Comparative Analysis of Sucrose-Regulatory Genes in High- and Low-Sucrose Sister Clones of Sugarcane
Abstract
:1. Introduction
2. Results
2.1. Reducing and Non-Reducing Sugar Concentrations
2.2. Enzymes Activities Level
2.3. RT-qPCR Data Analysis
3. Discussion
3.1. Environmental Interaction and Sucrose Improvement
3.2. Free Sugars
3.3. Invertase Participation in Sucrose Metabolism
3.4. Predominant Role of SPS Gene in Sucrose Accretion
3.5. Role of SuSy Gene in Sucrose Metabolism
4. Materials and Methods
4.1. Experimental Material and Sample Collection
4.2. Reducing and Non-Reducing Sugar Extraction and Analysis
4.3. Enzyme Isolation
4.4. Enzymes Assay
4.5. RNA Extraction and RT-qPCR Expression
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nair, P.N.; Sachan, H. The Improvement of sugarcane (Saccharum officinarum L.) for sugar, ethanol and biofuel production through innovative biotechnology: A perspective view on its scope, importance & challenges. In Omics Approaches for Sugarcane Crop Improvement; CRC Press: Boca Raton, FL, USA, 2022; pp. 233–249. [Google Scholar]
- Den Besten, N.; Steele-Dunne, S.; Aouizerats, B.; Zajdband, A.; De Jeu, R.; Van Der Zaag, P. Observing sucrose accumulation with sentinel-1 backscatter. Front. Remote Sens. 2021, 2, 778691. [Google Scholar] [CrossRef]
- Slewinski, T.L.; Baker, R.F.; Stubert, A.; Braun, D.M. Tie-dyed2 encodes a callose synthase that functions in vein development and affects symplastic trafficking within the phloem of maize leaves. Plant Physiol. 2012, 160, 1540–1550. [Google Scholar] [CrossRef] [PubMed]
- Qin, C.-X.; Chen, Z.-L.; Wang, M.; Li, A.-M.; Liao, F.; Li, Y.-R.; Wang, M.-Q.; Long, M.-H.; Lakshmanan, P.; Huang, D.-L. Identification of proteins and metabolic networks associated with sucrose accumulation in sugarcane (Saccharum spp. interspecific hybrids). J. Plant Interact. 2021, 16, 166–178. [Google Scholar] [CrossRef]
- Caieiro, J.T.; Panobianco, M.; Bespalhok Filho, J.C.; Ohlson, O.d.C. Physical purity and germination of sugarcane seeds (caryopses) (Saccharum spp.). Rev. Bras. De Sementes 2010, 32, 140–145. [Google Scholar] [CrossRef]
- Raza, Q.-U.-A.; Bashir, M.A.; Rehim, A.; Sial, M.U.; Ali Raza, H.M.; Atif, H.M.; Brito, A.F.; Geng, Y. Sugarcane industrial byproducts as challenges to environmental safety and their remedies: A review. Water 2021, 13, 3495. [Google Scholar] [CrossRef]
- PerezLopez, J.F.; Alvarez, J. (Eds.) Reinventing the Cuban Sugar Agroindustry; Lexington Books, c2005: Cloth Pbk; Rowman & Littlefield Publishers, Inc.: New York, NY, USA, 2005; p. 209. [Google Scholar]
- Solomon, S. Sugarcane production and development of sugar industry in India. Sugar Tech 2016, 18, 588–602. [Google Scholar] [CrossRef]
- Wang, M.; Li, A.M.; Liao, F.; Qin, C.X.; Chen, Z.L.; Zhou, L.; Li, Y.R.; Li, X.F.; Lakshmanan, P.; Huang, D.L. Control of sucrose accumulation in sugarcane (Saccharum spp. hybrids) involves miRNA-mediated regulation of genes and transcription factors associated with sugar metabolism. GCB Bioenergy 2022, 14, 173–191. [Google Scholar] [CrossRef]
