Friends and Foes: Bacteria of the Hydroponic Plant Microbiome
Abstract
:1. Introduction
2. Plant Growth-Promoting Bacteria in Hydroponics
2.1. Pseudomonas (Plant-Growth Promoting)
2.2. Bacillus
2.3. Azospirillum
2.4. Azotobacter
2.5. Rhizobium
2.6. Paraburkholderia
2.7. Paenibacillus
3. Phytopathogenic Bacteria in Hydroponics
3.1. Xanthomonas
3.2. Erwinia
3.3. Agrobacterium
3.4. Ralstonia
3.5. Clavibacter
3.6. Pectobacterium
3.7. Pseudomonas (Phytopathogenic)
4. Conclusion and Future Directions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Velazquez-Gonzalez, R.S.; Garcia-Garcia, A.L.; Ventura-Zapata, E.; Barceinas-Sanchez, J.D.O.; Sosa-Savedra, J.C. A Review on Hydroponics and the Technologies Associated for Medium- and Small-Scale Operations. Agriculture 2022, 12, 646. [Google Scholar] [CrossRef]
- Gowdy, J. Our Hunter-Gatherer Future: Climate Change, Agriculture and Uncivilization. Futures 2020, 115, 102488. [Google Scholar] [CrossRef]
- Can We Ditch Intensive Farming—And Still Feed the Human Race? | Global Soil Partnership | Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/global-soil-partnership/resources/highlights/detail/en/c/1179073/ (accessed on 6 September 2024).
- Nemali, K. History of Controlled Environment Horticulture: Greenhouses. HortScience 2022, 57, 239–246. [Google Scholar] [CrossRef]
- Farvardin, M.; Taki, M.; Gorjian, S.; Shabani, E.; Sosa-Savedra, J.C. Assessing the Physical and Environmental Aspects of Greenhouse Cultivation: A Comprehensive Review of Conventional and Hydroponic Methods. Sustainability 2024, 16, 1273. [Google Scholar] [CrossRef]
- Tsyganko, E.; Shtyrkhunova, N.; Modina, M.; Voskanyan, A. Soil Degradation in the Process of Agricultural Activities. BIO Web Conf. 2024, 103, 00061. [Google Scholar] [CrossRef]
- FAO. The State of the World’s Land and Water Resources for Food and Agriculture—Systems at Breaking Point (SOLAW 2021). FAO: Rome, Italy, 2021. [Google Scholar] [CrossRef]
- Land Use in Agriculture by the Numbers; Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/sustainability/news/detail/en/c/1274219/ (accessed on 6 September 2024).
- Visualization Overview | Population Data Portal. Available online: https://pdp.unfpa.org/?data_id=dataSource_2-0%3A4&page=Visualization-Overview (accessed on 6 September 2024).
- Kannan, M.; Elavarasan, G.; Balamurugan, A.; Dhanusiya, B.; Freedon, D. Hydroponic Farming—A State of Art for the Future Agriculture. Mater. Today Proc. 2022, 68, 2163–2166. [Google Scholar] [CrossRef]
- Hydroponics Market—Share, Growth & Industry Statistics. Available online: https://www.mordorintelligence.com/industry-reports/hydroponics-market (accessed on 6 September 2024).
- Farhadian, M.; Razzaghi Asl, S.; Ghamari, H. Thermal Performance Simulation of Hydroponic Green Wall in a Cold Climate. Int. J. Archit. Eng. Urban Plan. 2019, 29, 233–246. [Google Scholar] [CrossRef]
- Baddadi, S.; Bouadila, S.; Ghorbel, W.; Guizani, A. Autonomous Greenhouse Microclimate through Hydroponic Design and Refurbished Thermal Energy by Phase Change Material. J. Clean. Prod. 2019, 211, 360–379. [Google Scholar] [CrossRef]
- Resh, H.M. Hydroponic Food Production: A Definitive Guidebook for the Advanced Home Gardener and the Commercial Hydroponic Grower, 8th ed.; CRC Press: New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- Da Silva Cuba Carvalho, R.; Bastos, R.G.; Souza, C.F. Influence of the Use of Wastewater on Nutrient Absorption and Production of Lettuce Grown in a Hydroponic System. Agric. Water Manag. 2018, 203, 311–321. [Google Scholar] [CrossRef]
- Vasdravanidis, C.; Alvanou, M.V.; Lattos, A.; Papadopoulos, D.K.; Chatzigeorgiou, I.; Ravani, M.; Liantas, G.; Georgoulis, I.; Feidantsis, K.; Ntinas, G.K.; et al. Aquaponics as a Promising Strategy to Mitigate Impacts of Climate Change on Rainbow Trout Culture. Animals 2022, 12, 2523. [Google Scholar] [CrossRef]
- Trantas, E.A.; Licciardello, G.; Almeida, N.F.; Witek, K.; Strano, C.P.; Duxbury, Z.; Ververidis, F.; Goumas, D.E.; Jones, J.D.G.; Guttman, D.S.; et al. Comparative Genomic Analysis of Multiple Strains of Two Unusual Plant Pathogens: Pseudomonas corrugata and Pseudomonas mediterranea. Front. Microbiol. 2015, 6, 811. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, H.; Asiabanpour, B. Influencing Factors for the Plant Growth Patterns in Hydroponic and Aquaponic Environments: A Subgroup Analysis for Sustainable Agricultural Production. Green Technol. Sustain. 2024, 2, 100084. [Google Scholar] [CrossRef]
- Martin-Gorriz, B.; Maestre-Valero, J.F.; Gallego-Elvira, B.; Marín-Membrive, P.; Terrero, P.; Martínez-Alvarez, V. Recycling Drainage Effluents Using Reverse Osmosis Powered by Photovoltaic Solar Energy in Hydroponic Tomato Production: Environmental Footprint Analysis. J. Environ. Manag. 2021, 297, 113326. [Google Scholar] [CrossRef]
- Ragaveena, S.; Shirly Edward, A.; Surendran, U. Smart Controlled Environment Agriculture Methods: A Holistic Review. Rev. Environ. Sci. Biotechnol. 2021, 20, 887–913. [Google Scholar] [CrossRef]
- Gaikwad, D.J. Hydroponics Cultivation of Crops. In Protected Cultivation and Smart Agriculture; New Delhi Publishers: New Delhi, India, 2020. [Google Scholar] [CrossRef]
- Dhulappanavar, G.R.; Gibson, K.E. Persistence of Salmonella Enterica Subsp. Enterica Ser. Javiana, Listeria Monocytogenes, and Listeria lnnocua in Hydroponic Nutrient Solution. J. Food Prot. 2023, 86, 100154. [Google Scholar] [CrossRef]
- Stegelmeier, A.A.; Rose, D.M.; Joris, B.R.; Glick, B.R. The Use of PGPB to Promote Plant Hydroponic Growth. Plants 2022, 11, 2783. [Google Scholar] [CrossRef]
- Bakker, P.A.H.M.; Berendsen, R.L.; Van Pelt, J.A.; Vismans, G.; Yu, K.; Li, E.; Van Bentum, S.; Poppeliers, S.W.M.; Sanchez Gil, J.J.; Zhang, H.; et al. The Soil-Borne Identity and Microbiome-Assisted Agriculture: Looking Back to the Future. Mol. Plant 2020, 13, 1394–1401. [Google Scholar] [CrossRef]
- Escobar Rodríguez, C.; Novak, J.; Buchholz, F.; Uetz, P.; Bragagna, L.; Gumze, M.; Antonielli, L.; Mitter, B. The Bacterial Microbiome of the Tomato Fruit Is Highly Dependent on the Cultivation Approach and Correlates with Flavor Chemistry. Front. Plant Sci. 2021, 12, 775722. [Google Scholar] [CrossRef]
- Santoyo, G.; Guzmán-Guzmán, P.; Parra-Cota, F.I.; Santos-Villalobos, S.D.L.; Orozco-Mosqueda, M.D.C.; Glick, B.R. Plant Growth Stimulation by Microbial Consortia. Agronomy 2021, 11, 219. [Google Scholar] [CrossRef]
- Rodriguez, P.A.; Rothballer, M.; Chowdhury, S.P.; Nussbaumer, T.; Gutjahr, C.; Falter-Braun, P. Systems Biology of Plant-Microbiome Interactions. Mol. Plant 2019, 12, 804–821. [Google Scholar] [CrossRef]
- Glick, B.R.; Gamalero, E. Recent Developments in the Study of Plant Microbiomes. Microorganisms 2021, 9, 1533. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.-S.; Ryu, C.-M. Understanding Plant Social Networking System: Avoiding Deleterious Microbiota but Calling Beneficials. Int. J. Mol. Sci. 2021, 22, 3319. [Google Scholar] [CrossRef] [PubMed]
- Etesami, H.; Glick, B.R. Bacterial Indole-3-Acetic Acid: A Key Regulator for Plant Growth, Plant-Microbe Interactions, and Agricultural Adaptive Resilience. Microbiol. Res. 2024, 281, 127602. [Google Scholar] [CrossRef] [PubMed]
- Glick, B.R. Plant Growth-Promoting Bacteria: Mechanisms and Applications. Scientifica 2012, 2012, 963401. [Google Scholar] [CrossRef]
- Mei, C.; Chretien, R.L.; Amaradasa, B.S.; He, Y.; Turner, A.; Lowman, S. Characterization of Phosphate Solubilizing Bacterial Endophytes and Plant Growth Promotion In Vitro and in Greenhouse. Microorganisms 2021, 9, 1935. [Google Scholar] [CrossRef]
- Dasgan, H.Y.; Aldiyab, A.; Elgudayem, F.; Ikiz, B.; Gruda, N.S. Effect of Biofertilizers on Leaf Yield, Nitrate Amount, Mineral Content and Antioxidants of Basil (Ocimum basilicum L.) in a Floating Culture. Sci. Rep. 2022, 12, 20917. [Google Scholar] [CrossRef]
- Putra, A.M.; Anastasya, N.A.; Rachmawati, S.W.; Yusnawan, E.; Syib’li, M.A.; Trianti, I.; Setiawan, A.; Aini, L.Q. Growth Performance and Metabolic Changes in Lettuce Inoculated with Plant Growth Promoting Bacteria in a Hydroponic System. Sci. Hortic. 2024, 327, 112868. [Google Scholar] [CrossRef]
