Ecophysiology of Antarctic Vascular Plants: An Update on the Extreme Environment Resistance Mechanisms and Their Importance in Facing Climate Change
Abstract
:1. Introduction
2. Ecophysiological Adaptations of Antarctic Vascular Plants
2.1. Freezing Resistance
2.2. Photosynthesis
2.3. Respiration
2.4. Photoprotective Mechanisms
3. How Unique Are the Antarctic Plants in the Antarctic Environments? What Is Known about the Performance of C. quitensis and D. antarctica at Different Locations?
4. Consequences of Warming on the Ecophysiology of Antarctic Vascular Plants
5. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Skottsberg, C. Antarctic flowering plants. Bot. Tidsskr. 1954, 51, 330–338. [Google Scholar]
- Alberdi, M.; Bravo, L.A.; Gutiérrez, A.; Gidekel, M.; Corcuera, L.J. Ecophysiology of Antarctic vascular plants. Physiol. Plant. 2002, 115, 479–486. [Google Scholar] [CrossRef]
- Bravo, L.A.; Bascuñán-Godoy, L.; Pérez-Torres, E.; Corcuera, L.J. Cold hardiness in Antarctic vascular plants. In Plant Cold Hardiness: From the Laboratory to the Field, 1st ed.; Gusta, L., Wisniewski, M., Tamino, K., Eds.; CAB International: Wallingford, UK, 2009; pp. 198–213. [Google Scholar]
- Parnikoza, I.; Kozeretska, I.; Kunakh, V. Vascular plants of the maritime Antarctic: Origin and adaptation. Am. J. Plant Sci. 2011, 2, 381–395. [Google Scholar] [CrossRef]
- Cavieres, L.A.; Sáez, P.; Sanhueza, C.; Sierra-Almeida, A.; Rabert, C.; Corcuera, L.J.; Alberdi, M.; Bravo, L.A. Ecophysiological traits of Antarctic vascular plants: Their importance in the responses to climate change. Plant Ecol. 2016, 217, 343–358. [Google Scholar] [CrossRef]
- Smith, R.I. The enigma of Colobanthus quitensis and Deschampsia antarctica in Antarctica. In Antarctic Biology in a Global Context; Huiskes, A., Gieskes, W., Eds.; Backhuys Publishers: Leiden, The Netherlands, 2003; pp. 234–239. [Google Scholar]
- Sáez, P.L.; Bravo, L.A.; Cavieres, L.A.; Vallejos, V.; Sanhueza, C.; Galmés, J. Photosynthetic limitations in two Antarctic vascular plants: Importance of leaf anatomical traits and Rubisco kinetic parameters. J. Exp. Bot. 2017, 68, 2871–2883. [Google Scholar] [CrossRef]
- Sáez, P.; Vallejos, V.; Sancho-Knapik, D.; Cavieres, L.; Ramírez, C.; Bravo, R.L.; Peguero-Pina, J.; Gil-Pelegrin, E.; Galmés, J. Leaf hydraulic properties of Antarctic vascular plants: Effects of growth temperature and its coordination with photosynthesis. J. Exp. Bot. 2023; submitted. [Google Scholar]
- Moore, D.M. Studies in Colobanthus quitensis (Kunth) Bartl. and Deschampsia antarctica Desv: Taxonomy, Distribution and Relationships. II. Br. Antarc. Surv. Bull. 1970, 23, 63–80. [Google Scholar]
- Turner, J.; Lu, H.; White, I.; King, J.C.; Phillips, T.; Hosking, J.S.; Bracegirdle, T.J.; Marshall, G.J.; Mulvaney, R.; Deb, P. Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature 2016, 535, 411–415. [Google Scholar] [CrossRef]