- Zhao, D.; Li, Y.-R. Climate change and sugarcane production: Potential impact and mitigation strategies. Int. J. Agron. 2015, 2015, 547386. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Jones, P.D.; Ambenje, P.; Bojariu, R.; Easterling, D.; Klein Tank, A.; Parker, D.; Rahimzadeh, F.; Renwick, J.A.; Rusticucci, M. Observations. Surface and atmospheric climate change. In Climate Change 2007: The Physical Science Basis; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; Chapter 3; pp. 235–336. [Google Scholar]
- Dhillon, R.; von Wuehlisch, G. Mitigation of global warming through renewable biomass. Biomass Bioenergy 2013, 48, 75–89. [Google Scholar] [CrossRef]
- Gawander, J. Impact of climate change on sugar-cane production in Fiji. World Meteorol. Organ. Bull. 2007, 56, 34–39. [Google Scholar]
- Hussain, S.; Khaliq, A.; Mehmood, U.; Qadir, T.; Saqib, M.; Iqbal, M.A.; Hussain, S. Sugarcane production under changing climate: Effects of environmental vulnerabilities on sugarcane diseases, insects and weeds. Clim. Change Agric. 2018, 1–17. [Google Scholar]
- Cardozo, N.P.; Sentelhas, P.C. Climatic effects on sugarcane ripening under the influence of cultivars and crop age. Sci. Agric. 2013, 70, 449–456. [Google Scholar] [CrossRef]
- Pereira, L.F.; Ferreira, V.M.; OLIVEIRA, N.G.; Sarmento, P.L.; Endres, L.; Teodoro, I. Sugars levels of four sugarcane genotypes in different stem portions during the maturation phase. An. Da Acad. Bras. De Ciências 2017, 89, 1231–1242. [Google Scholar] [CrossRef] [PubMed]
- Ftwi, M.; Mekibib, F.; Tesfa, M. Maturity classification of sugarcane (Saccharum officinarum L) genotypes grown under different production environments of Ethiopia. Adv. Crop Sci. Technol. 2017, 5, 304. [Google Scholar]
- Zhao, Y.; Yu, L.-X.; Ai, J.; Zhang, Z.-F.; Deng, J.; Zhang, Y.-B. Climate variations in the low-latitude plateau contribute to different sugarcane (Saccharum spp.) yields and sugar contents in China. Plants 2023, 12, 2712. [Google Scholar] [CrossRef] [PubMed]
- Zepeda, A.C.; Heuvelink, E.; Marcelis, L.F. Carbon storage in plants: A buffer for temporal light and temperature fluctuations. Silico Plants 2023, 5, diac020. [Google Scholar] [CrossRef]
- Takaragawa, H.; Matsuda, H. Rapid evaluation of leaf photosynthesis using a closed-chamber system in a C4 plant, sugarcane. Plant Prod. Sci. 2023, 26, 174–186. [Google Scholar] [CrossRef]
- Khan, Q.; Qin, Y.; Guo, D.-J.; Yang, L.-T.; Song, X.-P.; Xing, Y.-X.; Li, Y.-R. A Review of the diverse genes and molecules involved in sucrose metabolism and innovative approaches to improve sucrose content in sugarcane. Agronomy 2023, 13, 2957. [Google Scholar] [CrossRef]
- Lemoine, R.; Camera, S.L.; Atanassova, R.; Dédaldéchamp, F.; Allario, T.; Pourtau, N.; Bonnemain, J.-L.; Laloi, M.; Coutos-Thévenot, P.; Maurousset, L. Source-to-sink transport of sugar and regulation by environmental factors. Front. Plant Sci. 2013, 4, 272. [Google Scholar] [CrossRef]
- Moore, P.H.; Cosgrove, D.J. Developmental changes in cell and tissue water relations parameters in storage parenchyma of sugarcane. Plant Physiol. 1991, 96, 794–801. [Google Scholar] [CrossRef]
- Bihmidine, S.; Baker, R.F.; Hoffner, C.; Braun, D.M. Sucrose accumulation in sweet sorghum stems occurs by apoplasmic phloem unloading and does not involve differential sucrose transporter expression. BMC Plant Biol. 2015, 15, 186. [Google Scholar] [CrossRef]
- Dhungana, S.R.; Braun, D.M. Sugar transporters in grasses: Function and modulation in source and storage tissues. J. Plant Physiol. 2021, 266, 153541. [Google Scholar] [CrossRef]
