Comparative Analysis of Vitamin, Mineral Content, and Antioxidant Capacity in Cereals and Legumes and Influence of Thermal Process
Abstract
:1. Introduction
2. Results
2.1. Temperature Treatment on Mineral Content
Multivariate Analysis
2.2. Temperature Impact on Polyphenols, Vitamins Content, and Antioxidant Capacity
3. Materials and Methods
3.1. Cereal Selection
3.2. Chemicals and Reagents
3.3. Determination of Vitamins B
3.4. Mineral Profile
3.5. Moisture Content
3.6. Determination of Total Phenolic Content
3.7. Determination of Total Antioxidant Capacity
3.8. Determination of Vitamin D3 (Cholecalciferol), Vitamin A (Retinyl Acetate), Vitamin K (MK4, MK7)
3.9. Statistical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tardy, A.L.; Pouteau, E.; Marquez, D.; Yilmaz, C.; Scholey, A. Vitamins and Minerals for Energy, Fatigue and Cognition: A Narrative Review of the Biochemical and Clinical Evidence. Nutrients 2020, 12, 228. [Google Scholar] [CrossRef]
- Clemente-Suárez, V.J.; Beltrán-Velasco, A.I.; Redondo-Flórez, L.; Martín-Rodríguez, A.; Tornero-Aguilera, J.F. Global Impacts of Western Diet and Its Effects on Metabolism and Health: A Narrative Review. Nutrients 2023, 15, 2749. [Google Scholar] [CrossRef]
- Popa, S.; Mota, M.; Popa, A.; Mota, E.; Timar, R.; Serafinceanu, C.; Cheta, D.; Graur, M.; Hancu, N. Prevalence of dyslipidemia and its association with cardiometabolic factors and kidney function in the adult Romanian population: The PREDATORR study. Diabetes Metab. Syndr. 2019, 13, 596–602. [Google Scholar] [CrossRef]
- Kumar, S.; Kelly, A.S. Review of Childhood Obesity: From Epidemiology, Etiology, and Comorbidities to Clinical Assessment and Treatment. Mayo. Clin. Proc. 2017, 92, 251–265. [Google Scholar] [CrossRef] [PubMed]
- Development Initiatives. 2020 Global Nutrition Report: Action on Equity to End Malnutrition; Development Initiatives: Bristol, UK, 2020. [Google Scholar]
- Biver, E.; Herrou, J.; Larid, G.; Legrand, M.A.; Gonnelli, S.; Annweiler, C.; Chapurlat, R.; Coxam, V.; Fardellone, P.; Thomas, T.; et al. Dietary recommendations in the prevention and treatment of osteoporosis. Jt. Bone Spine 2023, 90, 105521. [Google Scholar] [CrossRef]
- Gombart, A.F.; Pierre, A.; Maggini, S. A Review of Micronutrients and the Immune System-Working in Harmony to Reduce the Risk of Infection. Nutrients 2020, 12, 236. [Google Scholar] [CrossRef]
- Huskisson, E.; Maggini, S.; Ruf, M. The role of vitamins and minerals in energy metabolism and well-being. J. Int. Med. Res. 2007, 35, 277–289. [Google Scholar] [CrossRef] [PubMed]
- Capone, K.; Sentongo, T. The ABCs of Nutrient Deficiencies and Toxicities. Pediatr. Ann. 2019, 48, e434–e440. [Google Scholar] [CrossRef] [PubMed]
- McKevith, B. Nutritional aspects of cereals. Nutr. Bull. 2004, 29, 111–142. [Google Scholar] [CrossRef]
- Bungau, S.; Behl, T.; Aleya, L.; Bourgeade, P.; Aloui-Sosse, B.; Purza, A.L.; Abid, A.; Samuel, A.D. Expatiating the impact of anthropogenic aspects and climatic factors on long term soil monitoring and management. Environ. Sci. Pollut. Res. 2021, 202, 30528–30550. [Google Scholar] [CrossRef]
- Samuel, A.D.; Brejea, R.; Domuta, C.; Bungau, S.; Cenusa, N.; Tit, D.M. Enzymatic indicators of soil quality. J. Environ. Prot. Ecol. 2017, 18, 871–878. [Google Scholar]
- Samuel, A.D.; Bungau, S.; Tit, D.M.; Melinte (Frunzulica), C.E.; Purza, L.; Badea, G.E. Effects of long term application of organic and mineral fertilizers on soil enzymes. Rev. Chim. 2018, 69, 2608–2612. [Google Scholar] [CrossRef]
- Samuel, A.D.; Bungau, S.; Fodor, I.K.; Tit, D.M.; Blidar, C.F.; David, A.T.; Melinte (Frunzulica), C.E. Effects of liming and fertilization on the dehydrogenase and catalase activities. Rev. Chim. 2019, 70, 3464–3468. [Google Scholar] [CrossRef]
