Salt Tolerance in Sugar Beet: From Impact Analysis to Adaptive Mechanisms and Future Research
Abstract
:1. Introduction
2. Effect of Salinity on Sugar Beet
2.1. Effect of Salt Stress on Individual and Tissue Levels of Sugar Beet
2.2. Effect of Salt Stress on the Cellular Levels of Sugar Beet
2.3. Effects of Salt Stress on the Molecular Levels of Sugar Beet
2.4. Effects of Salt Stress on Photosynthesis in Sugar Beet
3. Salt Tolerance and Adaptation Mechanism of Sugar Beet
3.1. Basal Adaptation Mechanism of Sugar Beet to Salt Stress
3.2. Unique Adaptation Mechanism of Sugar Beet to Salt Stress
4. Omics Study of Salt Tolerance in Sugar Beet
4.1. Transcriptomics of Salt Tolerance in Sugar Beet
4.2. Proteomics of Salt Tolerance in Sugar Beet
4.3. Post-Translational Modification Omics of Salt Tolerance in Sugar Beet
4.4. Metabolomics of Salt Tolerance in Sugar Beet
5. Outlook and the Future
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, L.; Wang, B. Protection of Halophytes and Their Uses for Cultivation of Saline-Alkali Soil in China. Biology 2021, 10, 353. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Pu, L.; Han, M.; Zhu, M.; Zhang, R.; Xiang, Y. Soil salinization research in China: Advances and prospects. J. Geogr. Sci. 2014, 24, 943–960. [Google Scholar] [CrossRef]
- Bian, C.; Ji, L.; Xu, W.; Dong, S.; Pan, N. Research Progress on Bioactive Substances of Beets and Their Functions. Molecules 2024, 29, 4756. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xu, X.; Lei, J.; Li, S. Research on chemical characteristics of soil salt crusts with saline groundwater drip-irrigation in the Tarim Desert Highway Shelterbelt. Springerplus 2013, 2 (Suppl. S1), S5. [Google Scholar] [CrossRef] [PubMed]
- Islam, A.; Hoque, M.M.; Ghosh, S.; Sarkar, B.; Mahammad, S.; Das, B.C.; Islam, A.R.M.T.; Pal, S.C.; Sarkar, M.; Khatun, M.; et al. Hydro-chemical characterization and irrigation suitability assessment of a tropical decaying river in India. Sci. Rep. 2024, 14, 20096. [Google Scholar] [CrossRef]
- Zhuang, Q.; Shao, Z.; Huang, X.; Zhang, Y.; Wu, W.; Feng, X.; Lv, X.; Ding, Q.; Cai, B.; Altan, O. Evolution of soil salinization under the background of landscape patterns in the irrigated northern slopes of Tianshan Mountains, Xinjiang, China. Catena 2021, 206, 105561. [Google Scholar] [CrossRef]
- Perri, S.; Molini, A.; Hedin, L.O.; Porporato, A. Contrasting effects of aridity and seasonality on global salinization. Nat. Geosci. 2022, 15, 375–381. [Google Scholar] [CrossRef]
- Bian, J.M.; Tang, J.; Lin, N.F. Relationship between saline–alkali soil formation and neotectonic movement in Songnen Plain, China. Environ. Geol. 2008, 55, 1421–1429. [Google Scholar] [CrossRef]
- Fang, H.L.; Liu, G.H.; Kearney, M. Georelational analysis of soil type, soil salt content, landform, and land use in the Yellow River Delta, China. Environ. Manag. 2005, 35, 72–83. [Google Scholar] [CrossRef]
- Tarolli, P.; Luo, J.; Park, E.; Barcaccia, G.; Masin, R. Soil salinization in agriculture: Mitigation and adaptation strategies combining nature-based solutions and bioengineering. iScience 2024, 27, 108830. [Google Scholar] [CrossRef]
- Murtaza, G.; Usman, M.; Iqbal, J.; Tahir, M.N.; Elshikh, M.S.; Alkahtani, J.; Toleikienė, M.; Iqbal, R.; Akram, M.I.; Gruda, N.S. The impact of biochar addition on morpho-physiological characteristics, yield and water use efficiency of tomato plants under drought and salinity stress. BMC Plant Biol. 2024, 24, 356. [Google Scholar] [CrossRef] [PubMed]
- Kandil, A.A.; Sharief, B.A.; Abido, W.A.; Areeg, B.; Awed, M. Effect of gibberellic acid on germination behaviour of sugar beet cultivars under salt stress conditions of Egypt. Sugar Tech 2014, 16, 211–221. [Google Scholar] [CrossRef]
- Chang, C.L.; Tian, L.; Tian, Z.J.; McLaughlin, N.; Tian, C.J. Change of soil microorganism communities under saline-sodic land degradation on the Songnen Plain in northeast China. J. Plant Nutr. Soil Sci. 2022, 185, 297–307. [Google Scholar] [CrossRef]