- Jones, M.E.; Bromwich, D.H.; Nicolas, J.P.; Carrasco, J.; Plavcová, E.; Zou, X.; Wang, S.H. Sixty years of widespread warming in the southern middle and high latitudes (1957–2016). J. Clim. 2019, 32, 6875–6898. [Google Scholar] [CrossRef]
- Convey, P.; Chown, S.L.; Clarke, A.; Barnes, D.K.; Bokhorst, S.; Cummings, V.; Ducklow, H.W.; Frati, F.; Allan Green, T.G.; Gordon, S.; et al. The spatial structure of Antarctic biodiversity. Ecol. Monogr. 2014, 84, 203–244. [Google Scholar] [CrossRef]
- Cannone, N.; Guglielmin, M.; Convey, P.; Worland, M.R.; Favero-Longo, S.E. Vascular plant changes in extreme environments: Effects of multiple drivers. Clim. Change. 2016, 134, 651–665. [Google Scholar] [CrossRef]
- Cannone, N.; Malfasi, F.; Favero-Longo, S.E.; Convey, P.; Guglielmin, M. Acceleration of climate warming and plant dynamics in Antarctica. Curr. Biol. 2022, 32, 1599–1606. [Google Scholar] [CrossRef]
- Sáez, P.; Cavieres, L.A.; Sanhueza, C.; Bravo, L.A. Plantas vasculares antárticas: Su ecofisiología en respuesta al clima antártico y posibles implicancias del cambio climático. In El Cambio Climático y la Biología Funcional de los Organismos; Ediciones UC: Santiago de Chile, Chile, 2019; Capítulo 7. [Google Scholar]
- Day, T.A.; Ruhland, C.T.; Strauss, S.L.; Park, H.; Krieg, M.L.; Krna, M.A.; Bryant, D.M. Response of plants and the dominant microarthropod, Cryptopygus antarcticus, to warming and contrasting precipitation regimes in Antarctic tundra. Glob. Chang. Biol. 2009, 15, 1640–1651. [Google Scholar] [CrossRef]
- Sáez, P.L.; Cavieres, L.A.; Galmés, J.; Gil-Pelegrín, E.; Peguero-Pina, J.J.; Sancho-Knapik, D.; Vivas, M.; Sanhueza, C.; Ramírez, C.F.; Rivera, B.K.; et al. In situ warming in the Antarctic: Effects on growth and photosynthesis in Antarctic vascular plants. New Phytol. 2018, 218, 1406–1418. [Google Scholar] [CrossRef]
- Sierra-Almeida, A.; Cavieres, L.A.; Bravo, L.A. Warmer Temperatures Affect the in situ Freezing Resistance of the Antarctic Vascular Plants. Front. Plant Sci. 2018, 9, 1456. [Google Scholar] [CrossRef]
- Gianoli, E.; Inostroza, P.; Zúñiga-Feest, A.; Reyes-Díaz, M.; Cavieres, L.A.; Bravo, L.A.; Corcuera, L.J. Ecotypic differentiation in morphology and cold resistance in populations of Colobanthus quitensis (Caryophyllaceae) from the Andes of central Chile and the maritime Antarctic. Arct. Antarct. Alp. Res. 2004, 36, 484–489. [Google Scholar] [CrossRef]
- Chew, O.; Lelean, S.; John, U.P.; Spangenberg, G.C. Cold acclimation induces rapid and dynamic changes in freeze tolerance mechanisms in the cryophile Deschampsia antarctica E. Desv. Plant Cell Environ. 2012, 35, 829–837. [Google Scholar] [CrossRef]
- Bravo, L.A.; Ulloa, N.; Zuñiga, G.E.; Casanova, A.; Corcuera, L.J.; Alberdi, M. Cold resistance in Antarctic angiosperms. Physiol. Plant. 2001, 111, 55–65. [Google Scholar] [CrossRef]
- Reyes-Bahamonde, C. Consecuencias del Aumento de la Temperatura y la Sequía en la Resistencia al Congelamiento de Deschampsia antarctica Desv. Poaceae) and Colobanthus quitensis (Kunth.) Bartl. (Caryophyllaceae). Undergraduate Thesis, Universidad de Concepción, Concepción, Chile, 2013. [Google Scholar]