- Samuel, A.D.; Tit, D.M.; Melinte, F.C.E.; Iovan, C.; Purza, L.; Gitea, M.; Bungau, S. Enzymological and physico-chemical evaluation of the effects of soil management practices. Rev. Chim. 2017, 68, 2243–2247. [Google Scholar] [CrossRef]
- Behl, T.; Kaur, I.; Singh, S.; Sharma, N.; Bhatia, S.; Al-Harrasi, A.; Bungau, S. The dichotomy of nanotechnology as the cutting edge of agriculture: Nano-farming as an asset versus nanotoxicity. Chemosphere 2022, 288, 132533. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, K.; Shoaib, M.; Akhtar, M.N.; Iqbal, Z. Chemical analysis of different cereals to access nutritional components vital for human health. Int. J. Chem. Biochem. Sci. 2014, 6, 61–67. [Google Scholar]
- Lech, M.; Labus, K. The methods of brewers’ spent grain treatment towards the recovery of valuable ingredients contained therein and comprehensive management of its residues. Chem. Eng. Res. Des. 2022, 183, 494–511. [Google Scholar] [CrossRef]
- Elhassan, F.; Suad, A.; Dahawi, F. Antimicrobial activities of six types of wheat bran. IOSR J. Appl. Chem. 2017, 10, 61–69. [Google Scholar] [CrossRef]
- McCarthy, A.L.; O’Callaghan, Y.C.; Connolly, A.; Piggott, C.O.; FitzGerald, R.J.; O’Brien, N.M. Brewers’ spent grain (BSG) protein hydrolysates decrease hydrogen peroxide (H2O2)-induced oxidative stress and concanavalin-A (con-A) stimulated IFN-γ production in cell culture. Food Funct. 2013, 4, 1709. [Google Scholar] [CrossRef]
- Garg, M.; Sharma, A.; Vats, S.; Tiwari, V.; Kumari, A.; Mishra, V.; Krishania, M. Vitamins in Cereals: A Critical Review of Content, Health Effects, Processing Losses, Bioaccessibility, Fortification, and Biofortification Strategies for Their Improvement. Front. Nutr. 2021, 8, 586815. [Google Scholar] [CrossRef]
- Reddy, M.B.; Love, M. The Impact of Food Processing on the Nutritional Quality of Vitamins and Minerals. Impact Process. Food Saf. 1999, 459, 99–106. [Google Scholar]
- Tuncel, N.B.; Yılmaz, N.; Kocabıyık, H.; Uygur, A. The Effect of Infrared Stabilized Rice Bran Substitution on B Vitamins, Minerals and Phytic Acid Content of Pan Breads: Part II. J. Cereal Sci. 2014, 59, 162–166. [Google Scholar] [CrossRef]
- Feizollahi, E.; Mirmahdi, R.S.; Zoghi, A.; Zijlstra, R.T.; Roopesh, M.S.; Vasanthan, T. Review of the Beneficial and Anti-nutritional Qualities of Phytic Acid, and Procedures for Removing It from Food Products. Food Res. Int. 2021, 143, 110284. [Google Scholar] [CrossRef]
- Auerswald, M.; Moshagen, M. How to Determine the Number of Factors to Retain in Exploratory Factor Analysis: A Comparison of Extraction Methods under Realistic Conditions. Psychol. Methods 2019, 24, 468–491. [Google Scholar] [CrossRef] [PubMed]
- Latimer, G.W., Jr. Official Methods of Analysis of AOAC International, 22nd ed.; AOAC International: Gaithersburg, MD, USA, 2023. [Google Scholar]
- Gorinstein, S.; Vargas, O.J.M.; Jaramillo, N.O.; Salas, I.A.; Ayala, A.L.M.; Arancibia-Avila, P.; Toledo, F.; Katrich, E.; Trakhtenberg, S. The Total Polyphenols and the Antioxidant Potentials of Some Selected Cereals and Pseudocereals. Eur. Food Res. Technol. 2007, 225, 321–328. [Google Scholar] [CrossRef]
- Tabibian, M.; Torbati, M.; Afshar Mogaddam, M.R.; Mirlohi, M.; Sadeghi, M.; Mohtadinia, J. Evaluation of Vitamin D3 and D2 Stability in Fortified Flat Bread Samples during Dough Fermentation, Baking and Storage. Adv. Pharm. Bull. 2017, 7, 323–328. [Google Scholar] [CrossRef]
- Hidalgo, A.; Brandolini, A.J. Agriculture. Nutritional Properties of Einkorn Wheat (Triticum monococcum L.). J. Sci. Food Agric. 2014, 94, 601–612. [Google Scholar] [CrossRef] [PubMed]
- Eklund-Jonsson, C.; Sandberg, A.-S.; Larsson Alminger, M. Reduction of Phytate Content While Preserving Minerals during Whole Grain Cereal Tempe Fermentation. J. Cereal Sci. 2006, 44, 154–160. [Google Scholar] [CrossRef]