- Sun, X.Q.; She, D.L.; Fei, Y.H.; Han, X.; Gao, L. An improved pore-solid fractal model for predicting coastal saline soil hydraulic properties based on change points determined by genetic algorithm-support vector regression. Soil Tillage Res. 2022, 224, 105502. [Google Scholar] [CrossRef]
- Geng, G.; Yang, J. Sugar beet production and industry in China. Sugar Tech 2015, 17, 13–21. [Google Scholar] [CrossRef]
- Lv, X.Y.; Jin, Y.; Wang, Y.G. De novo transcriptome assembly and identification of salt-responsive genes in sugar beet M14. Comput. Biol. Chem. 2018, 75, 1–10. [Google Scholar] [CrossRef]
- Oliveira, R.A.; Schneider, R.; Lunelli, B.H.; Rossell, C.E.V.; Filho, R.M.; Venus, J. A simple biorefinery concept to produce 2G-lactic acid from sugar beet pulp (SBP): A high-value target approach to valorize a waste stream. Molecules 2020, 25, 2113. [Google Scholar] [CrossRef]
- Subrahmanyeswari, T.; Gantait, S. Advancements and prospectives of sugar beet (Beta vulgaris L.) biotechnology. Appl. Micol. Biotechnol. 2022, 106, 7417–7430. [Google Scholar] [CrossRef]
- He, H.; Zhou, W.W.; Lv, H.F.; Liang, B. Growth, leaf morphological and physiological adaptability of leaf beet (Beta vulgaris var. cicla) to salt stress: A soil culture experiment. Agronomy 2020, 12, 1393. [Google Scholar] [CrossRef]
- Moreira, L.S.G.; Fanton, S.; Cardozo, L.; Borges, N.A.; Combet, E.; Shiels, P.G.; Stenvinkel, P.; Mafra, D.; Schneider, R. Pink pressure: Beetroot (Beta vulgaris rubra) as a possible novel medical therapy for chronic kidney disease. Nutr. Rev. 2022, 80, 1041–1061. [Google Scholar] [CrossRef]
- Bušić, A.; Marđetko, N.; Kundas, S.; Morzak, G.; Belskaya, H.; Ivančić Šantek, M.; Komes, D.; Novak, S.; Šantek, B. Bioethanol production from renewable raw materials and its separation and purification: A review. Food Technol. Biotechnol. 2018, 56, 289–311. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, W.; Le, C.; Wu, Q.; Chandramohan, G.; Sivakumar, A.; Chen, X. Betanin ameliorates lipopolysaccharide-induced acute lung injury in mice via inhibition of inflammatory response and oxidative stress. Arab. J. Chem. 2023, 16, 104763. [Google Scholar] [CrossRef]
- Geng, G.; Li, R.R.; Stevanato, P.; Lv, C.H.; Lu, Z.Y.; Yu, L.H.; Wang, Y.G. Physiological and transcriptome analysis of sugar beet reveals different mechanisms of response to neutral salt and alkaline salt stresses. Front. Plant Sci. 2020, 11, 571864. [Google Scholar] [CrossRef] [PubMed]
- Dohm, J.C.; Minoche, A.E.; Holtgräwe, D.; Capella-Gutiérrez, S.; Zakrzewski, F.; Tafer, H.; Oruga, T.R.; Sörensen, T.R.; Stracke, R.; Reinhardt, R.; et al. The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nature 2014, 505, 546–549. [Google Scholar] [CrossRef] [PubMed]
- Geng, G.; Lv, C.H.; Stevanato, P.; Li, R.R.; Yu, L.H.; Wang, Y.G. Transcriptome analysis of salt-sensitive and tolerant genotypes reveals salt-tolerance metabolic pathways in sugar beet. Int. J. Mol. Sci. 2019, 20, 5910. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.Q.; Guo, Y. Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol. 2018, 217, 523–539. [Google Scholar] [CrossRef]
- Rajabi Hamedani, S.; Kuppens, T.; Malina, R.; Bocci, E.; Colantoni, A.; Villarini, M. Life Cycle Assessment and Environmental Valuation of Biochar Production: Two Case Studies in Belgium. Energies 2019, 12, 2166. [Google Scholar] [CrossRef]
- Larney, F.J.; Pearson, D.C.; Blackshaw, R.E.; Lupwayi, N.Z.; Lynch, D.R. Conservation Management Practices and Rotations for Irrigated Processing Potato in Southern Alberta. Am. J. Potato Res. 2016, 93, 50–63. [Google Scholar] [CrossRef]
- Sun, X.C.; Wang, Y.; Xu, L.; Li, C.; Zhang, W.; Luo, X.B.; Jiang, H.Y.; Liu, L.W. Unraveling the root proteome changes and its relationship to molecular mechanism underlying salt stress response in radish (Raphanus sativus L.). Front. Plant Sci. 2017, 8, 1192. [Google Scholar] [CrossRef]
- Lei, Y.T.; Xu, Y.X.; Hettenhausen, C.; Lu, C.K.; Shen, G.J.; Zhang, C.P.; Ji, J.; Song, J.; Lin, H.H.; Wu, J.Q. Comparative analysis of alfalfa (Medicago sativa L.) leaf transcriptomes reveals genotype-specific salt tolerance mechanisms. BMC Plant Biol. 2018, 18, 35. [Google Scholar] [CrossRef]