- Sage, R.F.; Peixoto, M.M.; Sage, T.L. Photosynthesis in sugarcane. In Sugarcane: Physiology, Biochemistry, and Functional Biology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; pp. 121–154. [Google Scholar]
- Chen, L.-Q. Improved understanding of sugar transport in various plants. Int. J. Mol. Sci. 2022, 23, 10260. [Google Scholar] [CrossRef]
- Zhang, Q.; Hua, X.; Liu, H.; Yuan, Y.; Shi, Y.; Wang, Z.; Zhang, M.; Ming, R.; Zhang, J. Evolutionary expansion and functional divergence of sugar transporters in Saccharum (S. spontaneum and S. officinarum). Plant J. 2021, 105, 884–906. [Google Scholar] [CrossRef]
- Glassop, D.; Roessner, U.; Bacic, A.; Bonnett, G.D. Changes in the sugarcane metabolome with stem development. Are they related to sucrose accumulation? Plant Cell Physiol. 2007, 48, 573–584. [Google Scholar] [CrossRef]
- Uys, L.; Hofmeyr, J.-H.S.; Rohwer, J.M. Coupling kinetic models and advection–diffusion equations. 1. Framework development and application to sucrose translocation and metabolism in sugarcane. Silico Plants 2021, 3, diab013. [Google Scholar] [CrossRef]
- Khan, I.A.; Bibi, S.; Yasmin, S.; Khatri, A.; Seema, N.; Abro, S.A. Correlation studies of agronomic traits for higher sugar yield in sugarcane. Pak. J. Bot 2012, 44, 969–971. [Google Scholar]
- Whittaker, A.; Botha, F.C. Carbon partitioning during sucrose accumulation in sugarcane internodal tissue. Plant Physiol. 1997, 115, 1651–1659. [Google Scholar] [CrossRef] [PubMed]
- Albertson, P.L.; Peters, K.F.; Grof, C.P. An improved method for the measurement of cell wall invertase activity in sugarcane tissue. Funct. Plant Biol. 2001, 28, 323–328. [Google Scholar] [CrossRef]
- Grof, C.P.; Campbell, J.A. Sugarcane sucrose metabolism: Scope for molecular manipulation. Funct. Plant Biol. 2001, 28, 1–12. [Google Scholar] [CrossRef]
- Gutiérrez-Miceli, F.A.; Rodríguez-Mendiola, M.A.; Ochoa-Alejo, N.; Méndez-Salas, R.; Dendooven, L.; Arias-Castro, C. Relationship between sucrose accumulation and activities of sucrose-phosphatase, sucrose synthase, neutral invertase and soluble acid invertase in micropropagated sugarcane plants. Acta Physiol. Plant. 2002, 24, 441–446. [Google Scholar] [CrossRef]
- Meena, D.M.R.; Reddy, G.; Kumar, R.; Pandey, S.; Hemaprabha, G. Recent advances in sugarcane genomics, physiology, and phenomics for superior agronomic traits. Front. Genet. 2022, 13, 854936. [Google Scholar] [CrossRef]
- Sica, P. Sugarcane breeding for enhanced fiber and its impacts on industrial processes. In Sugarcane-Biotechnology for Biofuels; IntechOpen: London, UK, 2021. [Google Scholar]
- Partida, V.G.S.; Dias, H.M.; Corcino, D.S.M.; Van Sluys, M.-A. Sucrose-phosphate phosphatase from sugarcane reveals an ancestral tandem duplication. BMC Plant Biol. 2021, 21, 23. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhao, T.; Yang, B.; Zhang, S. Sucrose metabolism and regulation in sugarcane. J. Plant Physiol. Pathol. 2017, 5, 2. [Google Scholar] [CrossRef]
- Stein, O.; Granot, D. An overview of sucrose synthases in plants. Front. Plant Sci. 2019, 10, 95. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, A.; Ando, F.; Toyofuku, K.; Kawashima, C. Sucrose metabolism for the development of seminal root in maize seedlings. Plant Prod. Sci. 2009, 12, 9–16. [Google Scholar] [CrossRef]
