Rice Under Dry Cultivation–Maize Intercropping Improves Soil Environment and Increases Total Yield by Regulating Belowground Root Growth
Abstract
:1. Introduction
2. Result
2.1. Yield and Land-Use Efficiency
2.2. Time–Area-Equivalent Ratios, Aggressivity, Relative Crowding Factors, and Competition Ratios
2.3. Aboveground Nutrient Accumulation
2.4. Root Growth and Distribution
2.5. Soil Physical and Chemical Characteristics
2.6. Principal Component Analysis
3. Discussion
3.1. Yield Performance and Land-Use Efficiency
3.2. Root Characteristics
3.3. Soil Physical and Chemical Properties
4. Materials and Methods
4.1. Site Description
4.2. Experimental Design
4.3. Measurement Index and Methods
4.3.1. Yield Measurement
4.3.2. Land = Equivalent Ratio
4.3.3. Competition Indices
4.3.4. Plant Nutrient Determination
4.3.5. Root Length Density
4.3.6. Soil Samples
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xie, Z.-J.; Zhu, D.; Wei, W.-W.; Ye, C.; Wang, H.; Li, C.-H. Phosphorus leaching risk from black soil increased due to conversion of arid agricultural land to paddy land in northeast China. Chem. Biol. Technol. Agric. 2023, 10, 59. [Google Scholar] [CrossRef]
- Ma, L.; Li, Y.; Wu, P.; Zhao, X.; Chen, X.; Gao, X. Coupling evapotranspiration partitioning with water migration to identify the water consumption characteristics of wheat and maize in an intercropping system. Agric. For. Meteorol. 2020, 290, 108034. [Google Scholar] [CrossRef]
- Fujisao, K.; Khanthavong, P.; Oudthachit, S.; Matsumoto, N.; Homma, K.; Asai, H.; Shiraiwa, T. A study on the productivity under the continuous maize cultivation in Sainyabuli Province, Laos I. Yield trend under continuous maize cultivation. Field Crops Res. 2018, 217, 167–171. [Google Scholar] [CrossRef]
- Tan, G.; Liu, Y.; Peng, S.; Yin, H.; Meng, D.; Tao, J.; Gu, Y.; Li, J.; Yang, S.; Xiao, N.; et al. Soil potentials to resist continuous cropping obstacle: Three field cases. Environ. Res. 2021, 200, 111319. [Google Scholar] [CrossRef] [PubMed]
- Dang, P.; Zhang, M.; Chen, X.; Loreau, M.; Duffy, J.E.; Li, X.; Wen, S.; Han, X.; Liao, L.; Huang, T.; et al. Plant diversity decreases greenhouse gas emissions by increasing soil and plant carbon storage in terrestrial ecosystems. Ecol. Lett. 2024, 27, e14469. [Google Scholar] [CrossRef]
- Martin-Guay, M.-O.; Paquette, A.; Dupras, J.; Rivest, D. The new Green Revolution: Sustainable intensification of agriculture by intercropping. Sci. Total Environ. 2018, 615, 767–772. [Google Scholar] [CrossRef]
- Qian, X.; Zang, H.; Xu, H.; Hu, Y.; Ren, C.; Guo, L.; Wang, C.; Zeng, Z. Relay strip intercropping of oat with maize, sunflower and mung bean in semi-arid regions of Northeast China: Yield advantages and economic benefits. Field Crops Res. 2018, 223, 33–40. [Google Scholar] [CrossRef]
- Gou, F.; Ittersum, M.K.v.; Simon, E.d.C.; Leffelaar, P.A.; Putten, P.E.L.v.d.; Zhang, L.; Werf, W.v.d. Intercropping wheat and maize increases total radiation interception and wheat RUE but lowers maize RUE. Eur. J Agron. 2017, 84, 125–139. [Google Scholar] [CrossRef]
- Brooker, R.W.; Bennett, A.E.; Cong, W.-F.; Daniell, T.J.; George, T.S.; Hallett, P.D.; Hawes, C.; Iannetta, P.P.M.; Jones, H.G.; Karley, A.J.; et al. Improving intercropping: A synthesis of research in agronomy, plant physiology and ecology. New Phytol. 2015, 206, 107–117. [Google Scholar] [CrossRef]