- López, D.; Sanhueza, C.; Bravo, L.A. How Does Diurnal and Nocturnal Warming Affect the Freezing Resistance of Antarctic Vascular Plants? Plants 2023, 12, 806. [Google Scholar] [CrossRef] [PubMed]
- Bravo, L.A.; Griffith, M. Characterization of antifreeze activity in Antarctic plants. J. Exp. Bot. 2005, 56, 1189–1196. [Google Scholar] [CrossRef] [PubMed]
- Olave-Concha, N.; Bravo, L.A.; Ruiz-Lara, S.; Corcuera, L.J. Differential accumulation of dehydrin-like proteins by abiotic stresses in Deschampsia antarctica Desv. Polar Biol. 2005, 28, 506–513. [Google Scholar] [CrossRef]
- Doucet, C.J.; Byass, L.; Elias, L.; Worrall, D.; Smallwood, M.; Bowles, D.J. Distribution and characterization of recrystallization inhibitor activity in plant and lichen species from the UK and maritime Antarctic. Cryobiology 2000, 40, 218–227. [Google Scholar] [CrossRef]
- Bredow, M.; Walker, V.K. Ice-binding proteins in plants. Front. Plant Sci. 2017, 8, 2153. [Google Scholar] [CrossRef] [PubMed]
- Zúñiga, G.E.; Alberdi, M.; Corcuera, L.J. Non structural carbohydrates in Deschampsia antarctica Desv. from South Shetland Islands, maritime Antarctic. Environ. Exp. Bot. 1996, 36, 396–399. [Google Scholar] [CrossRef]
- Piotrowicz-Cieslak, A.I.; Gielwanowska, I.; Bochenek, A.; Loro, P.; Górecki, R.J. Carbohydrates in Colobanthus quitensis and Deschampsia antarctica. Soc. Bot. Pol. 2005, 74, 209–217. [Google Scholar] [CrossRef]
- Zuñiga-Feest, A.; Inostroza, P.; Vega, M.; Bravo, L.A.; Corcuera, L.J. Sugars and enzyme activity in the grass Deschampsia antarctica. Antarct. Sci. 2003, 15, 483–491. [Google Scholar] [CrossRef]
- Zúñiga-Feest, A.; Bascuñán-Godoy, L.; Reyes-Diaz, M.; Bravo, L.A.; Corcuera, L.J. Is survival after ice encasement related with sugar distribution in organs of the Antarctic plants Deschampsia antarctica Desv. (Poaceae) and Colobanthus quitensis (Kunth) Bartl.(Caryophyllaceae)? Polar Biol. 2009, 32, 583–591. [Google Scholar] [CrossRef]
- Zuñiga-Feest, A.; Ort, D.R.; Gutierrez, A.; Gidekel, M.; Bravo, L.A.; Corcuera, L.J. Light regulation of sucrose-phosphate synthase activity in the freezing-tolerant grass Deschampsia antarctica. Photosynth. Res. 2005, 83, 75–86. [Google Scholar] [CrossRef]
- Bascuñan-Godoy, L.; Uribe, E.; Zuñiga-Feest, A.; Corcuera, L.J.; Bravo, L.A. Low temperature regulates sucrose-phosphate synthase activity in Colobanthus quitensis (Kunth) Bartl. by decreasing its sensitivity to Pi and increased activation by glucose-6-phosphate. Polar Biol. 2006, 29, 1011–1017. [Google Scholar] [CrossRef]
- Barrero-Gil, J.; Salinas, J. Gene Regulatory Networks Mediating Cold Acclimation: The CBF Pathway. In Survival Strategies in Extreme Cold and Desiccation. Advances in Experimental Medicine and Biology, 1st ed.; Iwaya-Inoue, M., Sakurai, M., Eds.; Springer: Singapore, 2018; Volume 108, pp. 3–22. [Google Scholar]