- Liu, J.Y.; Xue, C.C.; Lin, Y.; Yan, Q.; Chen, J.B.; Wu, R.R.; Zhang, X.Y.; Chen, X.X.; Yuan, X.X. Genetic analysis and identification of VrFRO8, a salt tolerance-related gene in mungbean. Gene 2022, 836, 146658. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Choudhary, P.; Chakdar, H.; Shukla, P. Molecular insights and omics-based understanding of plant-microbe interactions under drought stress. World J. Microbiol. Biotechnol. 2023, 40, 42. [Google Scholar] [CrossRef] [PubMed]
- Rozema, J.; Cornelisse, D.; Zhang, Y.; Li, H.; Bruning, B.; Katschnig, D.; Broekman, R.; Ji, B.; van Bodegom, P. Comparing salt tolerance of beet cultivars and their halophytic ancestor: Consequences of domestication and breeding programmes. AoB Plants 2014, 7, plu083. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.Q.; Liang, N.; Feng, R.J.; Zhang, J.J. Evaluation of salinity tolerance in seedlings of sugar beet (Beta vulgaris L.) cultivars using proline, soluble sugars and cation accumulation criteria. Acta Physiol. Plant. 2013, 35, 2665–2674. [Google Scholar] [CrossRef]
- Ievinsh, G.; Andersone-Ozola, U.; Jēkabsone, A. Similar responses of relatively salt-tolerant plants to Na and K during chloride salinity: Comparison of growth, water content and ion accumulation. Life 2022, 12, 1577. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Q.Q.; Yu, M.M.; Zhang, Y.Y.; Wu, Y.B.; Zhang, H.X. Transgenic salt-tolerant sugar beet (Beta vulgaris L.) constitutively expressing an Arabidopsis thaliana vacuolar Na+/H+ antiporter gene, AtNHX3, accumulates more soluble sugar but less salt in storage roots. Plant Cell Environ. 2008, 31, 1325–1334. [Google Scholar] [CrossRef]
- Wu, G.Q.; Feng, R.J.; Liang, N.; Yuan, H.J.; Sun, W.B. Sodium chloride stimulates growth and alleviates sorbitol-induced osmotic stress in sugar beet seedlings. Plant Growth Regul. 2015, 75, 307–316. [Google Scholar] [CrossRef]
- Hossain, M.S.; ElSayed, A.I.; Moore, M.; Dietz, K.J. Redox and Reactive Oxygen Species Network in Acclimation for Salinity Tolerance in Sugar Beet. J. Exp. Bot. 2017, 68, 1283–1298. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, S.; Tian, Y.; Wang, Q.; Chen, S.; Li, H.; Ma, C.; Li, H. Functional Characterization of a Sugar Beet BvbHLH93 Transcription Factor in Salt Stress Tolerance. Int. J. Mol. Sci. 2021, 22, 3669. [Google Scholar] [CrossRef]
- Al-Farsi, S.M.; Nadaf, S.K.; Al-Sadi, A.M.; Ullah, A.; Farooq, M. Evaluation of indigenous Omani alfalfa landraces for morphology and forage yield under different levels of salt stress. Physiol. Mol. Biol. Plants 2020, 26, 1763–1772. [Google Scholar] [CrossRef]
- Zhou, H.P.; Shi, H.F.; Yang, Y.Q.; Feng, X.X.; Chen, X.; Xiao, F.; Lin, H.H.; Guo, Y. Insights into plant salt stress signaling and tolerance. J. Genet. Genom. 2024, 51, 16–34. [Google Scholar] [CrossRef] [PubMed]
- Ghoulam, C.; Foursy, A.; Farès, K. Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environ. Exp. Bot. 2002, 47, 39–50. [Google Scholar] [CrossRef]
- Keutgen, A.J.; Pawelzik, E. Impacts of NaCl stress on plant growth and mineral nutrient assimilation in two cultivars of strawberry. Environ. Exp. Bot. 2009, 65, 170–176. [Google Scholar] [CrossRef]
- Romano, A.; Stevanato, P.; Sorgonà, A.; Cacco, G.; Abenavoli, M.R. Dynamic response of key germination traits to NaCl stress in sugar beet seeds. Sugar Tech 2019, 21, 661–671. [Google Scholar] [CrossRef]
- Dadkhah, A. Response of root yield and quality of sugar beet (Beta vulgaris) to salt stress. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2008, 150, S196. [Google Scholar] [CrossRef]
- Skorupa, M.; Gołębiewski, M.; Kurnik, K.; Niedojadło, J.; Kęsy, J.; Klamkowski, K.; Wójcik, K.; Treder, W.; Tretyn, A.; Tyburski, J. Salt stress vs. salt shock—The case of sugar beet and its halophytic ancestor. BMC Plant Biol. 2019, 19, 57. [Google Scholar] [CrossRef]
- Alharbi, K.; Hafez, E.; Omara, A.E.; Awadalla, A.; Nehela, Y. Plant growth promoting rhizobacteria and silica nanoparticles stimulate sugar beet resilience to irrigation with saline water in salt-affected soils. Plants 2022, 11, 3117. [Google Scholar] [CrossRef]