- Winter, H.; Huber, S.C. Regulation of sucrose metabolism in higher plants: Localization and regulation of activity of key enzymes. Crit. Rev. Plant Sci. 2000, 19, 31–67. [Google Scholar] [CrossRef]
- Bansal, R. Cell Wall Invertase and Sucrose Synthase Regulate Sugar Metabolism During Seed Development in Isabgol (Plantago ovata Forsk.). Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2018, 88, 73–78. [Google Scholar] [CrossRef]
- Fujii, S.; Hayashi, T.; Mizuno, K. Sucrose synthase is an integral component of the cellulose synthesis machinery. Plant Cell Physiol. 2010, 51, 294–301. [Google Scholar] [CrossRef]
- Tang, G.-Q.; Sturm, A. Antisense repression of sucrose synthase in carrot (Daucus carota L.) affects growth rather than sucrose partitioning. Plant Mol. Biol. 1999, 41, 465–479. [Google Scholar] [CrossRef]
- Ahmad, S.; Ali, M.A.; Aita, G.M.; Khan, M.T.; Khan, I.A. Source-sink relationship of sugarcane energy production at the sugar mills. In Sugarcane Biofuels: Status, Potential, and Prospects of the Sweet Crop to Fuel the World; Khan, M.T., Khan, I.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 349–388. [Google Scholar]
- Geigenberger, P.; Stitt, M. Sucrose synthase catalyses a readily reversible reaction in vivo in developing potato tubers and other plant tissues. Planta 1993, 189, 329–339. [Google Scholar] [CrossRef]
- Verma, K.K.; Song, X.-P.; Yadav, G.; Degu, H.D.; Parvaiz, A.; Singh, M.; Huang, H.-R.; Mustafa, G.; Xu, L.; Li, Y.-R. Impact of agroclimatic variables on proteogenomics in sugar cane (Saccharum spp.) plant productivity. ACS Omega 2022, 7, 22997–23008. [Google Scholar] [CrossRef] [PubMed]
- da Silva Santos, P.H.; Manechini, J.R.V.; Brito, M.S.; Romanel, E.; Vicentini, R.; Scarpari, M.; Jackson, S.; Pinto, L.R. Selection and validation of reference genes by RT-qPCR under photoperiodic induction of flowering in sugarcane (Saccharum spp.). Sci. Rep. 2021, 11, 4589. [Google Scholar] [CrossRef] [PubMed]
- Glasziou, K. Accumulation and transformation of sugars in sugar cane stalks. Plant Physiol. 1960, 35, 895. [Google Scholar] [CrossRef] [PubMed]
- Tana, B.; Chanprame, S.; Tienseree, N.; Tadakittisarn, S. Relationship between invertase enzyme activities and sucrose accumulation in sugarcane (Saccharum spp.). Agric. Nat. Resour. 2014, 48, 869–879. [Google Scholar]
- Yamaki, S. Metabolism and accumulation of sugars translocated to fruit and their regulation. J. Jpn. Soc. Hortic. Sci. 2010, 79, 1–15. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, S.; Liang, Y.; Li, B.; Ma, S.; Wang, Z.; Ma, B.; Li, M. Nitrogen levels regulate sugar metabolism and transport in the shoot tips of crabapple plants. Front. Plant Sci. 2021, 12, 626149. [Google Scholar] [CrossRef] [PubMed]
- Chandiposha, M. Potential impact of climate change in sugarcane and mitigation strategies in Zimbabwe. Afican J. Agric. Res. 2013, 8, 2814–2818. [Google Scholar]
- de Almeida Silva, M.; Caputo, M.M. Ripening and the use of ripeners for better sugarcane management. In Crop Management–Cases and Tools for Higher Yield and Sustainability; Marin, F.R., Ed.; IntechOpen: London, UK, 2012; pp. 2–24. [Google Scholar]