- Oni, F.E.; Esmaeel, Q.; Onyeka, J.T.; Adeleke, R.; Jacquard, C.; Clement, C.; Gross, H.; Ait Barka, E.; Höfte, M. Pseudomonas Lipopeptide-Mediated Biocontrol: Chemotaxonomy and Biological Activity. Molecules 2022, 27, 372. [Google Scholar] [CrossRef]
- Durán, D.; Bernal, P.; Vazquez-Arias, D.; Blanco-Romero, E.; Garrido-Sanz, D.; Redondo-Nieto, M.; Rivilla, R.; Martín, M. Pseudomonas Fluorescens F113 Type VI Secretion Systems Mediate Bacterial Killing and Adaption to the Rhizosphere Microbiome. Sci. Rep. 2021, 11, 5772. [Google Scholar] [CrossRef]
- De Freitas, C.C.; Taylor, C.G. Biological Control of Hairy Root Disease Using Beneficial Pseudomonas Strains. Biol. Control. 2023, 177, 105098. [Google Scholar] [CrossRef]
- Gravel, V.; Martinez, C.; Antoun, H.; Tweddell, R.J. Control of Greenhouse Tomato Root Rot [Pythium ultimum] in Hydroponic Systems, Using Plant-Growth-Promoting Microorganisms. Can. J. Plant Pathol. 2006, 28, 475–483. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, S.; Mukherjee, A.; Rastogi, R.P.; Verma, J.P. Salt-Tolerant Plant Growth-Promoting Bacillus pumilus Strain JPVS11 to Enhance Plant Growth Attributes of Rice and Improve Soil Health under Salinity Stress. Microbiol. Res. 2021, 242, 126616. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.; Jiang, H.; Hao, J.J. Effects of Bacillus velezensis Strain BAC03 in Promoting Plant Growth. Biol. Control. 2016, 98, 18–26. [Google Scholar] [CrossRef]
- Grzyb, A.; Wolna-Maruwka, A.; Niewiadomska, A. The Significance of Microbial Transformation of Nitrogen Compounds in the Light of Integrated Crop Management. Agronomy 2021, 11, 1415. [Google Scholar] [CrossRef]
- Kang, S.M.; Hamayun, M.; Khan, M.A.; Iqbal, A.; Lee, I.-J. Bacillus subtilis JW1 Enhances Plant Growth and Nutrient Uptake of Chinese Cabbage through Gibberellins Secretion. J. Appl. Bot. Food Qual. 2019, 92, 172–178. [Google Scholar] [CrossRef]
- Ahmad, Z.; Wu, J.; Chen, L.; Dong, W. Isolated Bacillus subtilis Strain 330-2 and Its Antagonistic Genes Identified by the Removing PCR. Sci. Rep. 2017, 7, 1777. [Google Scholar] [CrossRef]
- Chen, Q.; Qiu, Y.; Yuan, Y.; Wang, K.; Wang, H. Biocontrol Activity and Action Mechanism of Bacillus velezensis Strain SDTB038 against Fusarium Crown and Root Rot of Tomato. Front. Microbiol. 2022, 13, 994716. [Google Scholar] [CrossRef]
- Punja, Z.K.; Tirajoh, A.; Collyer, D.; Ni, L. Efficacy of Bacillus subtilis Strain QST 713 (Rhapsody) against Four Major Diseases of Greenhouse Cucumbers. Crop Prot. 2019, 124, 104845. [Google Scholar] [CrossRef]
- Esquivel-Cote, R.; Ramírez-Gama, R.M.; Tsuzuki-Reyes, G.; Orozco-Segovia, A.; Huante, P. Azospirillum Lipoferum Strain AZm5 Containing 1-Aminocyclopropane-1-Carboxylic Acid Deaminase Improves Early Growth of Tomato Seedlings under Nitrogen Deficiency. Plant Soil 2010, 337, 65–75. [Google Scholar] [CrossRef]
- Del Amor, F.M.; Serrano-Martínez, A.; Fortea, M.I.; Legua, P.; Núñez-Delicado, E. The Effect of Plant-Associative Bacteria (Azospirillum and Pantoea) on the Fruit Quality of Sweet Pepper under Limited Nitrogen Supply. Sci. Hortic. 2008, 117, 191–196. [Google Scholar] [CrossRef]
- Delaporte-Quintana, P.; Lovaisa, N.C.; Rapisarda, V.A.; Pedraza, R.O. The Plant Growth Promoting Bacteria Gluconacetobacter diazotrophicus and Azospirillum brasilense Contribute to the Iron Nutrition of Strawberry Plants through Siderophores Production. Plant Growth Regul. 2020, 91, 185–199. [Google Scholar] [CrossRef]
- Malhotra, M.; Srivastava, S. Stress-Responsive Indole-3-Acetic Acid Biosynthesis by Azospirillum brasilense SM and Its Ability to Modulate Plant Growth. Eur. J. Soil Biol. 2009, 45, 73–80. [Google Scholar] [CrossRef]
- Viejobueno, J.; Albornoz, P.L.; Camacho, M.; De Los Santos, B.; Martínez-Zamora, M.G.; Salazar, S.M. Protection of Strawberry Plants against Charcoal Rot Disease (Macrophomina phaseolina) Induced by Azospirillum brasilense. Agronomy 2021, 11, 195. [Google Scholar] [CrossRef]
- Rodriguez, H.; Gonzalez, T.; Goire, I.; Bashan, Y. Gluconic Acid Production and Phosphate Solubilization by the Plant Growth-Promoting Bacterium Azospirillum spp. Naturwissenschaften 2004, 91, 552–555. [Google Scholar] [CrossRef]
- Da Silva Oliveira, C.E.; Jalal, A.; Vitória, L.S.; Giolo, V.M.; Oliveira, T.J.S.S.; Aguilar, J.V.; De Camargos, L.S.; Brambilla, M.R.; Fernandes, G.C.; Vargas, P.F.; et al. Inoculation with Azospirillum brasilense Strains AbV5 and AbV6 Increases Nutrition, Chlorophyll, and Leaf Yield of Hydroponic Lettuce. Plants 2023, 12, 3107. [Google Scholar] [CrossRef]
- Kennedy, C.; Rudnick, P.; MacDonald, M.L.; Melton, T. Azotobacter. In Bergey’s Manual of Systematics of Archaea and Bacteria; Whitman, W.B., Ed.; Wiley: Hoboken, NJ, USA, 2015; pp. 1–33. [Google Scholar] [CrossRef]
- Romero-Perdomo, F.; Abril, J.; Camelo, M.; Moreno-Galván, A.; Pastrana, I.; Rojas-Tapias, D.; Bonilla, R. Azotobacter chroococcum as a Potentially Useful Bacterial Biofertilizer for Cotton (Gossypium hirsutum): Effect in Reducing N Fertilization. Rev. Argent. Microbiol. 2017, 49, 377–383. [Google Scholar] [CrossRef]
- Razmjooei, Z.; Etemadi, M.; Eshghi, S.; Ramezanian, A.; Mirazimi Abarghuei, F.; Alizargar, J. Potential Role of Foliar Application of Azotobacter on Growth, Nutritional Value and Quality of Lettuce under Different Nitrogen Levels. Plants 2022, 11, 406. [Google Scholar] [CrossRef]
- Patil, A.; Kale, A.; Ajane, G.; Sheikh, R.; Patil, S. Plant Growth-Promoting Rhizobium: Mechanisms and Biotechnological Prospective. In Rhizobium Biology and Biotechnology; Hansen, A.P., Choudhary, D.K., Agrawal, P.K., Varma, A., Eds.; Soil Biology; Springer International Publishing: Cham, Switzerland, 2017; Volume 50, pp. 105–134. [Google Scholar] [CrossRef]
- Omar, S.A.; Abd-Alla, M.H. Biocontrol of Fungal Root Rot Diseases of Crop Plants by the Use of Rhizobia and Bradyrhizobia. Folia Microbiol. 1998, 43, 431–437. [Google Scholar] [CrossRef]
- Halder, A.K.; Chakrabartty, P.K. Solubilization of Inorganic Phosphate by Rhizobium. Folia Microbiol. 1993, 38, 325–330. [Google Scholar] [CrossRef]
- Xie, J.-B.; Du, Z.; Bai, L.; Tian, C.; Zhang, Y.; Xie, J.-Y.; Wang, T.; Liu, X.; Chen, X.; Cheng, Q.; et al. Comparative Genomic Analysis of N2-Fixing and Non-N2-Fixing Paenibacillus spp.: Organization, Evolution and Expression of the Nitrogen Fixation Genes. PLoS Genet. 2014, 10, e1004231. [Google Scholar] [CrossRef]
- Baek, J.; Weerawongwiwat, V.; Kim, J.-H.; Yoon, J.-H.; Lee, J.-S.; Sukhoom, A.; Kim, W. Paenibacillus Arenosi Sp. Nov., a Siderophore-Producing Bacterium Isolated from Coastal Sediment. Arch. Microbiol. 2022, 204, 113. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Shi, H.; Du, Z.; Wang, T.; Liu, X.; Chen, S. Comparative Genomic and Functional Analysis Reveal Conservation of Plant Growth Promoting Traits in Paenibacillus polymyxa and Its Closely Related Species. Sci. Rep. 2016, 6, 21329. [Google Scholar] [CrossRef] [PubMed]
- Herpell, J.B.; Alickovic, A.; Diallo, B.; Schindler, F.; Weckwerth, W. Phyllosphere Symbiont Promotes Plant Growth through ACC Deaminase Production. ISME J. 2023, 17, 1267–1277. [Google Scholar] [CrossRef] [PubMed]
- Vio, S.A.; García, S.S.; Casajus, V.; Arango, J.S.; Galar, M.L.; Bernabeu, P.R.; Luna, M.F. Paraburkholderia. In Beneficial Microbes in Agro-Ecology; Elsevier: Amsterdam, The Netherlands, 2020; pp. 271–311. [Google Scholar] [CrossRef]
- Madhaiyan, M.; Selvakumar, G.; Alex, T.H.; Cai, L.; Ji, L. Plant Growth Promoting Abilities of Novel Burkholderia-Related Genera and Their Interactions With Some Economically Important Tree Species. Front. Sustain. Food Syst. 2021, 5, 618305. [Google Scholar] [CrossRef]
- Wei, X.; Moreno-Hagelsieb, G.; Glick, B.R.; Doxey, A.C. Comparative Analysis of Adenylate Isopentenyl Transferase Genes in Plant Growth-Promoting Bacteria and Plant Pathogenic Bacteria. Heliyon 2023, 9, e13955. [Google Scholar] [CrossRef]