- Hauggaard-Nielsen, H.; Johansen, A.; Carter, M.S.; Ambus, P.; Jensen, E.S. Annual maize and perennial grass-clover strip cropping for increased resource use efficiency and productivity using organic farming practice as a model. Eur. J. Agron. 2013, 47, 55–64. [Google Scholar] [CrossRef]
- Jensen, E.S.; Bedoussac, L.; Carlsson, G.; Journet, E.-P.; Justes, E.; Hauggaard-Nielsen, H. Enhancing Yields in Organic Crop Production by Eco-Functional Intensification. Sustain. Agric. Res. 2015, 4, 42. [Google Scholar] [CrossRef]
- Streit, J.; Meinen, C.; Rauber, R. Intercropping effects on root distribution of eight novel winter faba bean genotypes mixed with winter wheat. Field Crops Res. 2019, 235, 1–10. [Google Scholar] [CrossRef]
- Gong, X.; Ferdinand, U.; Dang, K.; Li, J.; Chen, G.; Luo, Y.; Yang, P.; Feng, B. Boosting proso millet yield by altering canopy light distribution in proso millet/mung bean intercropping systems. Crops J. 2019, 8, 365–377. [Google Scholar] [CrossRef]
- Li, C.; Lambers, H.; Jing, J.; Zhang, C.; Bezemer, T.M.; Klironomos, J.; Cong, W.-F.; Zhang, F. Belowground cascading biotic interactions trigger crop diversity benefits. Trends Plant Sci. 2024, 2654, 12. [Google Scholar] [CrossRef] [PubMed]
- Rao, M.R.; Willey, R.W. Evaluation of Yield Stability in Intercropping: Studies on Sorghum/Pigeonpea. Exp. Agric. 1980, 16, 105–116. [Google Scholar] [CrossRef]
- Echarte, L.; Della Maggiora, A.; Cerrudo, D.; Gonzalez, V.; Abbate, P.; Cerrudo, A.; Sadras, V.; Calviño, P. Yield response to plant density of maize and sunflower intercropped with soybean. Field Crops Res. 2011, 121, 423–429. [Google Scholar] [CrossRef]
- Yang, F.; Liao, D.; Wu, X.; Gao, R.; Fan, Y.; Raza, M.A.; Wang, X.; Yong, T.; Liu, W.; Liu, J.; et al. Effect of aboveground and belowground interactions on the intercrop yields in maize-soybean relay intercropping systems. Field Crops Res. 2017, 203, 16–23. [Google Scholar] [CrossRef]
- Guo, F.; Wang, M.; Si, T.; Wang, Y.; Zhao, H.; Zhang, X.; Yu, X.; Wan, S.; Zou, X. Maize-peanut intercropping led to an optimization of soil from the perspective of soil microorganism. Arch. Agron. Soil Sci. 2020, 67, 1986–1999. [Google Scholar] [CrossRef]
- Zheng, B.; Chen, P.; Du, Q.; Yang, H.; Luo, K.; Wang, X.; Yang, F.; Yong, T.; Yang, W. Soil Organic Matter, Aggregates, and Microbial Characteristics of Intercropping Soybean under Straw Incorporation and N Input. Agriculture 2022, 12, 1409. [Google Scholar] [CrossRef]
- Li, Q.; Chen, J.; Wu, L.; Luo, X.; Li, N.; Arafat, Y.; Lin, S.; Lin, W. Belowground Interactions Impact the Soil Bacterial Community, Soil Fertility, and Crop Yield in Maize/Peanut Intercropping Systems. Int. J. Mol. Sci. 2018, 19, 622. [Google Scholar] [CrossRef]
- Shen, L.; Wang, X.; Liu, T.; Wei, W.; Zhang, S.; Keyhani, A.B.; Li, L.; Zhang, W. Border row effects on the distribution of root and soil resources in maize–soybean strip intercropping systems. Soil Tillage Res. 2023, 233, 105812. [Google Scholar] [CrossRef]
- Li, L.; Sun, J.H.; Zhang, F.S.; Li, X.L.; Yang, S.C.; Rengel, Z. Wheat/maize or wheat/soybean strip intercropping: I. Yield advantage and interspecific interactions on nutrients. Field Crops Res. 2001, 71, 123–137. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, X.; Wu, P.; He, J.; Chen, X.; Gao, Y.; Cao, X. Radiation interception and utilization by wheat/maize strip intercropping systems. Agric. For. Meteorol. 2015, 204, 58–66. [Google Scholar] [CrossRef]