- Liu, L.Y.; Nguyen, N.T.; Ueda, A.; Saneoka, H. Effects of 5-aminolevulinic acid on Swiss chard (Beta vulgaris L. subsp. cicla) seedling growth under saline conditions. Plant Growth Regul. 2014, 74, 219–228. [Google Scholar] [CrossRef]
- Wang, Y.G.; Jiao, Z.H.; Yu, L.H.; Sun, X.W.; Sun, F.; Li, J.; Geng, G. The physiological and metabolic changes in sugar beet seedlings under different levels of salt stress. J. Plant Res. 2017, 130, 1079–1093. [Google Scholar] [CrossRef]
- Mulet, J.M.; Campos, F.; Yenush, L. Editorial: Ion homeostasis in plant stress and development. Front. Plant Sci. 2020, 11, 618273. [Google Scholar] [CrossRef]
- Daoud, S.; Koyro, H.W.; Harrouni, M.C.; Schmidt, A.; Papenbrock, J. Salinity Tolerance of Beta vulgaris ssp. maritima. Part II. Physiological and Biochemical Regulation. In Cash Crop Halophytes: Recent Studies. Tasks for Vegetation Science; Lieth, H., Mochtchenko, M., Eds.; Springer: Dordrecht, The Netherlands, 2023; Volume 38. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, L.; Chen, W.; Fu, Z.J.; Zhao, S.M.; E, Y.Y.; Zhang, H.; Zhang, B.Z.; Sun, M.Y.; Han, P.A.; et al. Integration of mRNA and miRNA analysis reveals the molecular mechanisms of sugar beet (Beta vulgaris L.) response to salt stress. Sci. Rep. 2023, 13, 22074. [Google Scholar] [CrossRef] [PubMed]
- Rasouli, F.; Kiani-Pouya, A.; Li, L.; Zhang, H.; Chen, Z.; Hedrich, R.; Wilson, R.; Shabala, S. Sugar Beet (Beta vulgaris) Guard Cells Responses to Salinity Stress: A Proteomic Analysis. Int. J. Mol. Sci. 2020, 21, 2331. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yu, B.; Ma, C.; Li, H.; Jiang, D.; Nan, J.; Xu, M.; Liu, H.; Chen, S.; Duanmu, H.; et al. Functional Characterization of Sugar Beet M14 Antioxidant Enzymes in Plant Salt Stress Tolerance. Antioxidants 2022, 12, 57. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Zhang, H.; Song, C.; Zhu, J.K.; Shabala, S. Mechanisms of Plant Responses and Adaptation to Soil Salinity. Innovation 2020, 1, 100017. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, J.; Pang, Q.; Yan, X. Analysis of N6-methyladenosine reveals a new important mechanism regulating the salt tolerance of sugar beet (Beta vulgaris). Plant Sci. 2023, 335, 111794. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, P.; Feng, G.; Hou, W.; Liu, T.; Gai, Z.; Shen, Y.; Qiu, X.; Li, X. Salt priming induces low-temperature tolerance in sugar beet via xanthine metabolism. Plant Physiol. Biochem. 2023, 201, 107810. [Google Scholar] [CrossRef]
- Belkjeiri, O.; Mulas, M. The effects of salt stress on growth, water relations and ion accumulation in two halophyte species. Environ. Exp. Bot. 2013, 86, 17–28. [Google Scholar] [CrossRef]
- Alam, M.A.; Juraimi, A.S.; Rafii, M.Y.; Hamid, A.A.; Aslani, F.; Alam, M.Z. Effects of salinity and salinity-induced augmented bioactive compounds in purslane (Portulaca oleracea L.) for possible economical use. Food Chem. 2015, 169, 439–447. [Google Scholar] [CrossRef]
- Yolcu, S.; Alavilli, H.; Ganesh, P.; Panigrahy, M.; Song, K. Salt and drought stress responses in cultivated beets (Beta vulgaris L.) and wild beet (Beta maritima L.). Plants 2021, 10, 1843. [Google Scholar] [CrossRef]
- Attia, H.; Karray, N.; Rabhi, M.; Lachaâl, M. Salt-imposed restrictions on the uptake of macroelements by roots of Arabidopsis thaliana. Acta Physiol. Plant. 2008, 30, 723–727. [Google Scholar] [CrossRef]
- Affenzeller, M.J.; Darehshouri, A.; Andosch, A.; Lütz, C.; Lütz-Meindl, U. Salt stress-induced cell death in the unicellular green alga Micrasterias denticulata. J. Exp. Bot. 2009, 60, 939–954. [Google Scholar] [CrossRef] [PubMed]
- Hameed, A.; Ahmed, M.Z.; Hussain, T.; Aziz, I.; Ahmad, N.; Gul, B.; Nielsen, B.L. Effects of salinity stress on chloroplast structure and function. Cells 2021, 10, 2023. [Google Scholar] [CrossRef] [PubMed]