- Höfte, M.; Altier, N. Fluorescent Pseudomonads as Biocontrol Agents for Sustainable Agricultural Systems. Res. Microbiol. 2010, 161, 464–471. [Google Scholar] [CrossRef]
- Lee, S.-W.; Ahn, I.-P.; Sim, S.-Y.; Lee, S.-Y.; Seo, M.-W.; Kim, S.; Park, S.-Y.; Lee, Y.-H.; Kang, S. Pseudomonas Sp. LSW25R, Antagonistic to Plant Pathogens, Promoted Plant Growth, and Reduced Blossom-End Rot of Tomato Fruits in a Hydroponic System. Eur. J. Plant Pathol. 2010, 126, 1–11. [Google Scholar] [CrossRef]
- Mei, C.; Zhou, D.; Chretien, R.L.; Turner, A.; Hou, G.; Evans, M.R.; Lowman, S. A Potential Application of Pseudomonas psychrotolerans IALR632 for Lettuce Growth Promotion in Hydroponics. Microorganisms 2023, 11, 376. [Google Scholar] [CrossRef]
- Ghent University; Höfte, M. The Use of Pseudomonas spp. as Bacterial Biocontrol Agents to Control Plant Diseases. In Burleigh Dodds Series in Agricultural Science; Köhl, J., Ed.; Wageningen University & Research: Wageningen, The Netherlands; Burleigh Dodds Science Publishing: Cambridge, UK, 2021; pp. 301–374. [Google Scholar] [CrossRef]
- Polano, C.; Martini, M.; Savian, F.; Moruzzi, S.; Ermacora, P.; Firrao, G. Genome Sequence and Antifungal Activity of Two Niche-Sharing Pseudomonas protegens Related Strains Isolated from Hydroponics. Microb. Ecol. 2019, 77, 1025–1035. [Google Scholar] [CrossRef]
- Gilardi, G.; Pugliese, M.; Gullino, M.L.; Garibaldi, A. Effect of biocontrol agents and potassium phosphite against Phytophthora crown rot, caused by Phytophthora capsici, on zucchini in a closed soilless system. Sci. Hortic. 2020, 265, 109207. [Google Scholar] [CrossRef]
- Slepecky, R.A.; Hemphill, H.E. The Genus Bacillus—Nonmedical. In The Prokaryotes; Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., Stackebrandt, E., Eds.; Springer: New York, NY, USA, 2006; pp. 530–562. [Google Scholar] [CrossRef]
- Chung, S. Powder Formulation Using Heat Resistant Endospores of Two Multi-Functional Plant Growth Promoting Rhizobacteria Bacillus Strains Having Phytophtora Blight Suppression and Growth Promoting Functions. J. Korean Soc. Appl. Biol. Chem. 2010, 53, 485–492. [Google Scholar] [CrossRef]
- Qi, R.; Lin, W.; Gong, K.; Han, Z.; Ma, H.; Zhang, M.; Zhang, Q.; Gao, Y.; Li, J.; Zhang, X. Bacillus Co-Inoculation Alleviated Salt Stress in Seedlings Cucumber. Agronomy 2021, 11, 966. [Google Scholar] [CrossRef]
- Patani, A.; Prajapati, D.; Ali, D.; Kalasariya, H.; Yadav, V.K.; Tank, J.; Bagatharia, S.; Joshi, M.; Patel, A. Evaluation of the Growth-Inducing Efficacy of Various Bacillus Species on the Salt-Stressed Tomato (Lycopersicon esculentum Mill.). Front. Plant Sci. 2023, 14, 1168155. [Google Scholar] [CrossRef] [PubMed]
- Abdel Motaleb, N.A.; Abd Elhady, S.A.; Ghoname, A.A. AMF and Bacillus Megaterium Neutralize the Harmful Effects of Salt Stress On Bean Plants. Gesunde Pflanz. 2020, 72, 29–39. [Google Scholar] [CrossRef]
- Ayaz, M.; Ali, Q.; Jiang, Q.; Wang, R.; Wang, Z.; Mu, G.; Khan, S.A.; Khan, A.R.; Manghwar, H.; Wu, H.; et al. Salt Tolerant Bacillus Strains Improve Plant Growth Traits and Regulation of Phytohormones in Wheat under Salinity Stress. Plants 2022, 11, 2769. [Google Scholar] [CrossRef]
- Arkhipova, T.N.; Veselov, S.U.; Melentiev, A.I.; Martynenko, E.V.; Kudoyarova, G.R. Ability of Bacterium Bacillus subtilis to Produce Cytokinins and to Influence the Growth and Endogenous Hormone Content of Lettuce Plants. Plant Soil 2005, 272, 201–209. [Google Scholar] [CrossRef]
- Gutiérrez-Mañero, F.J.; Ramos-Solano, B.; Probanza, A.N.; Mehouachi, J.; RTadeo, F.; Talon, M. The Plant-growth-promoting Rhizobacteria Bacillus pumilus and Bacillus licheniformis Produce High Amounts of Physiologically Active Gibberellins. Physiol. Plant. 2001, 111, 206–211. [Google Scholar] [CrossRef]
- Wu, W.; Du, K.; Kang, X.; Wei, H. The Diverse Roles of Cytokinins in Regulating Leaf Development. Hortic. Res. 2021, 8, 118. [Google Scholar] [CrossRef]
- Castro-Camba, R.; Sánchez, C.; Vidal, N.; Vielba, J.M. Plant Development and Crop Yield: The Role of Gibberellins. Plants 2022, 11, 2650. [Google Scholar] [CrossRef]
- Yousuf, J.; Thajudeen, J.; Rahiman, M.; Krishnankutty, S.; Alikunj, A.P.; Abdulla, M.H.A. Nitrogen Fixing Potential of Various Heterotrophic Bacillus Strains from a Tropical Estuary and Adjacent Coastal Regions. J. Basic Microbiol. 2017, 57, 922–932. [Google Scholar] [CrossRef]
- Singh, R.K.; Singh, P.; Li, H.-B.; Song, Q.-Q.; Guo, D.-J.; Solanki, M.K.; Verma, K.K.; Malviya, M.K.; Song, X.-P.; Lakshmanan, P.; et al. Diversity of Nitrogen-Fixing Rhizobacteria Associated with Sugarcane: A Comprehensive Study of Plant-Microbe Interactions for Growth Enhancement in Saccharum spp. BMC Plant Biol. 2020, 20, 220. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.E.D.S.; Jalal, A.; Aguilar, J.V.; De Camargos, L.S.; Zoz, T.; Ghaley, B.B.; Abdel-Maksoud, M.A.; Alarjani, K.M.; AbdElgawad, H.; Teixeira Filho, M.C.M. Yield, Nutrition, and Leaf Gas Exchange of Lettuce Plants in a Hydroponic System in Response to Bacillus subtilis Inoculation. Front. Plant Sci. 2023, 14, 1248044. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.-Y.; Zhao, M.-R.; Wang, J.-Q.; Hu, B.-Y.; Chen, Q.-J.; Qin, Y.; Zhang, G.-Q. Effects of Microbial Inoculants on Agronomic Characters, Physicochemical Properties and Nutritional Qualities of Lettuce and Celery in Hydroponic Cultivation. Sci. Hortic. 2023, 320, 112202. [Google Scholar] [CrossRef]
- Li, B.; Zhao, L.; Liu, D.; Zhang, Y.; Wang, W.; Miao, Y.; Han, L. Bacillus subtilis Promotes Cucumber Growth and Quality under Higher Nutrient Solution by Altering the Rhizospheric Microbial Community. Plants 2023, 12, 298. [Google Scholar] [CrossRef]
- Yaraguppi, D.A.; Bagewadi, Z.K.; Patil, N.R.; Mantri, N. Iturin: A Promising Cyclic Lipopeptide with Diverse Applications. Biomolecules 2023, 13, 1515. [Google Scholar] [CrossRef]
- Balleza, D.; Alessandrini, A.; Beltrán García, M.J. Role of Lipid Composition, Physicochemical Interactions, and Membrane Mechanics in the Molecular Actions of Microbial Cyclic Lipopeptides. J. Membr. Biol. 2019, 252, 131–157. [Google Scholar] [CrossRef]
- Husna; Kim, B.-E.; Won, M.-H.; Jeong, M.-I.; Oh, K.-K.; Park, D.S. Characterization and Genomic Insight of Surfactin-Producing Bacillus velezensis and Its Biocontrol Potential against Pathogenic Contamination in Lettuce Hydroponics. Environ. Sci. Pollut. Res. 2023, 30, 121487–121500. [Google Scholar] [CrossRef]
- Ongena, M.; Jacques, P. Bacillus Lipopeptides: Versatile Weapons for Plant Disease Biocontrol. Trends Microbiol. 2008, 16, 115–125. [Google Scholar] [CrossRef]
- Laird, M.; Piccoli, D.; Weselowski, B.; McDowell, T.; Renaud, J.; MacDonald, J.; Yuan, Z.-C. Surfactin-Producing Bacillus velezensis 1B-23 and Bacillus Sp. 1D-12 Protect Tomato against Bacterial Canker Caused by Clavibacter michiganensis Subsp. Michiganensis. J. Plant Pathol. 2020, 102, 451–458. [Google Scholar] [CrossRef]
- Stoll, A.; Salvatierra-Martínez, R.; González, M.; Araya, M. The Role of Surfactin Production by Bacillus velezensis on Colonization, Biofilm Formation on Tomato Root and Leaf Surfaces and Subsequent Protection (ISR) against Botrytis cinerea. Microorganisms 2021, 9, 2251. [Google Scholar] [CrossRef]
- Grahovac, J.; Pajčin, I.; Vlajkov, V. Bacillus VOCs in the Context of Biological Control. Antibiotics 2023, 12, 581. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Zhang, Z.; Ling, N.; Yuan, Y.; Zheng, X.; Shen, B.; Shen, Q. Bacillus subtilis SQR 9 Can Control Fusarium Wilt in Cucumber by Colonizing Plant Roots. Biol. Fertil. Soils 2011, 47, 495–506. [Google Scholar] [CrossRef]
- Beijerinck, M. Uber Ein Spirillum, Welches Frei En Stick-Stoff Binden Kann? Zentralbl Bakteriol. 1925, 63, 353–359. [Google Scholar]
- Bashan, Y.; de-Bashan, L.E. How the Plant Growth-Promoting Bacterium Azospirillum Promotes Plant Growth—A Critical Assessment. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2010; Volume 108, pp. 77–136. [Google Scholar] [CrossRef]
- Pii, Y.; Graf, H.; Valentinuzzi, F.; Cesco, S.; Mimmo, T. The Effects of Plant Growth-Promoting Rhizobacteria (PGPR) on the Growth and Quality of Strawberries. Acta Hortic. 2018, 1217, 231–238. [Google Scholar] [CrossRef]