- de Oliveira, A.R.; Braga, M.B.; Santos, B.L.S.; Walker, A.M. Análise biométrica de cultivares de cana-de-açúcar cultivadas sob estresse hídrico no vale do submédio São Francisco. Energ. Na Agric. 2016, 31, 48–58. [Google Scholar] [CrossRef]
- Fernandes, A.C. Cálculos na Agroindústria da Cana-de-Açúcar, 3rd ed.; STAB: Piracicaba, Brasil, 2011. (In Portuguese) [Google Scholar]
- Lingle, S.E.; Thomson, J.L. Sugarcane internode composition during crop development. BioEnergy Res. 2012, 5, 168–178. [Google Scholar] [CrossRef]
- Botha, F.C.; Scalia, G.; Marquardt, A.; Wathen-Dunn, K. Sink strength during sugarcane culm growth: Size matters. Sugar Tech. 2023, 25, 1047–1060. [Google Scholar] [CrossRef]
- Sturm, A. Invertases. Primary structures, functions, and roles in plant development and sucrose partitioning. Plant Physiol. 1999, 121, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Roitsch, T.; González, M.-C. Function and regulation of plant invertases: Sweet sensations. Trends Plant Sci. 2004, 9, 606–613. [Google Scholar] [CrossRef]
- Lontom, W.; Kosittrakun, M.; Lingle, S. Relationship of acid invertase activities to sugar content in sugarcane internodes during ripening and after harvest. Thai J. Agric. Sci. 2008, 41, 143–151. [Google Scholar]
- Sacher, J.; Hatch, M.; Glasziou, K. Sugar accumulation cycle in sugar cane. III. Physical & metabolic aspects of cycle in immature storage tissues. Plant Physiol. 1963, 38, 348. [Google Scholar] [PubMed]
- Verma, A.K.; Upadhyay, S.K.; Srivastava, M.K.; Verma, P.C.; Solomon, S.; Singh, S. Transcript expression and soluble acid invertase activity during sucrose accumulation in sugarcane. Acta Physiol. Plant. 2011, 33, 1749–1757. [Google Scholar] [CrossRef]
- Kubo, T.; Hohjo, I.; Hiratsuka, S. Sucrose accumulation and its related enzyme activities in the juice sacs of satsuma mandarin fruit from trees with different crop loads. Sci. Hortic. 2001, 91, 215–225. [Google Scholar] [CrossRef]
- Moore, P.H. Temporal and spatial regulation of sucrose accumulation in the sugarcane stem. Funct. Plant Biol. 1995, 22, 661–679. [Google Scholar] [CrossRef]
- Chandra, A.; Verma, P.K.; Islam, M.; Grisham, M.; Jain, R.; Sharma, A.; Roopendra, K.; Singh, K.; Singh, P.; Verma, I. Expression analysis of genes associated with sucrose accumulation in sugarcane (Saccharum spp. hybrids) varieties differing in content and time of peak sucrose storage. Plant Biol. 2015, 17, 608–617. [Google Scholar] [CrossRef]
- Ebrahim, M.K.; Zingsheim, O.; El-Shourbagy, M.N.; Moore, P.H.; Komor, E. Growth and sugar storage in sugarcane grown at temperatures below and above optimum. J. Plant Physiol. 1998, 153, 593–602. [Google Scholar] [CrossRef]
- Vorster, D.J.; Botha, F.C. Sugarcane internodal invertases and tissue maturity. J. Plant Physiol. 1999, 155, 470–476. [Google Scholar] [CrossRef]
- Gayler, K.; Glasziou, K. Physiological functions of acid and neutral invertases in growth and sugar storage in sugar cane. Physiol. Plant. 1972, 27, 25–31. [Google Scholar] [CrossRef]
- Bosch, S.; Grof, C.; Botha, F. Expression of neutral invertase in sugarcane. Plant Sci. 2004, 166, 1125–1133. [Google Scholar] [CrossRef]
- Rose, S.; Botha, F.C. Distribution patterns of neutral invertase and sugar contentin sugarcane internodal tissues. Plant Physiol. Biochem. 2000, 38, 819–824. [Google Scholar] [CrossRef]