- Fowler, S.; Thomashow, M.F. Arabidopsis Transcriptome Profiling Indicates That Multiple Regulatory Pathways Are Activated during Cold Acclimation in Addition to the CBF Cold Response Pathway. Plant Cell 2002, 14, 1675–1690. [Google Scholar] [CrossRef]
- Campoli, C.; Matus-Cádiz, M.A.; Pozniak, C.J.; Cattivelli, L.; Fowler, D.B. Comparative expression of Cbf genes in the Triticeae under different acclimation induction temperatures. Mol. Genet. Genom. 2009, 282, 141–152. [Google Scholar] [CrossRef]
- Jia, Y.; Ding, Y.; Shi, Y.; Zhang, X.; Gong, Z.; Yang, S. The cbfs triple mutants reveal the essential functions of CBFs in cold acclimation and allow the definition of CBF regulons in Arabidopsis. New Phytol. 2016, 212, 345–353. [Google Scholar] [CrossRef] [PubMed]
- López, D.; Larama, G.; Sáez, P.L.; Bravo, L.A. Transcriptome Analysis of Diurnal and Nocturnal-Warmed Plants, the Molecular Mechanism Underlying Cold Deacclimation Response in Deschampsia antarctica. Int. J. Mol. Sci. 2023, 24, 11211. [Google Scholar] [CrossRef]
- Clemente-Moreno, M.J.; Omranian, N.; Sáez, P.; Figueroa, C.M.; Del-Saz, N.; Elso, M.; Poblete, L.; Orf, I.; Cuadros-Inostroza, A.; Cavieres, L.; et al. Cytochrome respiration pathway and sulphur metabolism sustain stress tolerance to low temperature in the Antarctic species Colobanthus quitensis. New Phytol. 2020, 225, 754–768. [Google Scholar] [CrossRef]
- Clemente-Moreno, M.J.; Omranian, N.; Sáez, P.L.; Figueroa, C.M.; Del-Saz, N.; Elso, M.; Poblete, L.; Orf, I.; Cuadros-Inostroza, A.; Cavieres, L.A.; et al. Low-temperature tolerance of the Antarctic species Deschampsia antarctica: A complex metabolic response associated with nutrient remobilization. Plant Cell Environ. 2020, 43, 1376–1393. [Google Scholar] [CrossRef] [PubMed]
- Xiong, F.S.; Ruhland, C.T.; Day, T.A. Photosynthetic temperature response of the Antarctic vascular plants Colobanthus quitensis and Deschampsia antarctica. Physiol. Plant. 1999, 106, 276–286. [Google Scholar] [CrossRef]
- Pérez-Torres, E.; Bascuñán, L.; Sierra, A.; Bravo, L.A.; Corcuera, L.J. Robustness of activity of Calvin cycle enzymes after high light and low temperature conditions in Antarctic vascular plants. Polar Biol. 2006, 29, 909–916. [Google Scholar] [CrossRef]
- Sáez, P.L.; Galmés, J.; Ramírez, C.F.; Poblete, L.; Rivera, B.K.; Cavieres, L.A.; Clemente-Moreno, M.J.; Flexas, J.; Bravo, L.A. Mesophyll conductance to CO2 is the most significant limitation to photosynthesis at different temperatures and water availabilities in Antarctic vascular species. Environ. Exp. Bot. 2018, 156, 279–287. [Google Scholar] [CrossRef]
- Gago, J.; Nadal, M.; José, M.; Figueroa, C.M.; Medeiros, D.B.; Cavieres, L.A.; Gulías, J.; Fernie, A.R.; Flexas, J.; Bravo, L.A. Nutrient availability regulates Deschampsia antarctica photosynthetic and stress tolerance performance in Antarctica. J. Exp. Bot. 2023, 74, 2620–2637. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Espinoza, O.; González-Ramírez, D.; Bresta, P.; Karabourniotis, G.; Bravo, L.A. Decomposition of Calcium Oxalate Crystals in Colobanthus quitensis under CO2 Limiting Conditions. Plants 2020, 9, 1307. [Google Scholar] [CrossRef]