- Guerrero-Molina, M.F.; Lovaisa, N.C.; Salazar, S.M.; Martínez-Zamora, M.G.; Díaz-Ricci, J.C.; Pedraza, R.O. Physiological, Structural and Molecular Traits Activated in Strawberry Plants after Inoculation with the Plant Growth-promoting Bacterium Azospirillum brasilense REC 3. Plant Biol. 2015, 17, 766–773. [Google Scholar] [CrossRef]
- Zhou, Y.; Wei, W.; Wang, X.; Xu, L.; Lai, R. Azospirillum palatum Sp. Nov., Isolated from Forest Soil in Zhejiang Province, China. J. Gen. Appl. Microbiol. 2009, 55, 1–7. [Google Scholar] [CrossRef]
- Rodrigues, E.P.; Rodrigues, L.S.; De Oliveira, A.L.M.; Baldani, V.L.D.; Teixeira, K.R.D.S.; Urquiaga, S.; Reis, V.M. Azospirillum amazonense Inoculation: Effects on Growth, Yield and N2 Fixation of Rice (Oryza sativa L.). Plant Soil 2008, 302, 249–261. [Google Scholar] [CrossRef]
- Garcia De Salamone, I.E.; Döbereiner, J.; Urquiaga, S.; Boddey, R.M. Biological Nitrogen Fixation in Azospirillum Strain-Maize Genotype Associations as Evaluated by the 15N Isotope Dilution Technique. Biol. Fertil. Soils 1996, 23, 249–256. [Google Scholar] [CrossRef]
- Galal, Y.G.M.; El-Ghandour, I.A.; El-Akel, E.A. Stimulation of Wheat Growth and N Fixation through Azospirillum and Rhizobium Inoculation: A Field Trial with 15N Techniques. In Plant Nutrition; Horst, W.J., Schenk, M.K., Bürkert, A., Claassen, N., Flessa, H., Frommer, W.B., Goldbach, H., Olfs, H.-W., Römheld, V., Sattelmacher, B., et al., Eds.; Springer: Dordrecht, The Netherlands, 2001; pp. 666–667. [Google Scholar] [CrossRef]
- Strzelczyk, E.; Kampert, M.; Li, C.Y. Cytokinin-like Substances and Ethylene Production by Azospirillum in Media with Different Carbon Sources. Microbiol. Res. 1994, 149, 55–60. [Google Scholar] [CrossRef]
- Creus, C.M.; Graziano, M.; Casanovas, E.M.; Pereyra, M.A.; Simontacchi, M.; Puntarulo, S.; Barassi, C.A.; Lamattina, L. Nitric Oxide Is Involved in the Azospirillum brasilense-Induced Lateral Root Formation in Tomato. Planta 2005, 221, 297–303. [Google Scholar] [CrossRef]
- Cassán, F.; Perrig, D.; Sgroy, V.; Masciarelli, O.; Penna, C.; Luna, V. Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, Inoculated Singly or in Combination, Promote Seed Germination and Early Seedling Growth in Corn (Zea mays L.) and Soybean (Glycine max L.). Eur. J. Soil Biol. 2009, 45, 28–35. [Google Scholar] [CrossRef]
- Verma, R.; Chourasia, S.K.; Jha, M.N. Population Dynamics and Identification of Efficient Strains of Azospirillum in Maize Ecosystems of Bihar (India). 3 Biotech 2011, 1, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Ona, O.; Impe, J.; Prinsen, E.; Vanderleyden, J. Growth and Indole-3-Acetic Acid Biosynthesis of Azospirillum brasilense Sp245 Is Environmentally Controlled. FEMS Microbiol. Lett. 2005, 246, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Nievas, S.; Coniglio, A.; Takahashi, W.Y.; López, G.A.; Larama, G.; Torres, D.; Rosas, S.; Etto, R.M.; Galvão, C.W.; Mora, V.; et al. Unraveling Azospirillum ’s Colonization Ability through Microbiological and Molecular Evidence. J. Appl. Microbiol. 2023, 134, lxad071. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhu, S.; Liu, T.; Guo, B.; Li, F.; Bai, X. Identification of the Rhizospheric Microbe and Metabolites That Led by the Continuous Cropping of Ramie (Boehmeria nivea L. Gaud). Sci. Rep. 2020, 10, 20408. [Google Scholar] [CrossRef] [PubMed]
- Handbook for Azospirillum: Technical Issues and Protocols; Cassán, F.D.; Okon, Y.; Creus, C.M. (Eds.) Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Cassán, F.; Coniglio, A.; López, G.; Molina, R.; Nievas, S.; De Carlan, C.L.N.; Donadio, F.; Torres, D.; Rosas, S.; Pedrosa, F.O.; et al. Everything You Must Know about Azospirillum and Its Impact on Agriculture and Beyond. Biol. Fertil. Soils 2020, 56, 461–479. [Google Scholar] [CrossRef]
- Gato, I.M.B.; Da Silva Oliveira, C.E.; Oliveira, T.J.S.S.; Jalal, A.; De Almeida Moreira, V.; Giolo, V.M.; Vitória, L.S.; De Lima, B.H.; Vargas, P.F.; Filho, M.C.M.T. Nutrition and Yield of Hydroponic Arugula under Inoculation of Beneficial Microorganisms. Hortic. Environ. Biotechnol. 2023, 64, 193–208. [Google Scholar] [CrossRef]
- Moreira, V.D.A.; Oliveira, C.E.D.S.; Jalal, A.; Gato, I.M.B.; Oliveira, T.J.S.S.; Boleta, G.H.M.; Giolo, V.M.; Vitória, L.S.; Tamburi, K.V.; Filho, M.C.M.T. Inoculation with Trichoderma harzianum and Azospirillum brasilense Increases Nutrition and Yield of Hydroponic Lettuce. Arch. Microbiol. 2022, 204, 440. [Google Scholar] [CrossRef]
- Wyss, O.; Neumann, M.G.; Socolofsky, M.D. Development and Germination of the Azotobacter Cyst. J. Cell Biol. 1961, 10, 555–565. [Google Scholar] [CrossRef]
- József, K.; Éva, K.; Ilona, D. Highly Effective Rhizobacterial Soil Inoculants: Large-Scale Production of Cyst Form Cultures in Hollow Fibre Filters. J. Biotechnol. 2007, 131, S151. [Google Scholar] [CrossRef]
- Dalton, H.; Postgate, J.R. Effect of Oxygen on Growth of Azotobacter chroococcum in Batch and Continuous Cultures. J. Gen. Microbiol. 1968, 54, 463–473. [Google Scholar] [CrossRef] [PubMed]
- Sabra, W.; Zeng, A.-P.; Lünsdorf, H.; Deckwer, W.-D. Effect of Oxygen on Formation and Structure of Azotobacter vinelandii Alginate and Its Role in Protecting Nitrogenase. Appl. Environ. Microbiol. 2000, 66, 4037–4044. [Google Scholar] [CrossRef] [PubMed]
- Schlesier, J.; Rohde, M.; Gerhardt, S.; Einsle, O. A Conformational Switch Triggers Nitrogenase Protection from Oxygen Damage by Shethna Protein II (FeSII). J. Am. Chem. Soc. 2016, 138, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Rueda, D.; Valencia, G.; Soria, N.; Rueda, B.; Manjunatha, B.; Kundapur, R.; Selvanayagam, M. Effect of Azospirillum spp. and Azotobacter spp. on the Growth and Yield of Strawberry (Fragaria vesca) in Hydroponic System under Different Nitrogen Levels. J. Appl. Pharm. Sci. 2016, 6, 048–054. [Google Scholar] [CrossRef]
- Setiawati, M.R.; Afrilandha, N.; Hindersah, R.; Suryatmana, P.; Fitriatin, B.N.; Kamaluddin, N.N. The Effect of Beneficial Microorganism as Biofertilizer Application in Hydroponic-Grown Tomato. SAINS TANAH—J. Soil Sci. Agroclimatol. 2023, 20, 66. [Google Scholar] [CrossRef]
- Das, K.; Prasanna, R.; Saxena, A.K. Rhizobia: A Potential Biocontrol Agent for Soilborne Fungal Pathogens. Folia Microbiol. 2017, 62, 425–435. [Google Scholar] [CrossRef]
- Karavidas, I.; Ntatsi, G.; Ntanasi, T.; Tampakaki, A.; Giannopoulou, A.; Pantazopoulou, D.; Sabatino, L.; Iannetta, P.P.M.; Savvas, D. Hydroponic Common-Bean Performance under Reduced N-Supply Level and Rhizobia Application. Plants 2023, 12, 646. [Google Scholar] [CrossRef]
- Dawson, M.I. “Nitragin” and the Nodules of Leguminous Plants. Philos. Trans. R. Soc. Lond. Ser. B Contain. Pap. Biol. Character 1900, 192, 1–28. [Google Scholar] [CrossRef]
- Ibáñez, A.; Garrido-Chamorro, S.; Vasco-Cárdenas, M.; Barreiro, C. From Lab to Field: Biofertilizers in the 21st Century. Horticulturae 2023, 9, 1306. [Google Scholar] [CrossRef]
- Wang, D.; Yang, S.; Tang, F.; Zhu, H. Symbiosis Specificity in the Legume—Rhizobial Mutualism: Host Specificity in Root Nodule Symbiosis. Cell. Microbiol. 2012, 14, 334–342. [Google Scholar] [CrossRef]
- Davies-Barnard, T.; Friedlingstein, P. The Global Distribution of Biological Nitrogen Fixation in Terrestrial Natural Ecosystems. Glob. Biogeochem. Cycles 2020, 34, e2019GB006387. [Google Scholar] [CrossRef]
- Franche, C.; Lindström, K.; Elmerich, C. Nitrogen-Fixing Bacteria Associated with Leguminous and Non-Leguminous Plants. Plant Soil 2009, 321, 35–59. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, Y.; Yang, X.; Deng, L.; Lu, X. Enhancing Soybean Yield: The Synergy of Sulfur and Rhizobia Inoculation. Plants 2023, 12, 3911. [Google Scholar] [CrossRef] [PubMed]
- Iida, Y.; Fujiwara, K.; Someya, N.; Shinohara, M. Draft Genome Sequence of Rhizobium Sp. Strain TBD182, an Antagonist of the Plant-Pathogenic Fungus Fusarium oxysporum, Isolated from a Novel Hydroponics System Using Organic Fertilizer. Genome Announc. 2017, 5, e00007-17. [Google Scholar] [CrossRef] [PubMed]