- Ojedokun, A.O.; Tijani, A.A.; Amoo, Z.O. Household Demand for Plant-Based Protein Foods During the COVID-19 Pandemic. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Hortic. 2023, 80, 52–64. [Google Scholar] [CrossRef]
- Manickavasagan, A.; Reicks, M.; Singh, V.; Sawsana, A.; Intisar, A.M.; Lakshmy, R. Acceptability of a Reformulated Grain-Based Food: Implications for Increasing Whole Grain Consumption. Food Sci. Hum. Wellness 2013, 2, 105–112. [Google Scholar] [CrossRef]
- Şurcă, E. Evaluating the potential for soybean culture in Romania compared with the European Union. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Hortic. 2018, 75, 105–110. [Google Scholar]
- Popović-Djordjević, J.B.; Kostić, A.Ž.; Rajković, M.B.; Miljković, I.; Krstić, Đ.; Caruso, G.; Siavash Moghaddam, S.; Brčeski, I. Organically vs. Conventionally Grown Vegetables: Multi-elemental Analysis and Nutritional Evaluation. Biol. Trace Elem. Res. 2022, 200, 426–436. [Google Scholar] [CrossRef] [PubMed]
- Dewettinck, K.; Van Bockstaele, F.; Kühne, B.; Van de Walle, D.; Courtens, T.M.; Gellynck, X. Nutritional Value of Bread: Influence of Processing, Food Interaction and Consumer Perception. J. Cereal Sci. 2008, 48, 243–257. [Google Scholar] [CrossRef]
- Barampama, Z.; Simard, R.E. Effects of Soaking, Cooking, and Fermentation on Composition, In-Vitro Starch Digestibility, and Nutritive Value of Common Beans. Plant Foods Human Nutr. 1995, 48, 349–365. [Google Scholar] [CrossRef] [PubMed]
- Hemalatha, S.; Platel, K.; Srinivasan, K. Influence of Heat Processing on the Bioaccessibility of Zinc and Iron from Cereals and Pulses Consumed in India. J. Trace Elem. Med. Biol. 2007, 21, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Hatcher, D.W.; Tyler, R.T.; Toews, R.; Gawalko, E.J. Effect of Cooking on the Composition of Beans (Phaseolus vulgaris L.) and Chickpeas (Cicer arietinum L.). Food Res. Int. 2010, 43, 589–594. [Google Scholar] [CrossRef]
- Coțovanu, I.; Mironeasa, C.; Mironeasa, S. Nutritionally Improved Wheat Bread Supplemented with Quinoa Flour of Large, Medium and Small Particle Sizes at Typical Doses. Plants 2023, 12, 698. [Google Scholar] [CrossRef] [PubMed]
- Atudorei, D.; Atudorei, O.; Codină, G. The Impact of Germinated Chickpea Flour Addition on Dough Rheology and Bread Quality. Plants 2022, 11, 1225. [Google Scholar] [CrossRef]
- Gebreil, S.Y.; Ali, M.I.; Mousa, E.A. Utilization of Amaranth Flour in Preparation of High Nutritional Value Bakery Products. Food Nutr. Sci. 2020, 10, 336. [Google Scholar]
- Kaur, A.; Kumar, K.; Dhaliwal, S.H. Physico-Chemical Characterization and Utilization of Finger Millet (Eleusine coracana L.) Cultivars for the Preparation of Biscuits. J. Food Process. Preserv. 2020, 44, e14672. [Google Scholar] [CrossRef]
- Atudorei, D.; Mironeasa, S.; Codină, G. Effects of Germinated Lentil Flour on Dough Rheological Behavior and Bread Quality. Foods 2022, 11, 2982. [Google Scholar] [CrossRef]
- Govender, L.; Siwela, M. The Effect of Moringa Oleifera Leaf Powder on the Physical Quality, Nutritional Composition and Consumer Acceptability of White and Brown Breads. Foods 2020, 9, 1910. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, R.V.; Fernandes, Â.; Gonzaléz-Paramás, A.M.; Barros, L.; Ferreira, I.C. Flour Fortification for Nutritional and Health Improvement: A Review. Food Res. Int. 2019, 125, 108576. [Google Scholar] [CrossRef]
- NOM-247-SSA1-2008; Productos y Servicios. Cereales y Sus Productos. Cereales, Harinas de Cereales, Sémolas o Semolinas. Alimentos a Base de: Cereales, Semillas Comestibles, de Harinas, Sémolas o Semolinas o Sus Mezclas. Secretaria de Salud Norma Oficial Mexicana: México City, México, 2008.