- Gonzalez-Meler, M.A.; Taneva, L.; Trueman, R.J. Plant Respiration and Elevated Atmospheric CO2 Concentration: Cellular Responses and Global Significance. Ann. Bot. 2004, 94, 647–656. [Google Scholar] [CrossRef]
- O'Leary, B.M.; Asao, S.; Millar, A.H.; Atkin, O.K. Core principles which explain variation in respiration across biological scales. New Phytol. 2018, 222, 670–686. [Google Scholar] [CrossRef] [PubMed]
- Amthor, J.S. The McCree–de Wit–Penning de Vries–Thornley Respiration Paradigms: 30 Years Later. Ann. Bot. 2000, 86, 1–20. [Google Scholar] [CrossRef]
- Cannell, M.; Thornley, J. Modelling the Components of Plant Respiration: Some Guiding Principles. Ann. Bot. 2000, 85, 45–54. [Google Scholar] [CrossRef]
- Padmasree, K.; Padmavathi, L.; Raghavendra, A.S. Essentiality of mitochondrial oxidative metabolism for photosynthesis: Optimization of carbon assimilation and protection against photoinhibition. Crit. Rev. Biochem. Mol. Biol. 2002, 37, 71–119. [Google Scholar] [CrossRef] [PubMed]
- Wright, I.J.; Reich, P.B.; Atkin, O.K.; Lusk, C.H.; Tjoelker, M.G.; Westoby, M. Irradiance, temperature and rainfall influence leaf dark respiration in woody plants: Evidence from comparisons across 20 sites. New Phytol. 2006, 169, 309–319. [Google Scholar] [CrossRef]
- Edwards, J.A.; Smith, R.I. Photosynthesis and respiration of Colobanthus quitensis and Deschampsia antarctica from the maritime Antarctic. Br. Antarc. Surv. Bull. 1988, 81, 43–63. [Google Scholar]
- Atkin, O.K.; Tjoelker, M.G. Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci. 2003, 8, 343–351. [Google Scholar] [CrossRef]
- Armstrong, A.F.; Badger, M.R.; Day, D.A.; Barthet, M.M.; Smith, P.M.; Millar, A.H.; Whelan, J.; Atkin, O.K. Dynamic changes in the mitochondrial electron transport chain underpinning cold acclimation of leaf respiration. Plant Cell Environ. 2008, 31, 1156–1169. [Google Scholar] [CrossRef]
- Xiong, F.S.; Mueller, E.C.; Day, T.A. Photosynthetic and respiratory acclimation and growth response of Antarctic vascular plants to contrasting temperature regimes. Am. J. Bot. 2000, 87, 700–710. [Google Scholar] [CrossRef]
- Florez-Sarasa, I.; Ribas-Carbo, M.; Del-Saz, N.F.; Schwahn, K.; Nikoloski, Z.; Fernie, A.R.; Flexas, J. Unravelling the in vivo regulation and metabolic role of the alternative oxidase pathway in C3 species under photoinhibitory conditions. New Phytol. 2016, 212, 66–79. [Google Scholar] [CrossRef]
- Del-Saz, N.F.; Ribas-Carbo, M.; McDonald, A.E.; Lambers, H.; Fernie, A.R.; Florez-Sarasa, I. An in vivo perspective of the role (s) of the alternative oxidase pathway. Trends Plant Sci. 2018, 23, 206–219. [Google Scholar] [CrossRef]