- Pal, G.; Saxena, S.; Kumar, K.; Verma, A.; Sahu, P.K.; Pandey, A.; White, J.F.; Verma, S.K. Endophytic Burkholderia: Multifunctional Roles in Plant Growth Promotion and Stress Tolerance. Microbiol. Res. 2022, 265, 127201. [Google Scholar] [CrossRef] [PubMed]
- Kaur, C.; Selvakumar, G.; Ganeshamurthy, A.N. Burkholderia to Paraburkholderia: The Journey of a Plant-Beneficial-Environmental Bacterium. In Recent Advances in Applied Microbiology; Shukla, P., Ed.; Springer: Singapore, 2017; pp. 213–228. [Google Scholar] [CrossRef]
- Chretien, R.L.; Burrell, E.; Evans, M.R.; Lowman, S.; Mei, C. ACC (1-Aminocyclopropane-1-Carboxylic Acid) Deaminase Producing Endophytic Bacteria Improve Hydroponically Grown Lettuce in the Greenhouse during Summer Season. Sci. Hortic. 2024, 327, 112862. [Google Scholar] [CrossRef]
- Lal, S.; Chiarini, L.; Tabacchioni, S. New Insights in Plant-Associated Paenibacillus Species: Biocontrol and Plant Growth-Promoting Activity. In Bacilli and Agrobiotechnology; Islam, M.T., Rahman, M., Pandey, P., Jha, C.K., Aeron, A., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 237–279. [Google Scholar] [CrossRef]
- Wang, L.-Y.; Li, J.; Li, Q.X.; Chen, S.-F. Paenibacillus beijingensis Sp. Nov., a Nitrogen-Fixing Species Isolated from Wheat Rhizosphere Soil. Antonie Van Leeuwenhoek 2013, 104, 675–683. [Google Scholar] [CrossRef]
- Cochrane, S.A.; Vederas, J.C. Lipopeptides from Bacillus and Paenibacillus spp.: A Gold Mine of Antibiotic Candidates. Med. Res. Rev. 2016, 36, 4–31. [Google Scholar] [CrossRef]
- Lee, B.; Farag, M.A.; Park, H.B.; Kloepper, J.W.; Lee, S.H.; Ryu, C.-M. Induced Resistance by a Long-Chain Bacterial Volatile: Elicitation of Plant Systemic Defense by a C13 Volatile Produced by Paenibacillus polymyxa. PLoS ONE 2012, 7, e48744. [Google Scholar] [CrossRef]
- Vargas, P.; Bosmans, L.; Van Calenberge, B.; Van Kerckhove, S.; Lievens, B.; Rediers, H. Bacterial Community Dynamics of Tomato Hydroponic Greenhouses Infested with Hairy Root Disease. FEMS Microbiol. Ecol. 2021, 97, fiab153. [Google Scholar] [CrossRef]
- Vargas, P.; Bosmans, L.; Van Kerckhove, S.; Van Calenberge, B.; Raaijmakers, J.M.; Lievens, B.; Rediers, H. Optimizing Biocontrol Activity of Paenibacillus xylanexedens for Management of Hairy Root Disease in Tomato Grown in Hydroponic Greenhouses. Agronomy 2021, 11, 817. [Google Scholar] [CrossRef]
- E, Y.; Yuan, J.; Yang, F.; Wang, L.; Ma, J.; Li, J.; Pu, X.; Raza, W.; Huang, Q.; Shen, Q. PGPR Strain Paenibacillus polymyxa SQR-21 Potentially Benefits Watermelon Growth by Re-Shaping Root Protein Expression. AMB Express 2017, 7, 104. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.-J.; Hailemariam, S.; Sharon, A.; Mengiste, T. Pathogenic Strategies and Immune Mechanisms to Necrotrophs: Differences and Similarities to Biotrophs and Hemibiotrophs. Curr. Opin. Plant Biol. 2022, 69, 102291. [Google Scholar] [CrossRef] [PubMed]
- Arvizu-Gómez, J.L.; Hernández-Morales, A.; Campos-Guillén, J.; González-Reyes, C.; Pacheco-Aguilar, J.R. Phaseolotoxin: Environmental Conditions and Regulatory Mechanisms Involved in Its Synthesis. Microorganisms 2024, 12, 1300. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Sun, Y.; Walker, M.A.; Labavitch, J.M. Vascular Occlusions in Grapevines with Pierce’s Disease Make Disease Symptom Development Worse. Plant Physiol. 2013, 161, 1529–1541. [Google Scholar] [CrossRef]
- Jin, Y.; Zhang, W.; Cong, S.; Zhuang, Q.-G.; Gu, Y.-L.; Ma, Y.-N.; Filiatrault, M.J.; Li, J.-Z.; Wei, H.-L. Pseudomonas syringae Type III Secretion Protein HrpP Manipulates Plant Immunity To Promote Infection. Microbiol. Spectr. 2023, 11, e05148-22. [Google Scholar] [CrossRef]
- Aung, K.; Kim, P.; Li, Z.; Joe, A.; Kvitko, B.; Alfano, J.R.; He, S.Y. Pathogenic Bacteria Target Plant Plasmodesmata to Colonize and Invade Surrounding Tissues. Plant Cell 2020, 32, 595–611. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, L.; Yan, D. Plasmodesmata-Involved Battle Against Pathogens and Potential Strategies for Strengthening Hosts. Front. Plant Sci. 2021, 12, 644870. [Google Scholar] [CrossRef]
- Roussin-Léveillée, C.; Lajeunesse, G.; St-Amand, M.; Veerapen, V.P.; Silva-Martins, G.; Nomura, K.; Brassard, S.; Bolaji, A.; He, S.Y.; Moffett, P. Evolutionarily Conserved Bacterial Effectors Hijack Abscisic Acid Signaling to Induce an Aqueous Environment in the Apoplast. Cell Host Microbe 2022, 30, 489–501.e4. [Google Scholar] [CrossRef]
- Meisrimler, C.; Allan, C.; Eccersall, S.; Morris, R.J. Interior Design: How Plant Pathogens Optimize Their Living Conditions. New Phytol. 2021, 229, 2514–2524. [Google Scholar] [CrossRef]
- Nazarov, P.A.; Baleev, D.N.; Ivanova, M.I.; Sokolova, L.M.; Karakozova, M.V. Infectious Plant Diseases: Etiology, Current Status, Problems and Prospects in Plant Protection. Acta Nat. 2020, 12, 46–59. [Google Scholar] [CrossRef]
- Niks, R.E.; Marcel, T.C. Nonhost and Basal Resistance: How to Explain Specificity? New Phytol. 2009, 182, 817–828. [Google Scholar] [CrossRef] [PubMed]
- An, S.-Q.; Potnis, N.; Dow, M.; Vorhölter, F.-J.; He, Y.-Q.; Becker, A.; Teper, D.; Li, Y.; Wang, N.; Bleris, L.; et al. Mechanistic Insights into Host Adaptation, Virulence and Epidemiology of the Phytopathogen Xanthomonas. FEMS Microbiol. Rev. 2020, 44, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Thapa, S.; Babadoost, M. Effectiveness of Chemical Compounds and Biocontrol Agents for Management of Bacterial Spot of Pumpkin Caused by Xanthomonas cucurbitae. Plant Health Prog. 2016, 17, 106–113. [Google Scholar] [CrossRef]
- Vicente, J.G.; Rothwell, S.; Holub, E.B.; Studholme, D.J. Pathogenic, Phenotypic and Molecular Characterisation of Xanthomonas nasturtii Sp. Nov. and Xanthomonas floridensis Sp. Nov., New Species of Xanthomonas Associated with Watercress Production in Florida. Int. J. Syst. Evol. Microbiol. 2017, 67, 3645–3654. [Google Scholar] [CrossRef] [PubMed]
- Wasendorf, C.; Schmitz-Esser, S.; Eischeid, C.J.; Leyhe, M.J.; Nelson, E.N.; Rahic-Seggerman, F.M.; Sullivan, K.E.; Peters, N.T. Genome Analysis of Erwinia persicina Reveals Implications for Soft Rot Pathogenicity in Plants. Front. Microbiol. 2022, 13, 1001139. [Google Scholar] [CrossRef] [PubMed]
- Rojas, E.S.; Batzer, J.C.; Beattie, G.A.; Fleischer, S.J.; Shapiro, L.R.; Williams, M.A.; Bessin, R.; Bruton, B.D.; Boucher, T.J.; Jesse, L.C.H.; et al. Bacterial Wilt of Cucurbits: Resurrecting a Classic Pathosystem. Plant Dis. 2015, 99, 564–574. [Google Scholar] [CrossRef] [PubMed]
- Bosmans, L.; Álvarez-Pérez, S.; Moerkens, R.; Wittemans, L.; Van Calenberge, B.; Kerckhove, S.V.; Paeleman, A.; De Mot, R.; Rediers, H.; Lievens, B. Assessment of the Genetic and Phenotypic Diversity among Rhizogenic Agrobacterium Biovar 1 Strains Infecting Solanaceous and Cucurbit Crops. FEMS Microbiol. Ecol. 2015, 91, fiv081. [Google Scholar] [CrossRef]
- Han, I.; Park, K.M.; Lee, H.S.; Park, B.; Lee, Y.; Kim, J. First Report of Root Mat Disease in a Hydroponic Tomato Production System Caused by Rhizogenic Agrobacterium Biovar 1 in South Korea. Plant Dis. 2021, 105, 1191. [Google Scholar] [CrossRef]
- Weller, S.A.; Stead, D.E.; Young, J.P.W. Recurrent Outbreaks of Root Mat in Cucumber and Tomato Are Associated with a Monomorphic, Cucumopine, Ri-Plasmid Harboured by Various Alphaproteobacteria: Recurrent Outbreaks of Root Mat in Cucumber and Tomato. FEMS Microbiol. Lett. 2006, 258, 136–143. [Google Scholar] [CrossRef]
- Vargas, P.; Van Kerkckhove, S.; Van Calenberge, B.; Bosmans, L.; Lievens, B.; Rediers, H. First Report of Hairy Root Disease, Caused by Rhizogenic Agrobacterium Biovar 1, in Hydroponic Bell Pepper Crop in South Korea. Plant Dis. 2020, 104, 968. [Google Scholar] [CrossRef]
- Weller; Stead; O’neill; Hargreaves; McPherson. Rhizogenic Agrobacterium Biovar 1 and Cucumber Root Mat in the UK. Plant Pathol. 2000, 49, 43–50. [Google Scholar] [CrossRef]
- Vojin, T.; Snežana, M.; Aleksandar, C.; Marija, P.; Milana, T.; Dragana, A.; Jovan, T.; Angelina, S. Production of Hairy Root Cultures of Lettuce (Lactuca sativa L.). Open Life Sci. 2014, 9, 1196–1205. [Google Scholar] [CrossRef]