- Tian, W.; Chen, G.; Tilley, M.; Li, Y. Changes in phenolic profiles and antioxidant activities during the whole wheat bread-making process. Food Chem. 2021, 345, 128851. [Google Scholar] [CrossRef]
- Cammerata, A.; Laddomada, B.; Milano, F.; Camerlengo, F.; Bonarrigo, M.; Masci, S.; Sestili, F. Qualitative Characterization of Unrefined Durum Wheat Air-Classified Fractions. Foods 2021, 10, 2817. [Google Scholar] [CrossRef] [PubMed]
- Furuichi, T.; Abe, D.; Uchikawa, T.; Nagasaki, T.; Kanou, M.; Kasuga, J.; Matsumoto, S.; Tsurunaga, Y. Comparison of Nutritional Composition and Antioxidant Properties of Pulverized and Unutilized Portions of Waxy Barley. Foods 2023, 12, 2639. [Google Scholar] [CrossRef]
- Ryszard, A.; Ronald, B. Pegg. Chapter One—Natural Antioxidants of Plant Origin. In Advances in Food and Nutrition Research; Ferreira, I.C.F.R., Barros, L., Eds.; Academic Press: Cambridge, MA, USA, 2019; Volume 90, pp. 1–81. [Google Scholar] [CrossRef]
- Horvat, D.; Gordana, Š.; Georg, D.; Alojzije, L.; Tatjana, L.; Marijana, T.; Hrvoje, P.; Luka, A.; Zvonimir, Z. Phenolic Acid Profiles and Antioxidant Activity of Major Cereal Crops. Antioxidants 2020, 9, 527. [Google Scholar] [CrossRef]
- Chiu, H.F.; Venkatakrishnan, K.; Golovinskaia, O.; Wang, C.K. Gastroprotective Effects of Polyphenols against Various Gastro-Intestinal Disorders: A Mini-Review with Special Focus on Clinical Evidence. Molecules 2021, 26, 2090. [Google Scholar] [CrossRef]
- Peiretti, P.G.; Karamać, M.; Janiak, M.; Longato, E.; Meineri, G.; Amarowicz, R.; Gai, F. Phenolic Composition and Antioxidant Activities of Soybean (Glycine max (L.) Merr.) Plant during Growth Cycle. Agronomy 2019, 9, 153. [Google Scholar] [CrossRef]
- Bani, C.; Di Lorenzo, C.; Restani, P.; Mercogliano, F.; Colombo, F. Phenolic Profile and In Vitro Antioxidant Activity of Different Corn and Rice Varieties. Plants 2023, 12, 448. [Google Scholar] [CrossRef]
- Batifoulier, F.; Verny, M.A.; Chanliaud, E.; Rémésy, C.; Demigné, C. Variability of B Vitamin Concentrations in Wheat Grain, Milling Fractions and Bread Products. Eur. J. Agron. 2006, 25, 163–169. [Google Scholar] [CrossRef]
- Batifoulier, F.; Verny, M.A.; Chanliaud, E.; Remesy, C.; Demigne, C. Effect of Different Breadmaking Methods on Thiamine, Riboflavin and Pyridoxine Contents of Wheat Bread. J. Cereal Sci. 2005, 42, 101–108. [Google Scholar] [CrossRef]
- Hoaghia, M.-A.; Cadar, O.; Moisa, C.; Roman, C.; Kovacs, E. Heavy Metals and Health Risk Assessment in Vegetables Grown in the Vicinity of a Former Non-Metallic Facility Located in Romania. Sci. Total Environ. 2022, 29, 40079–40093. [Google Scholar] [CrossRef]