- Anur, R.M.; Mufithah, N.; Sawitri, W.D.; Sakakibara, H.; Sugiharto, B. Overexpression of sucrose phosphate synthase enhanced sucrose content and biomass production in transgenic sugarcane. Plants 2020, 9, 200. [Google Scholar] [CrossRef] [PubMed]
- Sawitri, W.D.; Sugiharto, B. Revealing the important role of allosteric property in sucrose phosphate synthase from sugarcane with N-terminal domain deletion. Proc. IOP Conf. Ser. Earth Environ. Sci. 2018, 217, 012043. [Google Scholar] [CrossRef]
- Li, Y.; Yao, Y.; Yang, G.; Tang, J.; Ayala, G.J.; Li, X.; Zhang, W.; Han, Q.; Yang, T.; Wang, H. Co-crystal Structure of Thermosynechococcus elongatus Sucrose Phosphate Synthase With UDP and Sucrose-6-Phosphate Provides Insight Into Its Mechanism of Action Involving an Oxocarbenium Ion and the Glycosidic Bond. Front. Microbiol. 2020, 11, 1050. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhou, M.; Walsh, J.; Zhu, L.; Chen, Y.; Ming, R. Sugarcane genetics and genomics. In Sugarcane: Physiology, Biochemistry, and Functional Biology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; pp. 623–643. [Google Scholar]
- Verma, A.K.; Upadhyay, S.; Verma, P.C.; Solomon, S.; Singh, S.B. Functional analysis of sucrose phosphate synthase (SPS) and sucrose synthase (SS) in sugarcane (Saccharum) cultivars. Plant Biol. 2011, 13, 325–332. [Google Scholar] [CrossRef]
- Botha, F.C.; Black, K.G. Sucrose phosphate synthase and sucrose synthase activity during maturation of internodal tissue in sugarcane. Funct. Plant Biol. 2000, 27, 81–85. [Google Scholar] [CrossRef]
- Grof, C.P.; Albertson, P.L.; Bursle, J.; Perroux, J.M.; Bonnett, G.D.; Manners, J.M. Sucrose-phosphate synthase, a biochemical marker of high sucrose accumulation in sugarcane. Crop Sci. 2007, 47, 1530–1539. [Google Scholar] [CrossRef]
- McCormick, A.; Watt, D.; Cramer, M. Supply and demand: Sink regulation of sugar accumulation in sugarcane. J. Exp. Bot. 2009, 60, 357–364. [Google Scholar] [CrossRef]
- Bilska-Kos, A.; Mytych, J.; Suski, S.; Magoń, J.; Ochodzki, P.; Zebrowski, J. Sucrose phosphate synthase (SPS), sucrose synthase (SUS) and their products in the leaves of Miscanthus× giganteus and Zea mays at low temperature. Planta 2020, 252, 23. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Wang, Z.; Xu, L.; Peng, Q.; Liu, F.; Li, Z.; Que, Y. Early selection for smut resistance in sugarcane using pathogen proliferation and changes in physiological and biochemical indices. Front. Plant Sci. 2016, 7, 1133. [Google Scholar] [CrossRef] [PubMed]
- Khan, Q.; Qin, Y.; Guo, D.-J.; Zeng, X.-P.; Chen, J.-Y.; Huang, Y.-Y.; Ta, Q.-K.; Yang, L.-T.; Liang, Q.; Song, X.-P. Morphological, agronomical, physiological and molecular characterization of a high sugar mutant of sugarcane in comparison to mother variety. PLoS ONE 2022, 17, e0264990. [Google Scholar] [CrossRef] [PubMed]
- Khan, Q.; Chen, J.Y.; Zeng, X.P.; Qin, Y.; Guo, D.J.; Mahmood, A.; Yang, L.T.; Liang, Q.; Song, X.P.; Xing, Y.X. Transcriptomic exploration of a high sucrose mutant in comparison with the low sucrose mother genotype in sugarcane during sugar accumulating stage. GCB Bioenergy 2021, 13, 1448–1465. [Google Scholar] [CrossRef]