- Acosta-Motos, J.R.; Hernández, J.A.; Álvarez, S.; Barba-Espín, G.; Sánchez-Blanco, M.J. The long-term resistance mechanisms, critical irrigation threshold and relief capacity shown by Eugenia myrtifolia plants in response to saline reclaimed water. Plant Physiol. Biochem. 2017, 111, 244–256. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.W.; Showalter, A.M. Cloning and salt-induced, ABA-independent expression of choline mono-oxygenase in Atriplex prostrata. Physiol. Plant. 2004, 120, 405–412. [Google Scholar] [CrossRef]
- Wakeel, A.; Sümer, A.; Hanstein, S.; Yan, F.; Schubert, S. In vitro effect of different Na+/K+ ratios on plasma membrane H+ -ATPase activity in maize and sugar beet (Beta vulgaris L.) shoot. Plant Physiol. Biochem. 2011, 49, 341–345. [Google Scholar] [CrossRef]
- Skorupa, M.; Gołębiewski, M.; Domagalski, K.; Kurnik, K.; Abu Nahia, K.; Złoch, M.; Tretyn, A.; Tyburski, J. Transcriptomic profiling of the salt stress response in excised leaves of the halophyte Beta vulgaris ssp. maritima. Plant Sci. 2016, 243, 56–70. [Google Scholar] [CrossRef]
- Wang, Y.G.; Stevanato, P.; Lv, C.H.; Li, R.R.; Geng, G. Comparative physiological and proteomic analysis of two sugar beet genotypes with contrasting salt tolerance. J. Agric. Food Chem. 2019, 67, 6056–6073. [Google Scholar] [CrossRef]
- Gong, Y.Y.; Liu, X.; Chen, S.X.; Li, H.L.; Duanmu, H.Z. Genome-wide identification and salt stress response analysis of the bZIP transcription factor family in sugar beet. Int. J. Mol. Sci. 2022, 23, 11573. [Google Scholar] [CrossRef]
- Sheikh, A.H.; Zacharia, I.; Tabassum, N.; Hirt, H.; Ntoukakis, V. 14-3-3 proteins as a major hub for plant immunity. Trends Plant Sci. 2024. Advance online publication. [Google Scholar] [CrossRef]
- Zhao, X.; Li, F.; Li, K. The 14-3-3 proteins: Regulators of plant metabolism and stress responses. Plant Biol. 2021, 23, 531–539. [Google Scholar] [CrossRef]
- Yu, B.; Li, J.N.; Koh, J.; Dufresne, C.; Yang, N.; Qi, S.S.; Zhang, Y.X.; Ma, C.Q.; Duong, B.V.; Chen, S.X.; et al. Quantitative proteomics and phosphoproteomics of sugar beet (Beta vulgaris L.) monosomic addition line M14 in response to salt stress. J. Proteom. 2016, 143, 286–297. [Google Scholar] [CrossRef] [PubMed]
- Zou, C.; Liu, D.; Wu, P.; Wang, Y.; Gai, Z.; Liu, L.; Yang, F.; Li, C.; Guo, G. Transcriptome analysis of sugar beet (Beta vulgaris L.) in response to alkaline stress. Plant Mol. Biol. 2020, 102, 645–657. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.S.; Persicke, M.; ElSayed, A.I.; Kalinowski, J.; Dietz, K.J. Metabolite profiling at the cellular and subcellular level reveals metabolites associated with salinity tolerance in sugar beet. J. Exp. Bot. 2017, 68, 5961–5976. [Google Scholar] [CrossRef] [PubMed]
- Ćirić, M.; Popović, V.; Prodanović, S.; Živanović, T.; Ikanović, J.; Bajić, I. Sugar Beet: Perspectives for the Future. Sugar Tech 2024. [CrossRef]
- Liu, H.; Zhang, J.L.; Li, J.N.; Yu, B.; Chen, S.X.; Ma, C.Q.; Li, H.Y. Comparative ubiquitination proteomics revealed the salt tolerance mechanism in sugar beet (Beta vulgaris L.) monosomic addition line M14. Int. J. Mol. Sci. 2022, 23, 16088. [Google Scholar] [CrossRef]
- Chi, B.J.; Guo, Z.J.; Wei, M.Y.; Song, S.W.; Zhong, Y.H.; Liu, J.W.; Zhang, Y.C.; Li, J.; Xu, C.Q.; Zhu, X.Y.; et al. Structural, developmental and functional analyses of leaf salt glands of mangrove recretohalophyte Aegiceras corniculatum. Tree Physiol. 2024, 44, tpad123. [Google Scholar] [CrossRef]
- Fan, X.R.; Jiang, H.Z.; Meng, L.J.; Chen, J.G. Gene mapping, cloning and association analysis for salt tolerance in rice. Int. J. Mol. Sci. 2021, 22, 11674. [Google Scholar] [CrossRef]
- van Zelm, E.; Zhang, Y.; Testerink, C. Salt tolerance mechanisms of plants. Annu. Rev. Plant Biol. 2020, 71, 403–433. [Google Scholar] [CrossRef]
- Liu, L.; Wang, B.; Liu, D.; Zou, C.L.; Wu, P.R.; Wang, Z.Y.; Wang, Y.B.; Li, C.F. Transcriptomic and metabolomic analyses reveal mechanisms of adaptation to salinity in which carbon and nitrogen metabolism is altered in sugar beet roots. BMC Plant Biol. 2020, 20, 138. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, L.; Wang, X.; Wang, Z.; Zhang, H.; Chen, J.; Liu, X.; Wang, Y.; Li, C. Beneficial effects of exogenous melatonin on overcoming salt stress in sugar beets (Beta vulgaris L.). Plants 2021, 10, 886. [Google Scholar] [CrossRef]