- Jiang, H.; Xing, X.; Meng, X.; Chen, J.; Yu, K.; Xu, X.; Zhang, R.; Wei, Z.; Wang, D.; Cang, B.; et al. Research progress in water-saving cultivation of rice in China. Crops Sci. 2023, 63, 2623–2635. [Google Scholar] [CrossRef]
- Wu, M.; Jiang, H.; Wei, Z.; Li, W.; Gao, K.; Wang, D.; Wei, X.; Tian, P.; Cui, J.; Di, Y.; et al. Influence of Nitrogen Application Rate on Stem Lodging Resistance Rice under Dry Cultivation. Agronomy 2023, 13, 426. [Google Scholar] [CrossRef]
- Jiang, H.; Song, Z.; Su, Q.-W.; Wei, Z.-H.; Li, W.-C.; Jiang, Z.-X.; Tian, P.; Wang, Z.-H.; Yang, X.; Yang, M.-Y.; et al. Transcriptomic and metabolomic reveals silicon enhances adaptation of rice under dry cultivation by improving flavonoid biosynthesis, osmoregulation, and photosynthesis. Front. Plant Sci. 2022, 13, 967537. [Google Scholar] [CrossRef]
- Jiang, H.; Xu, X.; Sun, A.; Bai, C.; Li, Y.; Nuo, M.; Shen, X.; Li, W.; Wang, D.; Tian, P.; et al. Silicon nutrition improves the quality and yield of rice under dry cultivation. J. Sci. Food Agric. 2023, 104, 1897–1908. [Google Scholar] [CrossRef]
- Hector, A.; Schmid, B.; Beierkuhnlein, C.; Caldeira, M.C.; Diemer, M.; Dimitrakopoulos, P.G.; Finn, J.A.; Freitas, H.; Giller, P.S.; Good, J.; et al. Plant Diversity and Productivity Experiments in European Grasslands. Science 1999, 286, 1123–1127. [Google Scholar] [CrossRef]
- Yu, Y.; Stomph, T.-J.; Makowski, D.; van der Werf, W. Temporal niche differentiation increases the land equivalent ratio of annual intercrops: A meta-analysis. Field Crops Res. 2015, 184, 133–144. [Google Scholar] [CrossRef]
- Liu, X.; Rahman, T.; Song, C.; Yang, F.; Su, B.; Cui, L.; Bu, W.; Yang, W. Relationships among light distribution, radiation use efficiency and land equivalent ratio in maize-soybean strip intercropping. Field Crops Res. 2018, 224, 91–101. [Google Scholar] [CrossRef]
- Te, X.; Din, A.M.U.; Cui, K.; Raza, M.A.; Ali, M.F.; Xiao, J. Inter-specific root interactions and water use efficiency of maize/soybean relay strip intercropping. Field Crops Res. 2022, 291, 108793. [Google Scholar] [CrossRef]
- Brewer, J.S. Inter- and intraspecific competition and shade avoidance in the carnivorous pale pitcher plant in a nutrient-poor savanna. Am. J. Bot. 2019, 106, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-F.; Wang, Z.-G.; Bao, X.-G.; Sun, J.-H.; Yang, S.-C.; Wang, P.; Wang, C.-B.; Wu, J.-P.; Liu, X.-R.; Tian, X.-L.; et al. Long-term increased grain yield and soil fertility from intercropping. Nat. Sustain. 2021, 4, 943–950. [Google Scholar] [CrossRef]
- Raza, M.A.; Feng, L.; Werf, W.V.D.; Cai, G.R.; Khalid, M.H.B.; Iqbal, N.; Hassan, M.J.; Meraj, T.A.; Naeem, M.; Khan, I.; et al. Narrow-wide-row planting pattern increases the radiation use efficiency and seed yield of intercrop species in relay-intercropping system. Food Energy Secur. 2019, 8, e170. [Google Scholar] [CrossRef]
- Jiao, N.Y.; Wang, J.T.; Ma, C.; Zhang, C.C.; Guo, D.Y.; Zhang, F.S.; Jensen, E.S. The importance of aboveground and belowground interspecific interactions in determining crop growth and advantages of peanut/maize intercropping. Crop J. 2021, 9, 1460–1469. [Google Scholar] [CrossRef]