- Mustatea, G.; Ungureanu, E.L.; Iorga, S.C.; Ciotea, D.; Popa, M.E. Risk Assessment of Lead and Cadmium in Some Food Supplements Available on the Romanian Market. Foods 2021, 10, 581. [Google Scholar] [CrossRef] [PubMed]
- Dragan, F.; Lestyan, M.; Lupu, V.; Marcu, F.; Cozma, A.; Fodor, K.; Ciubara, A.; Moisa, C.; Teaha, D.; Lupu, A.; et al. The Threat of Mercury Poisoning by Fish Consumption. Appl. Sci. 2023, 13, 369. [Google Scholar] [CrossRef]
- Hoaghia, A.; Cadar, O.; Hognogi, G.; Levei, E.; Moisa, C.; Roman, C. Quality and Human Health Risk Assessment of Metals and Nitrogen Compounds in Drinking Water from an Urban Area Near a Former Non-Ferrous Ore Smelter. Rev. Anal. Lett. 2019, 52, 1268–1281. [Google Scholar] [CrossRef]
- Rahman, M.A.; Lee, S.-H.; Ji, H.C.; Kabir, A.H.; Jones, C.S.; Lee, K.-W. Importance of Mineral Nutrition for Mitigating Aluminum Toxicity in Plants on Acidic Soils: Current Status and Opportunities. Int. J. Mol. Sci. 2018, 19, 3073. [Google Scholar] [CrossRef] [PubMed]
- Sustr, M.; Soukup, A.; Tylova, E. Potassium in Root Growth and Development. Plants 2019, 8, 435. [Google Scholar] [CrossRef] [PubMed]
- Cakmak, I.; Kutman, U.B. Agronomic Biofortification of Cereals with Zinc: A Review. Eur. J. Soil Sci. 2018, 69, 172–180. [Google Scholar] [CrossRef]
- Crawford, N.M. Nitrate: Nutrient and Signal for Plant Growth. Plant Cell 1995, 7, 859–868. [Google Scholar] [CrossRef]
- Rieder, Á.; Madarász, B.; Szabó, J.A.; Zacháry, D.; Vancsik, A.; Ringer, M.; Szalai, Z.; Jakab, G. Soil Organic Matter Alteration Velocity Due to Land-Use Change: A Case Study Under Conservation Agriculture. Sustainability 2018, 10, 943. [Google Scholar] [CrossRef]
- Wairich, A.; Ricachenevsky, F.K.; Lee, S. A Tale of Two Metals: Biofortification of Rice Grains with Iron and Zinc. Front. Plant Sci. 2022, 13, 944624. [Google Scholar] [CrossRef] [PubMed]
- White, P.J.; Broadley, M.R. Biofortification of Crops with Seven Mineral Elements Often Lacking in Human Diets—Iron, Zinc, Copper, Calcium, Magnesium, Selenium, and Iodine. New Phytol. 2009, 182, 49–84. [Google Scholar] [CrossRef] [PubMed]
- Verdú, S.; Vásquez, F.; Ivorra, E.; Sánchez, A.J.; Barat, J.M.; Grau, R. Hyperspectral image control of the heat-treatment process of oat flour to model composite bread properties. J. Food Eng. 2017, 192, 45–52. [Google Scholar] [CrossRef]
- Boita, E.R.F.; Oro, T.; Santetti, G.S.; Bertolin, T.E.; Gutkoski, L.C. Rheological properties of wheat flour dough and pan bread with wheat bran. J. Cereal Sci. 2016, 71, 177–182. [Google Scholar] [CrossRef]
- Oprea, O.B.; Popa, M.E.; Apostol, L.; Gaceu, L. Research on the Potential Use of Grape Seed Flour in the Bakery Industry. Foods 2022, 11, 1589. [Google Scholar] [CrossRef] [PubMed]