- Yamada, N.; Takahashi, H.; Kitou, K.; Sahashi, K.; Tamagake, H.; Tanaka, Y.; Takabe, T. Suppressed expression of choline monooxygenase in sugar beet on the accumulation of glycine betaine. Plant Physiol. Biochem. 2015, 96, 217–221. [Google Scholar] [CrossRef] [PubMed]
- Russell, B.L.; Rathinasabapathi, B.; Hanson, A.D. Osmotic stress induces expression of choline monooxygenase in sugar beet and amaranth. Plant Physiol. 1998, 116, 859–865. [Google Scholar] [CrossRef] [PubMed]
- Subbarao, G.V.; Wheeler, R.M.; Stutte, G.W.; Levine, L.H. How far can sodium substitute for potassium in red beet? J. Plant Nutr. 1999, 22, 1745–1761. [Google Scholar] [CrossRef] [PubMed]
- Subbarao, G.V.; Wheeler, R.M.; Stutte, G.W.; Levine, L.H. Low potassium enhances sodium uptake in red beet under moderate saline conditions. J. Plant Nutr. 2000, 23, 1449–1470. [Google Scholar] [CrossRef] [PubMed]
- Wakeel, A.; Steffens, D.; Schubert, S. Potassium substitution by sodium in sugar beet (Beta vulgaris) nutrition on K-fixing soils. Z. Pflanzenernähr. Bodenkd. 2010, 173, 127–134. [Google Scholar] [CrossRef]
- Faust, F.; Schubert, S. In vitro protein synthesis of sugar beet (Beta vulgaris) and maize (Zea mays) is differentially inhibited when potassium is substituted by sodium. Plant Physiol. Biochem. 2017, 118, 228–234. [Google Scholar] [CrossRef]
- Wang, Y.G.; Zhan, Y.N.; Wu, C.; Gong, S.L.; Zhu, N.; Chen, S.X.; Li, H.Y. Cloning of a cystatin gene from sugar beet M14 that can enhance plant salt tolerance. Plant Sci. 2012, 191–192, 93–99. [Google Scholar] [CrossRef]
- Wang, X.L.; He, R.F.; He, G.C. Construction of suppression subtractive hybridization libraries and identification of brown planthopper-induced genes. J. Plant Physiol. 2005, 162, 1254–1262. [Google Scholar] [CrossRef]
- Ouyang, B.; Yang, T.; Li, H.X.; Zhang, L.; Zhang, Y.Y.; Zhang, J.H.; Fei, Z.J.; Ye, Z.B. Identification of early salt stress response genes in tomato root by suppression subtractive hybridization and microarray analysis. J. Exp. Bot. 2007, 58, 507–520. [Google Scholar] [CrossRef]
- Baldwin, J.C.; Dombrowski, J.E. Evaluation of Lolium temulentum as a model grass species for the study of salinity stress by PCR-based subtractive suppression hybridization analysis. Plant Sci. 2006, 171, 459–469. [Google Scholar] [CrossRef]
- Tyburski, J.; Mucha, N. Antioxidant response in the salt-acclimated red beet (Beta vulgaris) callus. Agronomy 2023, 13, 2284. [Google Scholar] [CrossRef]
- Liu, L.; Gai, Z.J.; Qiu, X.; Liu, T.H.; Li, S.X.; Ye, F.; Jian, S.L.; Shen, Y.H.; Li, X.G. Salt stress improves the low-temperature tolerance in sugar beet in which carbohydrate metabolism and signal transduction are involved. Environ. Exp. Bot. 2023, 208, 105239. [Google Scholar] [CrossRef]
- Adler, G.; Blumwald, E.; Bar-Zvi, D. The sugar beet gene encoding the sodium/proton exchanger 1 (BvNHX1) is regulated by a MYB transcription factor. Planta 2010, 232, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.Q.; Wang, Y.G.; Gu, D.; Nan, J.D.; Chen, S.X.; Li, H.Y. Overexpression of S-Adenosyl-l-Methionine Synthetase 2 from sugar beet M14 increased Arabidopsis tolerance to salt and oxidative stress. Int. J. Mol. Sci. 2017, 18, 847. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Li, J.L.; Dai, C.H.; Li, L.P. Transcriptome and metabolome analyses revealed the response mechanism of sugar beet (Beta vulgaris L.) to salt stress of different durations. Int. J. Mol. Sci. 2022, 23, 9599. [Google Scholar] [CrossRef]
- Li, J.L.; Cui, J.; Cheng, D.Y.; Dai, C.H.; Liu, T.J.; Wang, C.Y.; Luo, C.F. iTRAQ protein profile analysis of sugar beet under salt stress: Different coping mechanisms in leaves and roots. BMC Plant Biol. 2020, 20, 347. [Google Scholar] [CrossRef]
- Cui, J.; Liu, J.L.; Li, J.L.; Cheng, D.Y.; Dai, C.H. Genome-wide sequence identification and expression analysis of N6-methyladenosine demethylase in sugar beet (Beta vulgaris L.) under salt stress. PeerJ 2022, 10, e12719. [Google Scholar] [CrossRef]
- Jorrin Novo, J.V. Proteomics and plant biology: Contributions to date and a look towards the next decade. Expert Rev. Proteom. 2021, 18, 93–103. [Google Scholar] [CrossRef]