- Ahmed, W.; Yang, J.; Tan, Y.; Munir, S.; Liu, Q.; Zhang, J.; Ji, G.; Zhao, Z. Ralstonia solanacearum, a Deadly Pathogen: Revisiting the Bacterial Wilt Biocontrol Practices in Tobacco and Other Solanaceae. Rhizosphere 2022, 21, 100479. [Google Scholar] [CrossRef]
- Vailleau, F.; Genin, S. Ralstonia solanacearum: An Arsenal of Virulence Strategies and Prospects for Resistance. Annu. Rev. Phytopathol. 2023, 61, 25–47. [Google Scholar] [CrossRef]
- Le, T.B.; Truong, M.N.; Nguyen, B.T.; Vo, D.Q.; Phan, T.T.P. Draft Genome Sequencing Data of the Bacterial Wilt, Ralstonia pseudosolanacearum T2C-Rasto, from Cucumis Sativus, in An Giang Province, Mekong Delta—Southwest Vietnam. Data Brief 2023, 48, 109252. [Google Scholar] [CrossRef]
- Khan, P.; Bora, L.C.; Borah, P.K.; Bora, P.; Talukdar, K. Efficacy of Microbial Consortia against Bacterial Wilt Caused by Ralstonia solanacearum in Hydroponically Grown Lettuce Plant. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 3046–3055. [Google Scholar] [CrossRef]
- Rotondo, F.; Khatri, N.; Testen, A.L.; Miller, S.A. Evaluation of a Proprietary Plant Extract to Suppress Bacterial Canker and Improve Yield in Hydroponic Tomatoes. Plant Health Prog. 2023, 24, 364–368. [Google Scholar] [CrossRef]
- Jacques, M.-A.; Durand, K.; Orgeur, G.; Balidas, S.; Fricot, C.; Bonneau, S.; Quillévéré, A.; Audusseau, C.; Olivier, V.; Grimault, V.; et al. Phylogenetic Analysis and Polyphasic Characterization of Clavibacter michiganensis Strains Isolated from Tomato Seeds Reveal That Nonpathogenic Strains Are Distinct from C. michiganensis Subsp. Michiganensis. Appl. Environ. Microbiol. 2012, 78, 8388–8402. [Google Scholar] [CrossRef]
- Caruso, A.; Licciardello, G.; La Rosa, R.; Catara, V.; Bella, P. Mixed Infection of Pectobacterium carotovorum Subsp. carotovorum and P. carotovorum Subsp. Brasiliensis in Tomato Stem Rot in Italy. J. Plant Pathol. 2016, 98, 661–665. [Google Scholar] [CrossRef]
- Rosskopf, E.; Hong, J. First Report of Bacterial Stem Rot of “Heirloom” Tomatoes Caused by Pectobacterium carotovorum Subsp. Brasiliensis in Florida. Plant Dis. 2016, 100, 1233. [Google Scholar] [CrossRef]
- Gillis, A.; Santana, M.A.; Rodríguez, M.; Romay, G. First Report of Bell Pepper Soft-Rot Caused by Pectobacterium carotovorum Subsp. Brasiliense in Venezuela. Plant Dis. 2017, 101, 1671. [Google Scholar] [CrossRef]
- Meng, X.; Chai, A.; Shi, Y.; Xie, X.; Ma, Z.; Li, B. Emergence of Bacterial Soft Rot in Cucumber Caused by Pectobacterium carotovorum Subsp. Brasiliense in China. Plant Dis. 2017, 101, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Nazerian, E.; Sijam, K.; Zainal Abidin, M.A.; Vadamalai, G. First Report of Soft Rot Caused by Pectobacterium carotovorum Subsp. carotovorum on Cucumber in Malaysia. Plant Dis. 2011, 95, 1474. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, F.; Sugiura, M.; Ikeura, H.; Sato, K.; Odake, S.; Hayata, Y. Inactivation of Fusarium oxysporum f. Sp. Melonis and Pectobacterium carotovorum Subsp. carotovorum in Hydroponic Nutrient Solution by Low-Pressure Carbon Dioxide Microbubbles. Sci. Hortic. 2013, 164, 596–601. [Google Scholar] [CrossRef]
- Cho, Y.; Lee, J.H.; Park, J.; Park, K.-B.; Kim, M.; Park, S.S.; Hwang, S.; Cho, S. Use of Powdered Immunized Insects for Inhibiting Pectobacterium carotovorum Infestation and Promoting Growth in Lettuce. Eur. J. Entomol. 2024, 121, 134–145. [Google Scholar] [CrossRef]
- Cao, X.; Liu, Y.; Luo, X.; Wang, C.; Yue, L.; Elmer, W.; Dhankher, O.P.; White, J.C.; Wang, Z.; Xing, B. Mechanistic Investigation of Enhanced Bacterial Soft Rot Resistance in Lettuce (Lactuca sativa L.) with Elemental Sulfur Nanomaterials. Sci. Total Environ. 2023, 884, 163793. [Google Scholar] [CrossRef]
- Nazerian, E.; Sijam, K.; Mior Ahmad, Z.A.; Vadamalai, G. First Report of Cabbage Soft Rot Caused by Pectobacterium carotovorum Subsp. carotovorum in Malaysia. Plant Dis. 2011, 95, 491. [Google Scholar] [CrossRef]
- Jang, E.-J.; Gu, E.-H.; Hwang, B.-H.; Lee, C.; Kim, J.-K. Chitosan Stimulates Calcium Uptake and Enhances the Capability of Chinese Cabbage Plant to Resist Soft Rot Disease Caused by Pectobacterium carotovorum Ssp. carotovorum. Korean J. Hortic. Sci. Technol. 2012, 30, 137–143. [Google Scholar] [CrossRef]
- Queiroz, M.F.; Albuquerque, G.M.R.; Gama, M.A.S.; Mariano, R.L.R.; Moraes, A.J.G.; Souza, E.B.; Souza, J.B.; Da Paz, C.D.; Peixoto, A.R. First Report of Soft Rot in Kale Caused by Pectobacterium carotovorum Subsp. Brasiliensis in Brazil. Plant Dis. 2017, 101, 2144. [Google Scholar] [CrossRef]
- Alippi, A.M.; Dal Bo, E.; Ronco, L.B.; López, M.V.; López, A.C.; Aguilar, O.M. Pseudomonas Populations Causing Pith Necrosis of Tomato and Pepper in Argentina Are Highly Diverse. Plant Pathol. 2003, 52, 287–302. [Google Scholar] [CrossRef]
- Zhao, M.; Gitaitis, R.; Dutta, B. Characterization of Pseudomonas capsici Strains from Pepper and Tomato. Front. Microbiol. 2023, 14, 1267395. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, Y.E.; El Komy, M.H.; Balabel, N.M.; Hamad, Y.K.; Al-Saleh, M.A. Saline and Alkaline Soil Stress Results in Enhanced Susceptibility to and Severity in Tomato Pith Necrosis When Inoculated with Either Pseudomonas corrugata and/or P. fluorescens. J. Plant Pathol. 2020, 102, 849–856. [Google Scholar] [CrossRef]
- Ivić, D.; Novak, A.; Plavec, J.; Iličić, R.; Popović Milovanović, T. First Report of Pseudomonas mediterranea Causing Tomato Pith Necrosis in Croatia. Plant Dis. 2023, 107, 2217. [Google Scholar] [CrossRef]
- El-Fatah, B.E.S.A.; Imran, M.; Abo-Elyousr, K.A.M.; Mahmoud, A.F. Isolation of Pseudomonas syringae Pv. Tomato Strains Causing Bacterial Speck Disease of Tomato and Marker-Based Monitoring for Their Virulence. Mol. Biol. Rep. 2023, 50, 4917–4930. [Google Scholar] [CrossRef]
- Meng, X.-L.; Xie, X.-W.; Shi, Y.-X.; Chai, A.-L.; Ma, Z.-H.; Li, B.-J. Evaluation of a Loop-Mediated Isothermal Amplification Assay Based on hrpZ Gene for Rapid Detection and Identification of Pseudomonas syringae Pv. Lachrymans in Cucumber Leaves. J. Appl. Microbiol. 2017, 122, 441–449. [Google Scholar] [CrossRef]
- Cottyn, B.; Heylen, K.; Heyrman, J.; Vanhouteghem, K.; Pauwelyn, E.; Bleyaert, P.; Van Vaerenbergh, J.; Höfte, M.; De Vos, P.; Maes, M. Pseudomonas cichorii as the Causal Agent of Midrib Rot, an Emerging Disease of Greenhouse-Grown Butterhead Lettuce in Flanders. Syst. Appl. Microbiol. 2009, 32, 211–225. [Google Scholar] [CrossRef]
- Koike, S.T.; Alger, E.I.; Ramos Sepulveda, L.; Bull, C.T. First Report of Bacterial Leaf Spot Caused by Pseudomonas syringae Pv. Tomato on Kale in California. Plant Dis. 2017, 101, 504. [Google Scholar] [CrossRef]
- Timilsina, S.; Potnis, N.; Newberry, E.A.; Liyanapathiranage, P.; Iruegas-Bocardo, F.; White, F.F.; Goss, E.M.; Jones, J.B. Xanthomonas Diversity, Virulence and Plant–Pathogen Interactions. Nat. Rev. Microbiol. 2020, 18, 415–427. [Google Scholar] [CrossRef]
- Zhao, Y.; Laborda, P.; Han, S.-W.; Liu, F. Editorial: Pathogenic Mechanism and Biocontrol of Xanthomonas on Plants. Front. Cell. Infect. Microbiol. 2023, 13, 1270750. [Google Scholar] [CrossRef]
- Christiano, R.S.C.; Dalla Pria, M.; Jesus Junior, W.C.; Amorim, L.; Bergamin Filho, A. Modelling the Progress of Asiatic Citrus Canker on Tahiti Lime in Relation to Temperature and Leaf Wetness. Eur. J. Plant Pathol. 2009, 124, 1–7. [Google Scholar] [CrossRef]
- Wang, H.; Hu, J.; Lu, Y.; Zhang, M.; Qin, N.; Zhang, R.; He, Y.; Wang, D.; Chen, Y.; Zhao, C.; et al. A Quick and Efficient Hydroponic Potato Infection Method for Evaluating Potato Resistance and Ralstonia solanacearum Virulence. Plant Methods 2019, 15, 145. [Google Scholar] [CrossRef]
- Papp-Rupar, M. A Review of Erwinia pyrifoliae: The Causal Agent of a New Bacterial Disease on Strawberry. 2010. Available online: https://projectbluearchive.blob.core.windows.net/media/Default/Horticulture/Publications/Fruit%20KE%20desk%20studies%20/Erwinia%20pyrifoliae%20-%20a%20new%20pathogen%20of%20strawberry.pdf (accessed on 16 September 2024).