- Florez-Sarasa, I.; Ostaszewska, M.; Galle, A.; Flexas, J.; Rychter, A.M.; Ribas-Carbo, M. Changes of alternative oxidase activity, capacity and protein content in leaves of Cucumis sativus wild-type and MSC16 mutant grown under different light intensities. Physiol. Plant. 2009, 137, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Ribas-Carbó, M.; Taylor, N.L.; Giles, L.; Busquets, S.; Finnegan, P.M.; Day, D.A.; Lambers, H.; Medrano, H.; Berry, J.A.; Flexas, J. Effects of water stress on respiration in soybean leaves. Plant Physiol. 2005, 139, 466–473. [Google Scholar] [CrossRef] [PubMed]
- Sanhueza, C.; Fuentes, F.; Cortés, D.; Bascuñan-Godoy, L.; Sáez, P.L.; Bravo, L.A.; Cavieres, L. Contrasting thermal acclimation of leaf dark respiration and photosynthesis of Antarctic vascular plant species exposed to nocturnal warming. Physiol. Plant. 2019, 167, 205–216. [Google Scholar] [CrossRef]
- Gannutz, T.P. Photosynthesis and respiration of plants in antarctic peninsula area. Antarct. J. 1970, 5, 49. [Google Scholar]
- Sweetlove, L.J.; Beard, K.F.; Nunes-Nesi, A.; Fernie, A.R.; Ratcliffe, R.G. Not just a circle: Flux modes in the plant TCA cycle. Trends Plant Sci. 2010, 15, 462–470. [Google Scholar] [CrossRef] [PubMed]
- Sanhueza, C.; Cortes, D.; Way, D.A.; Fuentes, F.; Sáez, P.L.; Bravo, L.A.; Cavieres, L.A. Respiratory and Photosynthetic Responses of Antarctic Vascular Plants Are Differentially Affected by CO2 Enrichment and Nocturnal Warming. Plants 2022, 11, 1520. [Google Scholar] [CrossRef]
- Casanova-Katny, M.A.; Bravo, L.A.; Molina-Montenegro, M.; Corcuera, L.J.; Cavieres, L.A. Photosynthetic performance of Colobanthus quitensis (Kunth) Bartl. (Caryophyllaceae) in a high-elevation site of the Andes of central Chile. Rev. Chil. Hist. Nat. 2006, 79, 41–53. [Google Scholar] [CrossRef]
- Bravo, L.A.; Vera, F.; Saavedra-Mella, F.A.; Vera, F.; Guerra, A.; Cavieres, L.A.; Ivanov, A.G.; Huner, N.P.; Corcuera, L.J. Effect of cold acclimation on the photosynthetic performance of two ecotypes of Colobanthus quitensis (Kunth) Bartl. J. Exp. Bot. 2007, 58, 3581–3590. [Google Scholar] [CrossRef]
- Sierra-Almeida, A.; Casanova-Katny, M.A.; Bravo, L.A.; Corcuera, L.J.; Cavieres, L.A. Photosynthetic responses to temperature and light of Antarctic and Andean populations of Colobanthus quitensis (Caryophyllaceae). Rev. Chil. Hist. Nat. 2007, 80, 335–343. [Google Scholar] [CrossRef]
- Pérez-Torres, E.; Bravo, L.A.; Corcuera, L.J.; Johnson, G.N. Is electron transport to oxygen an important mechanism in photoprotection? Contrasting responses from Antarctic vascular plants. Physiol. Plant 2007, 130, 185–194. [Google Scholar] [CrossRef]
- Pérez-Torres, E.; Dinamarca, J.; Bravo, L.A.; Corcuera, L.J. Responses of Colobanthus quitensis (Kunth) Bartl. to high light and low temperature. Polar Biol. 2004, 27, 183–189. [Google Scholar] [CrossRef]
- Pérez-Torres, E.; García, A.; Dinamarca, J.; Alberdi, M.; Gutiérrez, A.; Gidekel, M.; Ivanov, A.G.; Hüner, N.P.A.; Corcuera, L.J.; Bravo, L.A. The role of photochemical quenching and antioxidants in photoprotection of Deschampsia antarctica. Funct. Plant Biol. 2004, 31, 731–741. [Google Scholar] [CrossRef]