- Li, H.Y.; Pan, Y.; Zhang, Y.X.; Wu, C.; Ma, C.Q.; Yu, B.; Zhu, N.; Koh, J.; Chen, S.X. Salt stress response of membrane proteome of sugar beet monosomic addition line M14. J. Proteom. 2015, 127 Pt A, 18–33. [Google Scholar] [CrossRef]
- Liu, H.; Du, X.X.; Zhang, J.L.; Li, J.N.; Chen, S.X.; Duanmu, H.Z.; Li, H.Y. Quantitative redox proteomics revealed molecular mechanisms of salt tolerance in the roots of sugar beet (Beta vulgaris L.) monosomic addition line M14. Bot. Stud. 2022, 63, 5. [Google Scholar] [CrossRef]
- Marcus, Y.; Gurevitz, M. Ferredoxin-mediated reduction of 2-nitrothiophene inhibits photosynthesis: Mechanism and herbicidal potential. Biochem. J. 2020, 477, 1149–1158. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.Q.; Wang, J.L.; Feng, R.J.; Li, S.J.; Wang, C.M. iTRAQ-based comparative proteomic analysis provides insights into molecular mechanisms of salt tolerance in sugar beet (Beta vulgaris L.). Int. J. Mol. Sci. 2018, 19, 3866. [Google Scholar] [CrossRef] [PubMed]
- Mata-Pérez, C.; Spoel, S.H. Thioredoxin-mediated redox signaling in plant immunity. Plant Sci. 2019, 279, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Li, J.N.; Wang, K.; Ji, M.C.; Zhang, T.Y.; Yang, C.; Liu, H.; Chen, S.X.; Li, H.L.; Li, H.Y. Cys-SH based quantitative redox proteomics of salt induced response in sugar beet (Beta vulgaris L.) monosomic addition line M14. Bot. Stud. 2021, 62, 16. [Google Scholar] [CrossRef] [PubMed]
- Jensen, O.N. Modification-specific proteomics: Characterization of post-translational modifications by mass spectrometry. Curr. Opin. Chem. Biol. 2004, 8, 33–41. [Google Scholar] [CrossRef]
- Li, J.L.; Pang, Q.Y.; Yan, X.F. Unique features of the m6A methylome and its response to salt stress in the roots of sugar beet (Beta vulgaris). Int. J. Mol. Sci. 2023, 24, 11659. [Google Scholar] [CrossRef]
- Behr, J.H.; Bednarz, H.; Gödde, V.; Niehaus, K.; Zörb, C. Metabolic responses of sugar beet (Beta vulgaris L.) to the combined effect of root hypoxia and NaCl-salinity. J. Plant Physiol. 2021, 267, 153545. [Google Scholar] [CrossRef]
- Storey, R.; Thomson, W. An X-ray microanalysis study of the salt glands and intracellular calcium crystals of Tamarix. Ann. Bot. 1994, 73, 307–313. [Google Scholar] [CrossRef]
- Ramadan, T. Dynamics of salt secretion by Sporobolus spicatus (Vahl) Kunth from sites of differing salinity. Ann. Bot. 2001, 87, 259–266. [Google Scholar] [CrossRef]
- Imada, S.; Acharya, K.; Yamanaka, N. Short-term and diurnal patterns of salt secretion by Tamarix ramosissima and their relationships with climatic factors. J. Arid Environ. 2012, 83, 62–68. [Google Scholar] [CrossRef]
- Ma, H.Y.; Tian, C.Y.; Feng, G.; Yuan, J.F. Ability of multicellular salt glands in Tamarix species to secrete Na+ and K+ selectively. Sci. China Life Sci. 2011, 54, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Wei, W.; Tao, J.J.; Lu, X.; Bian, X.H.; Hu, Y.; Cheng, T.; Yin, C.C.; Zhang, W.K.; Chen, S.Y.; et al. Nuclear factor Y subunit GmNFYA competes with GmHDA13 for interaction with GmFVE to positively regulate salt tolerance in soybean. Plant Biotechnol. J. 2021, 19, 2362–2379. [Google Scholar] [CrossRef] [PubMed]
- Dissanayake, B.M.; Staudinger, C.; Ranathunge, K.; Munns, R.; Rupasinghe, T.W.; Taylor, N.L.; Millar, A.H. Metabolic adaptations leading to an enhanced lignification in wheat roots under salinity stress. Plant J. 2024, 119, 1800–1815. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.M.; Rahman, M.A.; Corpas, F.J.; Rahman, M.M.; Jahan, M.S.; Liu, X.D.; Ghimire, S.; Alabdallah, N.M.; Wassem, M.; Alharbi, B.M.; et al. Salt stress tolerance in rice (Oryza sativa L.): A proteomic overview of recent advances and future prospects. Plant Stress 2024, 11, 100307. [Google Scholar] [CrossRef]
- Ren, H.R.; Yang, W.J.; Jing, W.K.; Shahid, M.O.; Liu, Y.M.; Qiu, X.H.; Choisy, P.; Xu, T.; Ma, N.; Gao, J.P.; et al. Multi-omics analysis reveals key regulatory defense pathways and genes involved in salt tolerance of rose plants. Hortic. Res. 2024, 11, uhae068. [Google Scholar] [CrossRef]