- Shukla, S.; Sharma, L.; Jaiswal, V.; Pathak, A.; Tiwari, R.; Awasthi, S.; Gaur, A. Soil quality parameters vis-a-vis growth and yield attributes of sugarcane as influenced by integration of microbial consortium with NPK fertilizers. Sci. Rep. 2020, 10, 19180. [Google Scholar] [CrossRef] [PubMed]
- Roe, J.H. A colorimetric method for the determination of fructose in blood and urine. J. Biol. Chem. 1934, 107, 15–22. [Google Scholar] [CrossRef]
- Somogyi, M. Notes on sugar determination. J. Biol. Chem. 1952, 195, 19–23. [Google Scholar] [CrossRef]
- Classics Lowry, O.; Rosebrough, N.; Farr, A.; Randall, R. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Leite, G.H.P.; Alexandre, C.; Crusciol, C.; Siqueira, G.F.d.; Silva, M.d.A. Plant regulators and invertase activity in sugarcane at the beginning of the harvest season. Cienc. Rural 2015, 45, 1788–1794. [Google Scholar] [CrossRef]
- Siswoyo, T.A.; Oktavianawati, I.; Djenal, D.; Sugiharto, B.; Murdiyanto, U.; XI, P.P.N. Changes of sucrose content and invertase activity during sugarcane stem storage. Indones. J. Agric. Sci. 2007, 8, 75–81. [Google Scholar] [CrossRef]
- De Andrade, L.M.; dos Santos Brito, M.; Fávero Peixoto Junior, R.; Marchiori, P.E.R.; Nóbile, P.M.; Martins, A.P.B.; Ribeiro, R.V.; Creste, S. Reference genes for normalization of qPCR assays in sugarcane plants under water deficit. Plant Methods 2017, 13, 28. [Google Scholar] [CrossRef] [PubMed]
Genes Name | Forward/Reverse | 5′-3′ Sequence | Product Size (bp) |
---|---|---|---|
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) | F | CTCTGCCCCAAGCAAAGATG | 100 |
R | TGTTGTGCAGCTAGCATTGGA | ||
Sucrose phosphate synthase (SPS) | F | CCATCTGTATGTTGCTGTGTGC | 99 |
R | GTCGGTGTCGCCCTTGTC | ||
Sucrose synthase (SuSy) | F | TGAAAATGGGATACTTAAGAAATGG | 92 |
R | ATAACGAACCAATGATGATATTCACCTC | ||
Cell wall invertase (CWI) | F | TCTGTACAAGCCAACCTTCG | 104 |
R | CCGCTTGAAATGTCAATGTC | ||
Sucrose phosphate phosphatase (SPP) | F | GGCTTTGTGCTAACCCACAT | 98 |
R | TTACGCACCAAATCCTCTCC | ||
Soluble acid invertase (SAI) | F | TCCTTGCTTGCCTCTCAAAT | 97 |
R | ACAAATGTAGCCCTGCCTTG | ||
Neutral invertase (NI) | F | ATAAACAGCCGCACCAATTC | 112 |
R | GCCTCTGAGGTGGAGTCTTG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, Q.; Qin, Y.; Guo, D.-J.; Huang, Y.-Y.; Yang, L.-T.; Liang, Q.; Song, X.-P.; Xing, Y.-X.; Li, Y.-R. Comparative Analysis of Sucrose-Regulatory Genes in High- and Low-Sucrose Sister Clones of Sugarcane. Plants 2024, 13, 707. https://doi.org/10.3390/plants13050707
Khan Q, Qin Y, Guo D-J, Huang Y-Y, Yang L-T, Liang Q, Song X-P, Xing Y-X, Li Y-R. Comparative Analysis of Sucrose-Regulatory Genes in High- and Low-Sucrose Sister Clones of Sugarcane. Plants. 2024; 13(5):707. https://doi.org/10.3390/plants13050707
Chicago/Turabian StyleKhan, Qaisar, Ying Qin, Dao-Jun Guo, Yu-Yan Huang, Li-Tao Yang, Qiang Liang, Xiu-Peng Song, Yong-Xiu Xing, and Yang-Rui Li. 2024. "Comparative Analysis of Sucrose-Regulatory Genes in High- and Low-Sucrose Sister Clones of Sugarcane" Plants 13, no. 5: 707. https://doi.org/10.3390/plants13050707
APA StyleKhan, Q., Qin, Y., Guo, D.-J., Huang, Y.-Y., Yang, L.-T., Liang, Q., Song, X.-P., Xing, Y.-X., & Li, Y.-R. (2024). Comparative Analysis of Sucrose-Regulatory Genes in High- and Low-Sucrose Sister Clones of Sugarcane. Plants, 13(5), 707. https://doi.org/10.3390/plants13050707