- Bascuñán-Godoy, L.; Sanhueza, C.; Cuba, M.; Zuñiga, G.E.; Corcuera, L.J.; Bravo, L.A. Cold acclimation limits low temperature induced photoinhibition by promoting a higher photochemical quantum yield and a more effective PSII restoration in darkness in the Antarctic rather than the Andean ecotype of Colobanthus quitensis Kunt Bartl (Cariophyllaceae). BMC Plant Biol. 2012, 12, 1–15. [Google Scholar]
- Sáez, P.L.; Rivera, B.K.; Ramírez, C.F.; Vallejos, V.; Cavieres, L.A.; Corcuera, L.J.; Bravo, L.A. Effects of temperature and water availability on light energy utilization in photosynthetic processes of Deschampsia antarctica. Physiol. Plant. 2019, 165, 511–523. [Google Scholar] [CrossRef] [PubMed]
- Casanova-Katny, M.A.; Zúñiga, G.E.; Corcuera, L.J.; Bravo, L.; Alberdi, M. Deschampsia antarctica Desv. primary photochemistry performs differently in plants grown in the field and laboratory. Polar Biol. 2010, 33, 477–483. [Google Scholar] [CrossRef]
- Noctor, G.; Driscoll, S.; Novitskaya, L.; Foyer, C.H. Drought and Oxidative Load in the Leaves of C3 Plants: A Predominant Role for Photorespiration? Ann. Bot. 2002, 89, 841–850. [Google Scholar] [CrossRef]
- Giełwanowska, I.; Szczuka, E.; Bednara, J.; Górecki, R. Anatomical Features and Ultrastructure of Deschampsia antarctica (Poaceae) Leaves from Different Growing Habitats. Ann. Bot. 2005, 96, 1109–1119. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, F.; Cejudo, F.J. Chloroplast dismantling in leaf senescence. J. Exp. Bot. 2021, 72, 5905–5918. [Google Scholar] [CrossRef]
- Molina-Montenegro, M.A.; Torres-Díaz, C.; Carrasco-Urra, F.; González-Silvestre, L.A.; Gianoli, E. Plasticidad fenotípica en dos poblaciones antárticas de Colobanthus quitensis (Caryophyllaceae) bajo un escenario simulado de cambio global. Gayana Botánica 2012, 69, 152–160. [Google Scholar] [CrossRef]
- Bascuñán-Godoy, L.; García-Plazaola, J.I.; Bravo, L.A.; Corcuera, L.J. Leaf functional and micro-morphological photoprotective attributes in two ecotypes of Colobanthus quitensis from the Andes and Maritime Antarctic. Polar Biol. 2010, 33, 885–896. [Google Scholar] [CrossRef]
- Acuña-Rodríguez, I.S.; Torres-Díaz, C.; Hereme, R.; Molina-Montenegro, M.A. Asymmetric responses to simulated global warming by populations of Colobanthus quitensis along a latitudinal gradient. PeerJ 2017, 5, e3718. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Espinoza, O.; González-Ramírez, D.; Méndez-Gómez, J.; Guillén-Watson, R.; Medaglia-Mata, A.; Bravo, L.A. Calcium Oxalate Crystals in Leaves of the Extremophile Plant Colobanthus quitensis (Kunth) Bartl. (Caryophyllaceae). Plants 2021, 10, 1787. [Google Scholar] [CrossRef] [PubMed]
- Cuba-Díaz, M.; Marín, C.; Castel, K.; Machuca, Á.; Rifo, S. Effect of copper (II) ions on morpho-physiological and biochemical variables in Colobanthus quitensis. J. Soil Sci. Plant Nutr. 2017, 17, 429–440. [Google Scholar] [CrossRef]