- Andersen, S.N.; Dresbøll, D.B.; Thorup-Kristensen, K. Root interactions between intercropped legumes and non-legumes—A competition study of red clover and red beet at different nitrogen levels. Plant Soil 2014, 378, 59–72. [Google Scholar] [CrossRef]
- Huang, C.; Liu, Q.; Gou, F.; Li, X.; Zhang, C.; van der Werf, W.; Zhang, F. Plant growth patterns in a tripartite strip relay intercrop are shaped by asymmetric aboveground competition. Field Crops Res. 2017, 201, 41–51. [Google Scholar] [CrossRef]
- Bétencourt, E.; Duputel, M.; Colomb, B.; Desclaux, D.; Hinsinger, P. Intercropping promotes the ability of durum wheat and chickpea to increase rhizosphere phosphorus availability in a low P soil. Soil Biol. Boichem. 2012, 46, 181–190. [Google Scholar] [CrossRef]
- Bi, Y.; Zhou, P.; Li, S.; Wei, Y.; Xiong, X.; Shi, Y.; Liu, N.; Zhang, Y. Interspecific interactions contribute to higher forage yield and are affected by phosphorus application in a fully-mixed perennial legume and grass intercropping system. Field Crops Res. 2019, 244, 107636. [Google Scholar] [CrossRef]
- Alskaf, K.; Mooney, S.J.; Sparkes, D.L.; Wilson, P.; Sjögersten, S. Short-term impacts of different tillage practices and plant residue retention on soil physical properties and greenhouse gas emissions. Soil Tillage Res. 2021, 206, 104803. [Google Scholar] [CrossRef]
- An, R.; Yu, R.-P.; Xing, Y.; Zhang, J.-D.; Bao, X.-G.; Lambers, H.; Li, L. Intercropping efficiently utilizes phosphorus resource in soil via different strategies mediated by crop traits and species combination. Plant Soil 2023, 497, 705–725. [Google Scholar] [CrossRef]
- Zhang, W.; Li, H.; Liang, L.; Wang, S.; Lakshmanan, P.; Jiang, Z.; Liu, C.; Yang, H.; Zhou, M.; Chen, X. An integrated straw-tillage management increases maize crop productivity, soil organic carbon, and net ecosystem carbon budget. Agric. Ecosyst. Environ. 2022, 340, 108175. [Google Scholar] [CrossRef]
- Sulistiono, W.; Taryono, T.; Yudono, P.; Irham, I. Sugarcane Roots Dynamics Inoculated with Arbuscular Mycorrhizal Fungi on Dry Land. Agron. J. 2017, 16, 101–114. [Google Scholar] [CrossRef]
- Colombi, T.; Braun, S.; Keller, T.; Walter, A. Artificial macropores attract crop roots and enhance plant productivity on compacted soils. Sci. Total Environ. 2017, 574, 1283–1293. [Google Scholar] [CrossRef]
- Pfeifer, J.; Kirchgessner, N.; Walter, A. Artificial pores attract barley roots and can reduce artifacts of pot experiments. J. Plant Nutr. 2014, 177, 903–913. [Google Scholar] [CrossRef]
- Ogilvie, C.M.; Ashiq, W.; Vasava, H.B.; Biswas, A. Quantifying Root-Soil Interactions in Cover Crop Systems: A Review. Agriculture 2021, 11, 218. [Google Scholar] [CrossRef]
- Martínez, E.; Fuentes, J.-P.; Silva, P.; Valle, S.; Acevedo, E. Soil physical properties and wheat root growth as affected by no-tillage and conventional tillage systems in a Mediterranean environment of Chile. Soil Tillage Res. 2008, 99, 232–244. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, X.; Neal, A.L.; Crawford, J.W.; Mooney, S.J.; Bacq-Labreuil, A. Evolution of the transport properties of soil aggregates and their relationship with soil organic carbon following land use changes. Soil Tillage Res. 2022, 215, 105226. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, X.; Jing, Y.; Li, Q.; Zhang, J.; Huang, Q. Effects of biochar amendment on rapeseed and sweet potato yields and water stable aggregate in upland red soil. Catena 2014, 123, 45–51. [Google Scholar] [CrossRef]
