. Euphytica 2015, 204, 635–647. [Google Scholar] [CrossRef]
- Krystkowiak, K.; Adamski, T.; Surma, M.; Kaczmarek, Z. Relationship between phenotypic and genetic diversity of parental genotypes and the specific combining ability and heterosis effects in wheat (Triticum aestivum L.). Euphytica 2009, 165, 419–434. [Google Scholar] [CrossRef]
- Xie, F.; He, Z.; Esguerra, M.Q.; Qiu, F.; Ramanathan, V. Determination of heterotic groups for tropical Indica hybrid rice germplasm. Theor. Appl. Genet. 2014, 127, 407–417. [Google Scholar] [CrossRef]
- Gramaje, L.V.; Caguiat, J.D.; Enriquez, J.O.S.; dela Cruz, Q.D.; Millas, R.A.; Carampatana, J.E.; Tabanao, D.A.A. Heterosis and combining ability analysis in CMS hybrid rice. Euphytica 2020, 216, 1–22. [Google Scholar] [CrossRef]
- Dermail, A.; Suriharn, B.; Chankaew, S.; Sanitchon, J.; Lertrat, K. Hybrid prediction based on SSR-genetic distance, heterosis and combining ability on agronomic traits and yields in sweet and waxy corn. Sci. Hortic. 2020, 259, 108817. [Google Scholar] [CrossRef]
- Lv, A.Z.; Zhang, H.; Zhang, Z.X.; Tao, Y.S.; Bing, Y.; Zheng, Y.L. Conversion of the statistical combining ability into a genetic concept. J. Integr. Agric. 2012, 11, 43–52. [Google Scholar] [CrossRef]
- Griffing, B. Concept of general and specific combining ability in relation to diallel crossing systems. Aust. J. Biol. Sci. 1956, 9, 463–493. [Google Scholar] [CrossRef]
- Comstock, R.E.; Robinson, H.; Harvey, P.H. A breeding procedure designed to make maximum use of both general and specific combining ability. Agron. J. 1949, 41, 360–367. [Google Scholar] [CrossRef]
- Labroo, M.R.; Studer, A.J.; Rutkoski, J.E. Heterosis and hybrid crop breeding: A multidisciplinary review. Front. Genet. 2021, 12, 643761. [Google Scholar] [CrossRef] [PubMed]
- Wakchaure, R.; Ganguly, S.; Praveen, P.K.; Sharma, S.; Kumar, A.; Mahajan, T.; Qadri, K. Importance of heterosis in animals: A review. Int. J. Adv. Eng. Technol. Innov. Sci. 2015, 1, 1–5. [Google Scholar]
- Melchinger, A. Genetic diversity and heterosis. In Genetics and Exploitation of Heterosis in Crops; American Society of Agronomy, Inc.: Madison, WI, USA, 1999; pp. 99–118. [Google Scholar]
- Kamvar, Z.N.; Grünwald, N.J. Algorithms and Equations Utilized in Poppr Version 2.9.6. 2024. Available online: https://cran.r-project.org/web/packages/poppr/vignettes/algo.pdf (accessed on 24 September 2024).