- Jellings, A.J.; Usher, M.B.; Leech, R.M. Variation in the chloroplast to cell area index in Deschampsia Antarctica along a 16° latitudinal gradient. Br. Antarc. Surv. Bull. 1983, 61, 13–20. [Google Scholar]
- Turner, J.; Lu, H.; King, J.; Marshall, G.J.; Phillips, T.; Bannister, D.; Colwell, S. Extreme temperatures in the Antarctic. J. Clim. 2021, 34, 2653–2668. [Google Scholar] [CrossRef]
- Lee, J.R.; Raymond, B.; Bracegirdle, T.J.; Chadès, I.; Fuller, R.A.; Shaw, J.D.; Terauds, A. Climate change drives expansion of Antarctic ice-free habitat. Nature 2017, 547, 49–54. [Google Scholar] [CrossRef]
- Davy, R.; Esau, I.; Chernokulsky, A.; Outten, S.; Zilitinkevich, S. Diurnal asymmetry to the observed global warming. Int. J. Climatol. 2017, 37, 79–93. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers. In Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, V., Zhai, P., Eds.; World Meteorological Organization: Geneva, Switzerland, 2018. [Google Scholar]
Deschampsia antarctica | Colobanthus quitensis | Freezing Injury Method | |||
---|---|---|---|---|---|
Reference | NA | CA | NA | CA | |
Bravo et al. [21] | −12.0 | −26.6 | −4.8 | −5.8 | Ion leakage |
Gianoli et al. [19] | − | − | −7.0 | −15.0 | Plant survival |
Chew et al. [20] | −12.0 | −17.0 | − | − | Survival and regrowth |
Reyes-Bahamonde [22] | −16.5 | −18.4 | −7.0 | −14.9 | Photoinactivation |
López et al. [23] | −16.9 | −24.4 | −8.1 | −13.3 | Photoinactivation |
Mechanisms | Deschampsia antarctica | Colobanthus quitensis |
---|---|---|
Freezing Resistance |
|
|
Photosynthesis |
|
|
Respiration |
|
|
Photoprotection |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramírez, C.F.; Cavieres, L.A.; Sanhueza, C.; Vallejos, V.; Gómez-Espinoza, O.; Bravo, L.A.; Sáez, P.L. Ecophysiology of Antarctic Vascular Plants: An Update on the Extreme Environment Resistance Mechanisms and Their Importance in Facing Climate Change. Plants 2024, 13, 449. https://doi.org/10.3390/plants13030449
Ramírez CF, Cavieres LA, Sanhueza C, Vallejos V, Gómez-Espinoza O, Bravo LA, Sáez PL. Ecophysiology of Antarctic Vascular Plants: An Update on the Extreme Environment Resistance Mechanisms and Their Importance in Facing Climate Change. Plants. 2024; 13(3):449. https://doi.org/10.3390/plants13030449
Chicago/Turabian StyleRamírez, Constanza F., Lohengrin A. Cavieres, Carolina Sanhueza, Valentina Vallejos, Olman Gómez-Espinoza, León A. Bravo, and Patricia L. Sáez. 2024. "Ecophysiology of Antarctic Vascular Plants: An Update on the Extreme Environment Resistance Mechanisms and Their Importance in Facing Climate Change" Plants 13, no. 3: 449. https://doi.org/10.3390/plants13030449
APA StyleRamírez, C. F., Cavieres, L. A., Sanhueza, C., Vallejos, V., Gómez-Espinoza, O., Bravo, L. A., & Sáez, P. L. (2024). Ecophysiology of Antarctic Vascular Plants: An Update on the Extreme Environment Resistance Mechanisms and Their Importance in Facing Climate Change. Plants, 13(3), 449. https://doi.org/10.3390/plants13030449