- Zhang, X.K.; Zhang, G.S.; Yan, Q.; Ahmad, B.; Pei, J.; Huang, L.F. Quality variation and salt-alkali-tolerance mechanism of Cynomorium songaricum: Interacting from microbiome-transcriptome-metabolome. Sci. Total Environ. 2024, 919, 170801. [Google Scholar] [CrossRef]
- Tao, L.Y.; Wang, B.; Xin, S.C.; Li, W.; Huang, S.C.; Liu, L.H.; Cui, J.; Zhang, Q.R.; Cheng, X.G. A cluster of mutagenesis revealed an osmotic regulatory role of the OsPIP1 genes in enhancing rice salt tolerance. Crop J. 2023, 11, 1204–1217. [Google Scholar] [CrossRef]
- Xu, C.J.; Luo, M.Z.; Sun, X.J.; Yan, J.J.; Shi, H.W.; Yan, H.S.; Yan, R.Y.; Wang, S.G.; Tang, W.S.; Zhou, Y.B.; et al. SiMYB19 from Foxtail Millet (Setaria italica) confers transgenic rice tolerance to high salt stress in the field. Int. J. Mol. Sci. 2022, 23, 756. [Google Scholar] [CrossRef]
- Ji, M.C.; Wang, K.; Wang, L.; Chen, S.X.; Li, H.Y.; Ma, C.Q.; Wang, Y.G. Overexpression of a S-Adenosylmethionine Decarboxylase from sugar beet M14 increased Arabidopsis salt tolerance. Int. J. Mol. Sci. 2019, 20, 1990. [Google Scholar] [CrossRef]
- Cui, J.; Li, X.Y.; Li, J.L.; Wang, C.Y.; Cheng, D.Y.; Dai, C.H. Genome-wide sequence identification and expression analysis of ARF family in sugar beet (Beta vulgaris L.) under salinity stresses. PeerJ 2020, 8, e9131. [Google Scholar] [CrossRef]
Omics | Tissue | Reference | Highlights | Common Description |
---|---|---|---|---|
transcriptomics | Leaves | [52] | aldh2b7, thic and delta-oat | Under salt stress, multiple salt-tolerance-related genes in sugar beet are upregulated, particularly those associated with ion transport, antioxidant defense, and osmotic regulation, indicating its adaptive mechanisms in response to salt stress. |
Leaves and roots | [98] | BvALKBH10B | ||
Leaves, roots | [120] | BvM14-SAMDC | ||
proteomics | Leaves | [53] | L-ascorbate oxidase | Salt stress significantly increases the expression of antioxidant enzymes and other key proteins, demonstrating that sugar beet responds to salt stress by enhancing its antioxidant capacity and regulating protein functions. |
Leaves and roots | [121] | BvARF | ||
Leaves | [100] | PIP | ||
Leaves and roots | [97] | psbQ-like protein 1, Plastocyanin and NAD(P)H quinone oxidoreductase subunit U | ||
Leaves and roots | [103] | 6-phosphofructokinase 5 (PFK5), malate dehydrogenase (MDH) | ||
Leaves | [105] | non-specific lipid transfer proteins (nsLTPs) | ||
Leaves | [72] | 14-3-3 | ||
Roots | [76] | RUB1 | ||
Metabolomics | Roots | [80] | The metabolism of carbon and nitrogen | Under salt-stress conditions, sugar beet accumulates various organic acids, proline, and other nitrogen-containing metabolites, enhancing its salt tolerance and demonstrating its adaptability in metabolic regulation. |
Leaves and roots | [49] | nitrogen-containing metabolites, including amino acids, betaine, melatonin, and (S)-2-aminobutyric acid | ||
Leaves | [108] | arabinose, glycolic acid, inositol, malate, and mannitol | ||
Leaves and roots | [96] | starch and sucrose metabolism, alpha-linolenic acid metabolism, phenylpropanoid biosynthesis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Liu, H.; Wang, M.; Liu, J.; Geng, G.; Wang, Y. Salt Tolerance in Sugar Beet: From Impact Analysis to Adaptive Mechanisms and Future Research. Plants 2024, 13, 3018. https://doi.org/10.3390/plants13213018
Wang Y, Liu H, Wang M, Liu J, Geng G, Wang Y. Salt Tolerance in Sugar Beet: From Impact Analysis to Adaptive Mechanisms and Future Research. Plants. 2024; 13(21):3018. https://doi.org/10.3390/plants13213018
Chicago/Turabian StyleWang, Yuetong, Huajun Liu, Maoqian Wang, Jiahui Liu, Gui Geng, and Yuguang Wang. 2024. "Salt Tolerance in Sugar Beet: From Impact Analysis to Adaptive Mechanisms and Future Research" Plants 13, no. 21: 3018. https://doi.org/10.3390/plants13213018
APA StyleWang, Y., Liu, H., Wang, M., Liu, J., Geng, G., & Wang, Y. (2024). Salt Tolerance in Sugar Beet: From Impact Analysis to Adaptive Mechanisms and Future Research. Plants, 13(21), 3018. https://doi.org/10.3390/plants13213018