- Bernardo, R. Relationship between single-cross performance and molecular marker heterozygosity. Theor. Appl. Genet. 1992, 83, 628–634. [Google Scholar] [CrossRef]
- Su, J.; Zhang, F.; Yang, X.; Feng, Y.; Yang, X.; Wu, Y.; Guan, Z.; Fang, W.; Chen, F. Combining ability, heterosis, genetic distance and their intercorrelations for waterlogging tolerance traits in chrysanthemum. Euphytica 2017, 213, 42. [Google Scholar] [CrossRef]
- He, G.; Elling, A.A.; Deng, X.W. The epigenome and plant development. Annu. Rev. Plant Biol. 2011, 62, 411–435. [Google Scholar] [CrossRef]
- Li, Z.; Zhu, A.; Song, Q.; Chen, H.Y.; Harmon, F.G.; Chen, Z.J. Temporal regulation of the metabolome and proteome in photosynthetic and photorespiratory pathways contributes to maize heterosis. Plant Cell 2020, 32, 3706–3722. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, Z.; Tang, D.; Zhu, Y.; Wang, P.; Li, D.; Zhu, G.; Xiong, X.; Shang, Y.; Li, C.; et al. Genome design of hybrid potato. Cell 2021, 184, 3873–3883. [Google Scholar] [CrossRef]
- Govindaraj, M.; Vetriventhan, M.; Srinivasan, M. Importance of genetic diversity assessment in crop plants and its recent advances: An overview of its analytical perspectives. Genet. Res. Int. 2015, 2015, 431487. [Google Scholar] [CrossRef]
- Chen, K.; Wang, Y.; Zhang, R.; Zhang, H.; Gao, C. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu. Rev. Plant Biol. 2019, 70, 667–697. [Google Scholar] [CrossRef] [PubMed]
- El Hadi, M.A.M.; Zhang, F.J.; Wu, F.F.; Zhou, C.H.; Tao, J. Advances in fruit aroma volatile research. Molecules 2013, 18, 8200–8229. [Google Scholar] [CrossRef] [PubMed]
- Simko, I.; Jimenez-Berni, J.A.; Sirault, X.R. Phenomic approaches and tools for phytopathologists. Phytopathology 2017, 107, 6–17. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Min, W.; Mei, S.; Wang, L.; Jiang, S. Plant disease recognition: A large-scale benchmark dataset and a visual region and loss reweighting approach. IEEE Trans Image Process 2021, 30, 2003–2015. [Google Scholar] [CrossRef]
- Wang, Z.; Niu, Y.; Vashisth, T.; Li, J.; Madden, R.; Livingston, T.S.; Wang, Y. Nontargeted metabolomics-based multiple machine learning modeling boosts early accurate detection for citrus Huanglongbing. Hortic. Res. 2022, 9, uhac145. [Google Scholar] [CrossRef]
- Xu, S.; Xu, Y.; Gong, L.; Zhang, Q. Metabolomic prediction of yield in hybrid rice. Plant J. 2016, 88, 219–227. [Google Scholar] [CrossRef]
- Hu, H.; Campbell, M.T.; Yeats, T.H.; Zheng, X.; Runcie, D.E.; Covarrubias-Pazaran, G.; Broeckling, C.; Yao, L.; Caffe-Treml, M.; Gutiérrez, L.; et al. Multi-omics prediction of oat agronomic and seed nutritional traits across environments and in distantly related populations. Theor. Appl. Genet. 2021, 134, 4043–4054. [Google Scholar] [CrossRef]
- Burgueño, J.; de los Campos, G.; Weigel, K.; Crossa, J. Genomic prediction of breeding values when modeling genotype × environment interaction using pedigree and dense molecular markers. Crop Sci. 2012, 52, 707–719. [Google Scholar] [CrossRef]