- Li, Y.; Hou, L.; Yang, L.; Yue, M. Transgenerational effect alters the interspecific competition between two dominant species in a temperate steppe. Ecol. Evol. 2021, 11, 1175–1186. [Google Scholar] [CrossRef]
- Kuijken, R.C.P.; Eeuwijk, F.A.V.; Marcelis, L.F.M.; Bouwmeester, H.J. Root phenotyping: From component trait in the lab to breeding. J. Exp. Bot. 2015, 66, 5389–5401. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, A.; Minggang, X.; Shah, S.A.A.; Abrar, M.M.; Nan, S.; Baoren, W.; Zejiang, C.; Saeed, Q.; Naveed, M.; Mehmood, K.; et al. Soil aggregation and soil aggregate stability regulate organic carbon and nitrogen storage in a red soil of southern China. J. Environ. Manag. 2020, 270, 110894. [Google Scholar] [CrossRef] [PubMed]
- Freixo, A.A.; Machado, P.L.O.d.A.; dos Santos, H.P.; Silva, C.A.; Fadigas, F.d.S. Soil organic carbon and fractions of a Rhodic Ferralsol under the influence of tillage and crop rotation systems in southern Brazil. Soil Tillage Res. 2002, 64, 221–230. [Google Scholar] [CrossRef]
- Wei, X.R.; Shao, M.G.; Gale, W.J.; Zhang, X.C.; Li, L.H. Dynamics of aggregate-associated organic carbon following conversion of forest to cropland. Soil Biol. Biochem. 2013, 57, 876–883. [Google Scholar] [CrossRef]
- Tian, X.L.; Wang, C.B.; Bao, X.G.; Wang, P.; Li, X.F.; Yang, S.C.; Ding, G.C.; Christie, P.; Li, L. Crop diversity facilitates soil aggregation in relation to soil microbial community composition driven by intercropping. Plant Soil. 2019, 436, 173–192. [Google Scholar] [CrossRef]
- Gupta, V.; Germida, J.J. Distribution of microbial biomass and its activity in different soil aggregate size classes as affected by cultivation. Soil Biol. Biochem. 1988, 20, 777–786. [Google Scholar] [CrossRef]
- An, R.; Yu, R.P.; Xing, Y.; Zhang, J.D.; Bao, X.G.; Lambers, H.; Li, L. Enhanced phosphorus fertilizer use efficiency and sustainable phosphorus management with intercropping. Agron. Sustain. Dev. 2023, 43, 57. [Google Scholar] [CrossRef]
- Dhima, K.; Lithourgidis, A.; Vasilakoglou, I.; Dordas, C. Competition indices of common vetch and cereal intercrops in two seeding ratio. Field Crops Res. 2007, 100, 249–256. [Google Scholar] [CrossRef]
- Ghosh, P.K. Growth, yield, competition and economics of groundnut/cereal fodder intercropping systems in the semi-arid tropics of India. Field Crops Res. 2004, 88, 227–237. [Google Scholar] [CrossRef]
- Zhang, G.G.; Yang, Z.B.; Dong, S.T. Interspecific competitiveness affects the total biomass yield in an alfalfa and corn intercropping system. Field Crops Res. 2011, 124, 66–73. [Google Scholar] [CrossRef]
- Hauggaard-Nielsen, H.; Jensen, E.S. Evaluating pea and barley cultivars for complementarity in intercropping at different levels of soil N availability. Field Crops Res. 2001, 72, 185–196. [Google Scholar] [CrossRef]
- Bao, S.D. Soil Agrochemical Analysis, 3rd Ed; Agricultural Press: Beijing, China, 2000. [Google Scholar]
- Wang, Y.H.; Hu, W.L.; Zhang, X.L.; Li, L.X.; Kang, G.Z.; Feng, W.; Zhu, Y.J.; Wang, C.Y.; Guo, T.C. Effects of cultivation patterns on winter wheat root growth parameters and grain yield. Field Crops Res. 2014, 156, 208–218. [Google Scholar] [CrossRef]