- Wenneker, M.; Bergsma-Vlami, M. Erwinia pyrifoliae, a New Pathogen on Strawberry in the Netherlands1. J. Berry Res. 2015, 5, 17–22. [Google Scholar] [CrossRef]
- Ham, H.; Kim, K.; Yang, S.; Kong, H.G.; Lee, M.-H.; Jin, Y.J.; Park, D.S. Discrimination and Detection of Erwinia amylovora and Erwinia pyrifoliae with a Single Primer Set. Plant Pathol. J. 2022, 38, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Öztürk, M.; Soylu, S. A New Disease of Strawberry, Bacterial Blight Caused by Erwinia amylovora in Turkey. J. Plant Pathol. 2022, 104, 269–280. [Google Scholar] [CrossRef]
- Koester, K.; Pitts, M. Greenhouse Rasberry Production Guide. 2003. Available online: https://fruit.webhosting.cals.wisc.edu/wp-content/uploads/sites/36/2016/03/Greenhouse-Raspberry-Production-Guide.pdf (accessed on 16 September 2024).
- Bogs, J.; Bruchmüller, I.; Erbar, C.; Geider, K. Colonization of Host Plants by the Fire Blight Pathogen Erwinia amylovora Marked with Genes for Bioluminescence and Fluorescence. Phytopathology 1998, 88, 416–421. [Google Scholar] [CrossRef]
- Khokhani, D.; Zhang, C.; Li, Y.; Wang, Q.; Zeng, Q.; Yamazaki, A.; Hutchins, W.; Zhou, S.-S.; Chen, X.; Yang, C.-H. Discovery of Plant Phenolic Compounds That Act as Type III Secretion System Inhibitors or Inducers of the Fire Blight Pathogen, Erwinia amylovora. Appl. Environ. Microbiol. 2013, 79, 5424–5436. [Google Scholar] [CrossRef]
- Vanneste, J. Erwinia amylovora (Fireblight). CABI Compendium 2022, 21908. [Google Scholar] [CrossRef]
- Park, J.; Lee, G.M.; Kim, D.; Park, D.H.; Oh, C.-S. Characterization of the Lytic Bacteriophage phiEaP-8 Effective against Both Erwinia amylovora and Erwinia pyrifoliae Causing Severe Diseases in Apple and Pear. Plant Pathol. J. 2018, 34, 445–450. [Google Scholar] [CrossRef]
- Gordon, J.E.; Christie, P.J. The Agrobacterium Ti Plasmids. Microbiol. Spectr. 2014, 2, 295–313. [Google Scholar] [CrossRef]
- Hooykaas, M.J.G.; Hooykaas, P.J.J. Complete Genomic Sequence and Phylogenomics Analysis of Agrobacterium Strain AB2/73: A New Rhizobium Species with a Unique Mega-Ti Plasmid. BMC Microbiol. 2021, 21, 295. [Google Scholar] [CrossRef] [PubMed]
- Kuzmanović, N.; Wolf, J.; Will, S.E.; Smalla, K.; diCenzo, G.C.; Neumann-Schaal, M. Diversity and Evolutionary History of Ti Plasmids of “Tumorigenes” Clade of Rhizobium spp. and Their Differentiation from Other Ti and Ri Plasmids. Genome Biol. Evol. 2023, 15, evad133. [Google Scholar] [CrossRef] [PubMed]
- Bosmans, L.; Moerkens, R.; Wittemans, L.; De Mot, R.; Rediers, H.; Lievens, B. Rhizogenic Agrobacteria in Hydroponic Crops: Epidemics, Diagnostics and Control. Plant Pathol. 2017, 66, 1043–1053. [Google Scholar] [CrossRef]
- Fortuna, K.; Holtappels, D.; Wagemans, J.; Lavigne, R.; Olaerts, A.; Vaerenbergh, J.V.; Peeters, K.; Meensel, J.V. Dossier: Bestrijding bacterieziekten met faagbiocontrole. Boer & Tuinder 2021, 26–34. [Google Scholar]
- Bosmans, L.; Van Calenberge, B.; Paeleman, A.; Moerkens, R.; Wittemans, L.; Van Kerckhove, S.; De Mot, R.; Lievens, B.; Rediers, H. Efficacy of Hydrogen Peroxide Treatment for Control of Hairy Root Disease Caused by Rhizogenic Agrobacteria. J. Appl. Microbiol. 2016, 121, 519–527. [Google Scholar] [CrossRef]
- Fortuna, K.J.; Holtappels, D.; Venneman, J.; Baeyen, S.; Vallino, M.; Verwilt, P.; Rediers, H.; De Coninck, B.; Maes, M.; Van Vaerenbergh, J.; et al. Back to the Roots: Agrobacterium-Specific Phages Show Potential to Disinfect Nutrient Solution from Hydroponic Greenhouses. Appl. Environ. Microbiol. 2023, 89, e00215-23. [Google Scholar] [CrossRef]
- Bosmans, L.; De Bruijn, I.; De Mot, R.; Rediers, H.; Lievens, B. Agar Composition Affects In Vitro Screening of Biocontrol Activity of Antagonistic Microorganisms. J. Microbiol. Methods 2016, 127, 7–9. [Google Scholar] [CrossRef]
- Kusnierek, K.; Heltoft, P.; Møllerhagen, P.J.; Woznicki, T. Hydroponic Potato Production in Wood Fiber for Food Security. Npj Sci. Food 2023, 7, 24. [Google Scholar] [CrossRef]
- Landry, D.; González-Fuente, M.; Deslandes, L.; Peeters, N. The Large, Diverse, and Robust Arsenal of Ralstonia solanacearum Type III Effectors and Their in Planta Functions. Mol. Plant Pathol. 2020, 21, 1377–1388. [Google Scholar] [CrossRef]
- Peeters, N.; Guidot, A.; Vailleau, F.; Valls, M. Ralstonia solanacearum, a Widespread Bacterial Plant Pathogen in the Post-genomic Era. Mol. Plant Pathol. 2013, 14, 651–662. [Google Scholar] [CrossRef]
- Sedighian, N.; Taghavi, S.M.; Hamzehzarghani, H.; Van Der Wolf, J.M.; Wicker, E.; Osdaghi, E. Potato-Infecting Ralstonia solanacearum Strains in Iran Expand Knowledge on the Global Diversity of Brown Rot Ecotype of the Pathogen. Phytopathology® 2020, 110, 1647–1656. [Google Scholar] [CrossRef] [PubMed]
- Yuliar; Nion, Y.A.; Toyota, K. Recent Trends in Control Methods for Bacterial Wilt Diseases Caused by Ralstonia solanacearum. Microbes Environ. 2015, 30, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Luo, W.; Cheng, S.; Zhang, H.; Zong, J.; Zhang, Z. Ralstonia solanacearum—A Soil Borne Hidden Enemy of Plants: Research Development in Management Strategies, Their Action Mechanism and Challenges. Front. Plant Sci. 2023, 14, 1141902. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Wang, L.; Zhu, K.; Hou, S.; Chen, L.; Mi, D.; Gui, Y.; Qi, Y.; Jiang, C.; Guo, J.-H. Plant Root Exudates Are Involved in Bacillus Cereus AR156 Mediated Biocontrol Against Ralstonia solanacearum. Front. Microbiol. 2019, 10, 98. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.A.A.; Najeeb, S.; Mao, Z.; Ling, J.; Yang, Y.; Li, Y.; Xie, B. Bioactive Secondary Metabolites from Trichoderma spp. against Phytopathogenic Bacteria and Root-Knot Nematode. Microorganisms 2020, 8, 401. [Google Scholar] [CrossRef]
- Álvarez, B.; López, M.M.; Biosca, E.G. Biocontrol of the Major Plant Pathogen Ralstonia solanacearum in Irrigation Water and Host Plants by Novel Waterborne Lytic Bacteriophages. Front. Microbiol. 2019, 10, 2813. [Google Scholar] [CrossRef]
- EFSA Panel on Plant Health (EFSA PLH Panel); Bragard, C.; Dehnen-Schmutz, K.; Di Serio, F.; Gonthier, P.; Jaques Miret, J.A.; Justesen, A.F.; MacLeod, A.; Magnusson, C.S.; Milonas, P.; et al. Pest Categorisation of Clavibacter Sepedonicus. EFSA J. 2019, 17, e05670. [Google Scholar] [CrossRef]
- Huang, R.; Tu, J.C. Effects of Nutrient Solution pH on the Survival and Transmission of Clavibacter michiganensis Ssp. Michiganensis in Hydroponically Grown Tomatoes. Plant Pathol. 2001, 50, 503–508. [Google Scholar] [CrossRef]
- Xu, X.; Miller, S.A.; Baysal-Gurel, F.; Gartemann, K.-H.; Eichenlaub, R.; Rajashekara, G. Bioluminescence Imaging of Clavibacter michiganensis Subsp. Michiganensis Infection of Tomato Seeds and Plants. Appl. Environ. Microbiol. 2010, 76, 3978–3988. [Google Scholar] [CrossRef]
- Eichenlaub, R.; Gartemann, K.-H. The Clavibacter michiganensis Subspecies: Molecular Investigation of Gram-Positive Bacterial Plant Pathogens. Annu. Rev. Phytopathol. 2011, 49, 445–464. [Google Scholar] [CrossRef]
- Chalupowicz, L.; Barash, I.; Reuven, M.; Dror, O.; Sharabani, G.; Gartemann, K.; Eichenlaub, R.; Sessa, G.; Manulis-Sasson, S. Differential Contribution of Clavibacter michiganensis Ssp. Michiganensis Virulence Factors to Systemic and Local Infection in Tomato. Mol. Plant Pathol. 2017, 18, 336–346. [Google Scholar] [CrossRef] [PubMed]
- Hauben, L.; Moore, E.R.B.; Vauterin, L.; Steenackers, M.; Mergaert, J.; Verdonck, L.; Swings, J. Phylogenetic Position of Phytopathogens within the Enterobacteriaceae. Syst. Appl. Microbiol. 1998, 21, 384–397. [Google Scholar] [CrossRef] [PubMed]