- Heslot, N.; Akdemir, D.; Sorrells, M.E.; Jannink, J.L. Integrating environmental covariates and crop modeling into the genomic selection framework to predict genotype by environment interactions. Theor. Appl. Genet. 2014, 127, 463–480. [Google Scholar] [CrossRef]
- Moeinizade, S.; Kusmec, A.; Hu, G.; Wang, L.; Schnable, P.S. Multi-trait genomic selection methods for crop improvement. Genetics 2020, 215, 931–945. [Google Scholar] [CrossRef]
- Shahi, D.; Guo, J.; Pradhan, S.; Khan, J.; Avci, M.; Khan, N.; McBreen, J.; Bai, G.; Reynolds, M.; Foulkes, J.; et al. Multi-trait genomic prediction using in-season physiological parameters increases prediction accuracy of complex traits in US wheat. BMC Genom. 2022, 23, 298. [Google Scholar] [CrossRef] [PubMed]
- Melchinger, A.E.; Gumber, R.K. Overview of heterosis and heterotic groups in agronomic crops. Concepts Breed. Heterosis Crop Plants 1998, 25, 29–44. [Google Scholar]
Species | Traits | Population Size | Number of Markers | Models | Model Performance | Trait Heritability | Reference |
---|---|---|---|---|---|---|---|
apple | fruit size | 977 individuals | 7829 SNPs | BayesC | 0.08–0.26 (PAc) | 0.65 (h2) | [75] |
pea | thousand seed weight | 339 accessions | 9824 SNPs | kPLSR, LASSO, GBLUP, BayesA, and BayesB | 0.79–0.86 (PAc) | - | [94] |
tomato | fruit weight | 163 accessions | 5995 SNPs | RR-BLUP | 0.81 (PAb) | 0.88 | [83] |
peach | Fruit weight | 1147 plants | 6076 SNPs | GBLUP | 0.39–0.84 (PAb) | 0.21–0.78 (h2) | [95] |
strawberry | early marketable yield | 1628 individuals | 17,479 SNPs | GBLUP, BayesB, BayesC, BL, BRR, RKHS | 0.42–0.63 (PAb) | 0.29–0.43 (H2) | [78] |
cauliflower | curd width | 192 accessions | 62,566 SNPs | RR-BLUP, GBLUP, BayesB | 0.35–0.45 (PAb) | 0.44 (H2) | [88] |
rapeseed | plant height | 203 inbred lines | 24,338 SNPs | RR-BLUP | 0.50 (PAc) | 0.70 (H2) | [96] |
potato | yield | 571 clones | 3895 SNPs | GBLUP | 0.06–0.34 (PAc) | - | [92] |
soybean | yield | 483 lines | 2647 SNPs | RR-BLUP | 0.06–0.26 (PAb) | 0.17 | [97] |
cassava | dry yield | 290 clones | 51,259 SNPs | GBLUP | 0.42–0.50 (PAc) | 0.62–0.78 | [98] |
pepper | fruit weight | 351 accessions | 18,663 SNPs | gblupRR, RR, LASSO, Elastic net, BL, EBL, BayesB, BayesC, RKHS, RF | 0.79 (PAc) | 0.97 (H2) | [87] |
apple | fruit texture | 537 genotypes | 8294 SNPs | RR-BLUP | 0.01–0.81 (PAc) | - | [76] |
sugarcane | commercial cane sugar | 3984 clones | 26K SNP | GBLUP, GenomicSS, BayesR | 0.36–0.57 (PAc) | 0.87 (H2) | [99] |
cowpea | 100-seed weight | 305 F8:10 RILs | 32,059 SNPs | RR-BLUP | 0.12–0.15 (PAc) | - | [100] |
cucumber | commercial fruit yield | 268 hybrids | 16,662 SNPs | BRR | 0.68–0.78 (PAb) | 0.33–0.59 (H2) | [86] |
strawberry | gray mold resistance | 380 individuals | 11,946 SNPs | GBLUP, RKHS, SVM | 0.28–0.33 (PAc) | 0.38 (h2) | [79] |
tomato | yield | 100 F4 generations | 101,797 SNPs | RR-BLUP | 0.73 (PAc) | - | [84] |
rapeseed/canola | stem rot resistance | 337 accessions | 27,282 SNPs | RR-BLUP, BayesA, BayesB, BayesC, BL, BRR | 0.60–0.61 (PAb) | 0.69 (H2) | [101] |
spinach | white rust resistance | 346 accessions | 13,235 SNPs | RR-BLUP, GBLUP, CBLUP, BayesA, BayesB, BL, BRR, RF, SVM | 0.52–0.84 (PAc) | - | [31] |