- Kouvari, M.; Tsiampalis, T.; Chrysohoou, C.; Georgousopoulou, E.; Skoumas, J.; Mantzoros, C.S.; Pitsavos, C.S.; Panagiotakos, D.B. Quality of Plant-Based Diets in Relation to 10-Year Cardiovascular Disease Risk: The ATTICA Cohort Study. Eur. J. Nutr. 2022, 61, 2639–2649. [Google Scholar] [CrossRef]
- Švarc, P.L.; Jensen, M.B.; Langwagen, M.; Poulsen, A.; Trolle, E.; Jakobsen, J. Nutrient Content in Plant-Based Protein Products Intended for Food Composition Databases. J. Food Compos. Anal. 2022, 106, 104332. [Google Scholar] [CrossRef]
Sample | Ca (mg 100 g−1 Sample) | Mg (mg 100 g−1 Sample) | Zn (mg 100 g−1 Sample) | Fe (mg 100 g−1 Sample) | Cu (mg 100 g−1 Sample) | K (mg 100 g−1 Sample) |
---|---|---|---|---|---|---|
P1 | 42.62 c ± 5.01 | 99.98 d ± 18.88 | 2.81 a ± 0.36 | 3.90 b ± 1.65 | 1.72 d ± 0.52 | 258.50 d ± 48.77 |
P2 | 22.81 d ± 4.21 | 49.44 e ± 14.16 | 1.38 c ± 0.48 | 1.77 c ± 0.33 | 0.47 e ± 0.36 | 102.50 e ± 6.10 |
P3 | 43.6 c ± 4.45 | 112.21 c ± 27.28 | 2.24 b ± 0.62 | 3.97 b ± 0.15 | 1.87 c ± 0.22 | 336.00 b ± 142.42 |
P4 | 146.20 a ± 48.43 | 202.60 a ± 18.2 | 2.415 b ± 1.33 | 6.83 a ± 1.90 | 2.18 b ± 0.24 | 1185.60 a ± 186.89 |
P5 | 91.90 b ± 29.52 | 115.60 b ± 19.83 | 2.99 a ± 0.14 | 6.61 a ± 0.55 | 2.36 a ± 0.29 | 320.30 c ± 80.3 |
Mineral | Daily Requirement (mg) |
---|---|
K | 3800 |
Ca | 1000 |
Mg | 420 |
Fe | 18 |
Zn | 14 |
Cu | 1.7 |
Stage_Sample | Ca (mg 100 g−1 Sample) | Mg (mg 100 g−1 Sample) | Zn (mg 100 g−1 Sample) | Fe (mg 100 g−1 Sample) | Cu (mg 100 g−1 Sample) | K (mg 100 g−1 Sample) |
---|---|---|---|---|---|---|
raw_P1 | 46.58 f ± 4.25 | 117.20 h ± 1.05 | 3.11 c ± 0.09 | 5.40 f ± 0.20 | 2.19 e ± 0.04 | 303.00 g ± 2.00 |
raw_P2 | 26.62 h ± 0.48 | 62.35 j ± 0.85 | 1.80 e ± 0.10 | 2.05 g ± 0.15 | 0.80 g ± 0.07 | 108.00 j ± 1.50 |
raw_P3 | 47.60 f ± 0.70 | 137.10 g ± 1.10 | 2.80 d ± 0.12 | 4.08 e ± 0.12 | 2.07 d ± 0.03 | 466.00 h ± 2.00 |
raw_P4 | 190.40 c ± 1.10 | 219.20 b ± 0.80 | 3.63 e ± 0.07 | 8.56 d ± 0.16 | 2.39 c ± 0.06 | 1356.20 b ± 1.80 |
raw_P5 | 118.80 d ± 1.76 | 133.70 f ± 0.30 | 3.10 b ± 0.10 | 7.10 c ± 0.10 | 2.59 c ± 0.11 | 393.60 f ± 0.40 |
baked_P1 | 38.68 e ± 0.32 | 82.75 e ± 0.25 | 2.50 b ± 0.20 | 2.40 d ± 0.15 | 1.25 bc ± 0.05 | 214.00 e ± 1.20 |
baked_P2 | 19.00 g ± 0.70 | 36.52 i ± 0.48 | 0.95 d ± 0.15 | 1.48 f ± 0.08 | 0.140 ± 0.02 | 97.00 i ± 0.40 |
baked_P3 | 39.60 e ± 1.40 | 87.32 c ± 0.68 | 1.68 bc ± 0.07 | 3.85 e ± 0.05 | 1.67 c ± 0.03 | 206.00 c ± 1.30 |
baked_P4 | 102.00 a ± 0.70 | 186.00 a ± 0.80 | 1.20 a ± 0.10 | 5.10 a ± 0.20 | 1.96 ab ± 0.04 | 1015.00 a ± 2.00 |