- Okolo, C.C.; Gebresamuel, G.; Zenebe, A.; Haile, M.; Eze, P.N. Accumulation of organic carbon in various soil aggregate sizes under different land use systems in a semiarid environment. Agric. Ecosyst. Environ. 2020, 297, 106924. [Google Scholar] [CrossRef]
Year | Cropping System | Rice Under Dry Cultivation (kg ha−1) | Maize (kg ha−1) | Total Yield (kg ha−1) | PLERR | PLERM | LER |
---|---|---|---|---|---|---|---|
2021 | Intercropping | 5808.95 b | 14,580.16 a | 10,194.53 a | 0.43 | 0.63 | 1.06 |
Monocropping | 6756.48 a | 11,486.34 b | 9121.02 b | ||||
2022 | Intercropping | 6527.58 b | 12,370.84 a | 9449.26 a | 0.46 | 0.61 | 1.07 |
Monocropping | 7032.09 a | 10,155.82 b | 8593.99 b | ||||
2023 | Intercropping | 6916.80 b | 11,831.34 a | 9374.04 a | 0.47 | 0.56 | 1.03 |
Monocropping | 7422.69 a | 10,570.01 b | 8995.47 b | ||||
Year | NS | ** | |||||
Cropping system | *** | *** | |||||
Year × Cropping system | NS | NS |
Year | Cropping System | EN (# m−2) | KN (# ear−1) | TKW (g) |
---|---|---|---|---|
2021 | IR | 414.31 b | 64.33 b | 23.68 a |
SR | 430.01 a | 68.67 a | 24.11 a | |
2022 | IR | 422.11 b | 66.83 b | 24.36 a |
SR | 433.73 a | 70.93 a | 23.60 a | |
2023 | IR | 426.46 b | 74.97 a | 23.26 a |
SR | 435.67 a | 76.12 a | 23.69 a | |
2021 | IM | 5.27 a | 625.11 a | 336.05 a |
SM | 5.29 a | 618.40 b | 322.27 b | |
2022 | IM | 4.77 a | 743.41 a | 286.53 a |
SM | 4.74 a | 651.29 b | 276.81 b | |
2023 | IM | 4.78 a | 724.88 a | 281.45 a |
SM | 4.73 a | 704.57 b | 269.56 b |
Year | A | K | ATER | CRMR | ||||
---|---|---|---|---|---|---|---|---|
AM | AR | AMR | KM | KR | KMR | |||
2021 | 2.54 | 1.57 | 0.96 | 1.61 | 0.62 | 1.00 | 1.27 | 1.61 |
2022 | 2.44 | 1.72 | 0.72 | 1.48 | 0.74 | 1.10 | 1.16 | 1.42 |
2023 | 2.52 | 1.73 | 0.79 | 1.58 | 0.75 | 1.18 | 1.16 | 1.46 |
Year | Treatment | N | P | K |
---|---|---|---|---|
2022 | IR | 92.12 b | 16.12 b | 89.28 b |
SR | 106.54 a | 24.05 a | 117.21 a | |
IM | 194.65 a | 42.55 a | 205.14 a | |
SM | 165.73 b | 34.29 b | 172.15 b | |
2023 | IR | 106.51 b | 26.53 b | 103.20 b |
SR | 125.70 a | 34.50 a | 138.22 a | |
IM | 180.58 a | 66.88 a | 312.40 a | |
SM | 147.79 b | 52.51 b | 272.49 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Xue, B.; Wang, S.; Xing, X.; Nuo, M.; Meng, X.; Wu, M.; Jiang, H.; Ma, H.; Yang, M.; et al. Rice Under Dry Cultivation–Maize Intercropping Improves Soil Environment and Increases Total Yield by Regulating Belowground Root Growth. Plants 2024, 13, 2957. https://doi.org/10.3390/plants13212957
Wu Z, Xue B, Wang S, Xing X, Nuo M, Meng X, Wu M, Jiang H, Ma H, Yang M, et al. Rice Under Dry Cultivation–Maize Intercropping Improves Soil Environment and Increases Total Yield by Regulating Belowground Root Growth. Plants. 2024; 13(21):2957. https://doi.org/10.3390/plants13212957
Chicago/Turabian StyleWu, Zhihai, Bei Xue, Shiwen Wang, Xu Xing, Min Nuo, Xin Meng, Meikang Wu, Hao Jiang, Huimin Ma, Meiying Yang, and et al. 2024. "Rice Under Dry Cultivation–Maize Intercropping Improves Soil Environment and Increases Total Yield by Regulating Belowground Root Growth" Plants 13, no. 21: 2957. https://doi.org/10.3390/plants13212957
APA StyleWu, Z., Xue, B., Wang, S., Xing, X., Nuo, M., Meng, X., Wu, M., Jiang, H., Ma, H., Yang, M., Wei, X., Zhao, G., & Tian, P. (2024). Rice Under Dry Cultivation–Maize Intercropping Improves Soil Environment and Increases Total Yield by Regulating Belowground Root Growth. Plants, 13(21), 2957. https://doi.org/10.3390/plants13212957