grapevine | mean berry weight | 279 cultivars | 32,894 SNPs | RR, LASSO | 0.57 (PAb) | 0.91 (H2) | [77] |
Species | Trait | Number of Markers | Population Size | r (GD: MPH) | r (GD: HPH) | r (GCA: MPH) | r (GCA: HPH) | r (SCA: MPH) | r (SCA: HPH) | Reference |
---|---|---|---|---|---|---|---|---|---|---|
Chinese cabbage | head weight | 2,444,676 SNP | 91 hybrids | 0.17~0.21 | −0.11~−0.09 | - | - | - | - | [117] |
cucumber | yield | 16662 SNP | 268 hybrids | 0.11 | 0.01 | 0.38 | 0.43 | 0.65 | 0.61 | [118] |
melon | fruit weight | 16 SSR | 13 accessions | 0.16 | −0.20 | - | - | - | - | [119] |
pepper | fruit yield | 6 AFLP | 21 F1 hybrids | −0.14 | −0.13 | - | - | - | - | [120] |
eggplant | yield | 7335 SNPs | 55 genotypes | 0.11~0.19 | - | - | - | - | - | [121] |
pea | yield | 14 SSR and 25 SRAP | 45 F1 hybrids | 0.26~0.33 | 0.11~0.41 | - | - | - | - | [122] |
carrot | total yield | 12 RAPD and 9 AFLP | 15 inbred lines and 34 hybrids | 0.31~0.47 | 0.23~0.42 | - | - | - | - | [123] |
rapeseed | seed yield | 7600 SNP | 68 inbred lines and 132 hybrids | 0.25 | 0.27 | - | - | - | - | [124] |
rapeseed | plant height | 402 (SSR/SAP) | 36 F1 hybrids | 0.15 | 0.10 | −0.43 | −0.67 | 0.52 | 0.35 | [113] |
maize | grain yield | 55 AFLP | 136 F1 hybrids | 0.41 | 0.28 | - | - | 0.47 | 0.31 | [125] |
maize | yield | 1129 SNP | 72 hybrids | - | 0.37 | - | - | 0.48 | 0.31 | [126] |
wheat | grain weight | 300 RAPD | 76 F2 hybrids | 0.10 | - | - | - | −0.05 | - | [127] |
wheat | yield | 4799 SNP | 20 inbred lines and 100 hybrids | 0.37 | 0.21 | - | - | - | - | [114] |
rice | grain yield | 207 SSR | 153 F1 hybrids | 0.10~0.35 | 0.02~0.28 | - | - | - | - | [128] |
rice | grain yield | 7098 SNP | 33 hybrids | −0.06 | −0.13 | 0.47 | 0.42 | 0.55 | 0.46 | [129] |
cotton | plant height | 76,654 SNP | 1128 hybrids | 0.02 | −0.05 | - | - | - | - | [116] |
cotton | plant height | 198 SSR | 1128 hybrids | 0.01 | −0.01 | - | - | - | - | [116] |
waxy corn | plant height | 30 SSR | 24 hybrids | −0.15 | 0.06 | - | - | 0.48 | 0.05 | [130] |
pearl millet | yield | 56 SSR | 147 lines | - | 0.33 | - | - | - | - | [115] |
pearl millet | yield | 75,007 SNP | 117 lines | - | 0.35 | - | - | - | - | [115] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Du, S.; Wei, A.; Cheng, Z.; Meng, H.; Han, Y. Hybrid Prediction in Horticulture Crop Breeding: Progress and Challenges. Plants 2024, 13, 2790. https://doi.org/10.3390/plants13192790
Liu C, Du S, Wei A, Cheng Z, Meng H, Han Y. Hybrid Prediction in Horticulture Crop Breeding: Progress and Challenges. Plants. 2024; 13(19):2790. https://doi.org/10.3390/plants13192790
Chicago/Turabian StyleLiu, Ce, Shengli Du, Aimin Wei, Zhihui Cheng, Huanwen Meng, and Yike Han. 2024. "Hybrid Prediction in Horticulture Crop Breeding: Progress and Challenges" Plants 13, no. 19: 2790. https://doi.org/10.3390/plants13192790
APA StyleLiu, C., Du, S., Wei, A., Cheng, Z., Meng, H., & Han, Y. (2024). Hybrid Prediction in Horticulture Crop Breeding: Progress and Challenges. Plants, 13(19), 2790. https://doi.org/10.3390/plants13192790