baked_P5 | 65.00 b ± 2.00 | 97.50 d ± 0.70 | 2.89 b ± 0.06 | 6.12 b ± 0.18 | 2.12 a ± 0.18 | 247.00 d ± 0.70 |
Stage_Sample | Moisture Content (%) | Ca (mg 100 g−1 Sample DW) | Mg (mg 100 g−1 Sample DW) | Zn (mg 100 g−1 Sample DW) | Fe (mg 100 g−1 Sample DW) | Cu (mg 100 g−1 Sample DW) | K (mg 100 g−1 Sample DW) |
---|---|---|---|---|---|---|---|
raw_P1 | 10 | 51.76 | 130.22 | 3.46 | 6.00 | 2.43 | 336.67 |
raw_P2 | 12 | 30.30 | 70.95 | 2.05 | 2.32 | 0.91 | 121.74 |
raw_P3 | 8 | 51.74 | 148.91 | 3.04 | 4.15 | 2.12 | 506.52 |
raw_P4 | 7 | 204.60 | 235.59 | 3.90 | 9.20 | 2.57 | 1456.34 |
raw_P5 | 6 | 126.38 | 142.34 | 3.29 | 7.57 | 2.76 | 418.30 |
baked_P1 | 39 | 63.61 | 135.16 | 4.10 | 3.93 | 2.04 | 351.64 |
baked_P2 | 39 | 31.19 | 60.24 | 1.57 | 2.44 | 0.23 | 106.10 |
baked_P3 | 39 | 65.00 | 143.37 | 2.76 | 6.31 | 2.75 | 215.53 |
baked_P4 | 39 | 167.21 | 304.17 | 1.97 | 8.36 | 3.22 | 1673.55 |
baked_P5 | 39 | 106.56 | 159.43 | 4.79 | 10.07 | 3.50 | 255.80 |
PC | Eigenvalue | % Variance |
---|---|---|
1 | 4.62 | 77.03 |
2 | 0.93 | 15.50 |
3 | 0.25 | 4.24 |
4 | 0.16 | 2.73 |
5 | 0.03 | 0.45 |
6 | 0.003 | 0.05 |
Axis | Eigenvalue | % Variance |
---|---|---|
1 | 11478 | 98.39 |
2 | 153.09 | 1.31 |
3 | 34.888 | 0.299 |
MANOVA p-Values | raw_P1 | raw_P2 | raw_P3 | raw_P4 | raw_P5 | baked_P1 | baked_P2 | baked_P3 | baked_P4 | baked_P5 |
---|---|---|---|---|---|---|---|---|---|---|
raw_P1 | 0.0010 | 0.0101 | 0.0001 | 0.0011 | 0.0023 | 0.0006 | 0.0053 | 0.0002 | 0.6819 | |
raw_P2 | 0.0010 | 0.0006 | 0.0000 | 0.0003 | 0.0078 | 0.0126 | 0.0027 | 0.0001 | 0.0010 | |
raw_P3 | 0.0101 | 0.0006 | 0.0001 | 0.0021 | 0.0012 | 0.0004 | 0.0021 | 0.0003 | 0.0111 | |
raw_P4 | 0.0001 | 0.0000 | 0.0001 | 0.0002 | 0.0001 | 0.0000 | 0.0001 | 0.0005 | 0.0001 | |
raw_P5 | 0.0011 | 0.0003 | 0.0021 | 0.0002 | 0.0004 | 0.0002 | 0.0005 | 0.0007 | 0.0011 | |
baked_P1 | 0.0023 | 0.0078 | 0.0012 | 0.0001 | 0.0004 | 0.0025 | 0.0125 | 0.0001 | 0.0023 | |
baked_P2 | 0.0006 | 0.0126 | 0.0004 | 0.0000 | 0.0002 | 0.0025 | 0.0013 | 0.0001 | 0.0006 | |
baked_P3 | 0.0053 | 0.0027 | 0.0021 | 0.0001 | 0.0005 | 0.0125 | 0.0013 | 0.0002 | 0.0052 | |
baked_P4 | 0.0002 | 0.0001 | 0.0003 | 0.0005 | 0.0007 | 0.0001 | 0.0001 | 0.0002 | 0.0002 | |
baked_P5 | 0.6819 | 0.0010 | 0.0111 | 0.0001 | 0.0011 | 0.0023 | 0.0006 | 0.0052 | 0.0002 |
Mineral | Content (mg per 100 g) |
---|---|
Ca | 21.2 |
Mg | 26.83 |
Zn | 0.84 |
Cu | 0.12 |
Fe | 1.62 |
K | 103 |
Sample | Total Polyphenols | Antioxidant Capacity |
---|---|---|
Gallic Acid Equivalent µg/g | Ascorbic Acid Equivalent µg/g | |
P1 | 1090 ± 1.63 | 2.34 ± 0.09 |
P2 | 154 ± 1.63 | 0.33 ± 0.04 |
P3 | 257 ± 3.61 | 0.55 ± 0.06 |
P4 | 96 ± 1.63 | 0.21 ± 0.01 |