- Charkowski, A.O. The Changing Face of Bacterial Soft-Rot Diseases. Annu. Rev. Phytopathol. 2018, 56, 269–288. [Google Scholar] [CrossRef] [PubMed]
- Davidsson, P.R.; Kariola, T.; Niemi, O.; Palva, E.T. Pathogenicity of and Plant Immunity to Soft Rot Pectobacteria. Front. Plant Sci. 2013, 4, 191. [Google Scholar] [CrossRef]
- Charkowski, A.; Blanco, C.; Condemine, G.; Expert, D.; Franza, T.; Hayes, C.; Hugouvieux-Cotte-Pattat, N.; Solanilla, E.L.; Low, D.; Moleleki, L.; et al. The Role of Secretion Systems and Small Molecules in Soft-Rot Enterobacteriaceae Pathogenicity. Annu. Rev. Phytopathol. 2012, 50, 425–449. [Google Scholar] [CrossRef]
- Palva, T.K. Induction of Plant Defense Response by Exoenzymes of Erwinia carotovora Subsp. Carotovora. Mol. Plant. Microbe Interact. 1993, 6, 190. [Google Scholar] [CrossRef]
- Liu, H.; Coulthurst, S.J.; Pritchard, L.; Hedley, P.E.; Ravensdale, M.; Humphris, S.; Burr, T.; Takle, G.; Brurberg, M.-B.; Birch, P.R.J.; et al. Quorum Sensing Coordinates Brute Force and Stealth Modes of Infection in the Plant Pathogen Pectobacterium Atrosepticum. PLoS Pathog. 2008, 4, e1000093. [Google Scholar] [CrossRef]
- Golkhandan, E.; Kamaruzaman, S.; Sariah, M.; Abidin, M.A.Z.; Nazerian, E.; Yassoralipour, A. First Report of Soft Rot Disease Caused by Pectobacterium wasabiae on Sweet Potato, Tomato, and Eggplant in Malaysia. Plant Dis. 2013, 97, 685. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, Q. Efficacy of Ozonated Water Against Erwinia carotovora Subsp. Carotovora in Brassica campestris Ssp. Chinensis. Ozone Sci. Eng. 2017, 39, 127–136. [Google Scholar] [CrossRef]
- Song, G.C.; Im, H.; Jung, J.; Lee, S.; Jung, M.; Rhee, S.; Ryu, C. Plant Growth-promoting Archaea Trigger Induced Systemic Resistance in arabidopsis thaliana against Pectobacterium carotovorum and Pseudomonas syringae. Environ. Microbiol. 2019, 21, 940–948. [Google Scholar] [CrossRef]
- Liu, F.; Zhao, Q.; Jia, Z.; Zhang, S.; Wang, J.; Song, S.; Jia, Y. N-3-Oxo-Octanoyl Homoserine Lactone Primes Plant Resistance Against Necrotrophic Pathogen Pectobacterium carotovorum by Coordinating Jasmonic Acid and Auxin-Signaling Pathways. Front. Plant Sci. 2022, 13, 886268. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, P.-Y.; Cheng, C.-P.; Koh, K.W.; Chan, M.-T. The Arabidopsis Defensin Gene, AtPDF1.1, Mediates Defence against Pectobacterium carotovorum Subsp. carotovorum via an Iron-Withholding Defence System. Sci. Rep. 2017, 7, 9175. [Google Scholar] [CrossRef] [PubMed]
- Höfte, M.; De Vos, P. Plant Pathogenic Pseudomonas Species. In Plant-Associated Bacteria; Gnanamanickam, S.S., Ed.; Springer: Dordrecht, The Netherlands, 2007; pp. 507–533. [Google Scholar] [CrossRef]
- Sonika, S.; Singh, S.; Mishra, S.; Verma, S. Toxin-Antitoxin Systems in Bacterial Pathogenesis. Heliyon 2023, 9, e14220. [Google Scholar] [CrossRef] [PubMed]
- Eren, A.M.; Esen, Ö.C.; Quince, C.; Vineis, J.H.; Morrison, H.G.; Sogin, M.L.; Delmont, T.O. Anvi’o: An Advanced Analysis and Visualization Platform for ‘omics Data. PeerJ 2015, 3, e1319. [Google Scholar] [CrossRef] [PubMed]
- Bender, C.L.; Alarcón-Chaidez, F.; Gross, D.C. Pseudomonas syringae Phytotoxins: Mode of Action, Regulation, and Biosynthesis by Peptide and Polyketide Synthetases. Microbiol. Mol. Biol. Rev. 1999, 63, 266–292. [Google Scholar] [CrossRef]
- Hutchison, M.L. Role of Biosurfactant and Ion Channel-Forming Activities of Syringomycin tranransmembrane Ion Flux: A Model for the Mechanism of Action in the Plant-Pathogen Interaction. Mol. Plant. Microbe Interact. 1995, 8, 610. [Google Scholar] [CrossRef]
- Glickmann, E.; Gardan, L.; Jacquet, S.; Hussain, S.; Elasri, M.; Petit, A.; Dessaux, Y. Auxin Production Is a Common Feature of Most Pathovars of Pseudomonas syringae. Mol. Plant-Microbe Interact. 1998, 11, 156–162. [Google Scholar] [CrossRef]
- Liao, C.H. Analysis of Pectate Lyases Produced by Soft Rot Bacteria Associated with Spoilage of Vegetables. Appl. Environ. Microbiol. 1989, 55, 1677–1683. [Google Scholar] [CrossRef]
- Lamichhane, J.R.; Messéan, A.; Morris, C.E. Insights into Epidemiology and Control of Diseases of Annual Plants Caused by the Pseudomonas syringae Species Complex. J. Gen. Plant Pathol. 2015, 81, 331–350. [Google Scholar] [CrossRef]
- McLeod, A.; Masimba, T.; Jensen, T.; Serfontein, K.; Coertze, S. Evaluating Spray Programs for Managing Copper Resistant Pseudomonas syringae Pv. Tomato Populations on Tomato in the Limpopo Region of South Africa. Crop Prot. 2017, 102, 32–42. [Google Scholar] [CrossRef]
- Trueman, C.L.; Goodwin, P.H. Effects of Para-Aminobenzoic Acid on Bacterial Speck Symptom Development and Pseudomonas syringae Pv. Tomato Populations in Tomato Leaves. Eur. J. Plant Pathol. 2021, 160, 717–730. [Google Scholar] [CrossRef]
- Elsharkawy, M.; Derbalah, A.; Hamza, A.; El-Shaer, A. Zinc Oxide Nanostructures as a Control Strategy of Bacterial Speck of Tomato Caused by Pseudomonas syringae in Egypt. Environ. Sci. Pollut. Res. 2020, 27, 19049–19057. [Google Scholar] [CrossRef] [PubMed]
- Kirli, M.M.; Horuz, S.; Aysan, Y.; Topcu, S. Management of Bacterial Speck of Tomato in Greenhouses under Four Individual Polythene Glazing Materials. Acta Hortic. 2018, 1207, 163–166. [Google Scholar] [CrossRef]
- Bais, H.P.; Fall, R.; Vivanco, J.M. Biocontrol of Bacillus subtilis against Infection of Arabidopsis Roots by Pseudomonas syringae Is Facilitated by Biofilm Formation and Surfactin Production. Plant Physiol. 2004, 134, 307–319. [Google Scholar] [CrossRef] [PubMed]
Genus | ACC Deaminase | Nitrogen Fixation | Siderophores | Phyto- Hormone Production | Biocontrol | Nutrient Solubilization |
---|---|---|---|---|---|---|
Pseudomonas | ✓ [32] | ✓ [32] | ✓ [32,33] | ✓ [34] | ✓ [35,36,37,38] | ✓ [32] |
Bacillus | ✓ [39,40] | ✓ [41] | ✓ [42,43] | ✓ [43,44] | ✓ [45] | ✓ [43] |
Azospirillum | ✓ [46] | ✓ [47] | ✓ [48] | ✓ [49] | ✓ [50] | ✓ [51,52] |
Azotobacter | ✓ [53] | ✓ [53] | ✓ [54] | ✓ [55] | ✓ [54] | |
Rhizobium | ✓ [56] | ✓ [57] | ✓ [58] | ✓ [57] | ✓ [58] | |
Paenibacillus | ✓ [59] | ✓ [60] | ✓ [59] | ✓ [61] | ✓ [61] | |
Paraburkholderia | ✓ [62] | ✓ [63] | ✓ [63] | ✓ [64] | ✓ [63] | ✓ [63] |
Genus | Tomato | Pepper | Cucumber | Leafy Vegetables |
---|---|---|---|---|
Xanthomonas | ✓ [150] | ✓ [150] | ✓ [151] | ✓ [150,152] |
Erwinia | ✓ [153,154] | |||
Agrobacterium | ✓ [137,138,155,156,157] | ✓ [158] | ✓ [155,157,159] | ✓ [160] |
Ralstonia | ✓ [161,162] | ✓ [161,162] | ✓ [163] | ✓ [164] |
Clavibacter | ✓ [165] | ✓ [166] | ||
Pectobacterium | ✓ [167,168] | ✓ [169] | ✓ [170,171] | ✓ [172,173,174,175,176,177] |
Pseudomonas | ✓ [178,179,180,181,182] | ✓ [178,179,180] | ✓ [183] | ✓ [184,185] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thomas, B.O.; Lechner, S.L.; Ross, H.C.; Joris, B.R.; Glick, B.R.; Stegelmeier, A.A. Friends and Foes: Bacteria of the Hydroponic Plant Microbiome. Plants 2024, 13, 3069. https://doi.org/10.3390/plants13213069
Thomas BO, Lechner SL, Ross HC, Joris BR, Glick BR, Stegelmeier AA. Friends and Foes: Bacteria of the Hydroponic Plant Microbiome. Plants. 2024; 13(21):3069. https://doi.org/10.3390/plants13213069
Chicago/Turabian StyleThomas, Brianna O., Shelby L. Lechner, Hannah C. Ross, Benjamin R. Joris, Bernard R. Glick, and Ashley A. Stegelmeier. 2024. "Friends and Foes: Bacteria of the Hydroponic Plant Microbiome" Plants 13, no. 21: 3069. https://doi.org/10.3390/plants13213069
APA StyleThomas, B. O., Lechner, S. L., Ross, H. C., Joris, B. R., Glick, B. R., & Stegelmeier, A. A. (2024). Friends and Foes: Bacteria of the Hydroponic Plant Microbiome. Plants, 13(21), 3069. https://doi.org/10.3390/plants13213069