P5 | 447 ± 1.63 | 0.96 ± 0.06 |
Sample | Total Polyphenols | Antioxidant Capacity |
---|---|---|
Gallic Acid Equivalent µg/g | Ascorbic Acid Equivalent µg/g | |
P1 | 1079 ± 2.16 | 2.32 ± 0.88 |
P2 | 147 ± 1.63 | 0.29 ± 0.03 |
P3 | 218 ± 1.00 | 0.47 ± 0.04 |
P4 | 89 ± 1.00 | 0.19 ± 0.08 |
P5 | 433 ± 1.63 | 0.93 ± 0.03 |
Vitamins and LQ | B1 | B2 | B3 | B6 | B12 | D3 | A | MK4 | MK7 |
---|---|---|---|---|---|---|---|---|---|
0.12 | 0.2 | 0.2 | 0.2 | 0.12 | 0.2 | 0.08 | 0.17 | 0.2 | |
Sample | mg 100 g−1 | ||||||||
P1 | <LQ | <LQ | 0.019 | <LQ | <LQ | <LQ | <LQ | <LQ | <LQ |
P2 | <LQ | <LQ | 0.017 | <LQ | <LQ | <LQ | <LQ | <LQ | <LQ |
P3 | <LQ | <LQ | 0.018 | <LQ | <LQ | <LQ | <LQ | <LQ | <LQ |
P4 | <LQ | <LQ | 0.019 | <LQ | <LQ | <LQ | <LQ | <LQ | <LQ |
P5 | <LQ | <LQ | 0.021 | <LQ | <LQ | <LQ | <LQ | <LQ | <LQ |
Grain/Depth at Sowing (cm) | Sample (100 g) | Dough | Determinations |
---|---|---|---|
Wheat/6 | P1—whole wheat flour | 100 g flour + 60 g water Baking: 220 °C for 30 min in electric oven | Minerals: iron (Fe), copper (Cu), zinc (Zn), calcium (Ca), magnesium (Mg), potassium (K) Vitamins Polyphenols Antioxidant activity |
P2—hulled wheat flour | |||
Rye/6 | P3—rye flour | ||
Oat/4 | P5—oat flour | ||
Soy/4 | P4—soy flour |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moisa, C.; Brata, A.M.; Muresan, I.C.; Dragan, F.; Ratiu, I.; Cadar, O.; Becze, A.; Carbunar, M.; Brata, V.D.; Teusdea, A.C. Comparative Analysis of Vitamin, Mineral Content, and Antioxidant Capacity in Cereals and Legumes and Influence of Thermal Process. Plants 2024, 13, 1037. https://doi.org/10.3390/plants13071037
Moisa C, Brata AM, Muresan IC, Dragan F, Ratiu I, Cadar O, Becze A, Carbunar M, Brata VD, Teusdea AC. Comparative Analysis of Vitamin, Mineral Content, and Antioxidant Capacity in Cereals and Legumes and Influence of Thermal Process. Plants. 2024; 13(7):1037. https://doi.org/10.3390/plants13071037
Chicago/Turabian StyleMoisa, Corina, Anca Monica Brata, Iulia C. Muresan, Felicia Dragan, Ioana Ratiu, Oana Cadar, Anca Becze, Mihai Carbunar, Vlad Dumitru Brata, and Alin Cristian Teusdea. 2024. "Comparative Analysis of Vitamin, Mineral Content, and Antioxidant Capacity in Cereals and Legumes and Influence of Thermal Process" Plants 13, no. 7: 1037. https://doi.org/10.3390/plants13071037
APA StyleMoisa, C., Brata, A. M., Muresan, I. C., Dragan, F., Ratiu, I., Cadar, O., Becze, A., Carbunar, M., Brata, V. D., & Teusdea, A. C. (2024). Comparative Analysis of Vitamin, Mineral Content, and Antioxidant Capacity in Cereals and Legumes and Influence of Thermal Process. Plants, 13(7), 1037. https://doi.org/10.3390/plants13071037