Mechanisms of Strigolactone-Regulated Abiotic Stress Responses in Plants
Abstract
1. Introduction
2. SLs Biosynthesis and Signaling Pathways
3. Role of SLs in Regulating Plant Responses to Heat Stress
4. Role of SLs in Regulating Plant Responses to Cold Stress
5. Role of SLs in Regulating Plant Responses to Drought Stress
6. Role of SLs in Regulating Plant Responses to Salt Stress
7. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, H.; Zhu, J.; Gong, Z.; Zhu, J.-K. Abiotic stress responses in plants. Nat. Rev. Genet. 2022, 23, 104–119. [Google Scholar] [CrossRef]
- Oshunsanya, S.O.; Nwosu, N.J.; Li, Y. Abiotic Stress in Agricultural Crops Under Climatic Conditions. In Sustainable Agriculture, Forest and Environmental Management; Jhariya, M.K., Banerjee, A., Meena, R.S., Yadav, D.K., Eds.; Springer: Singapore, 2019; pp. 71–100. [Google Scholar]
- Nawaz, M.; Sun, J.; Shabbir, S.; Khattak, W.A.; Ren, G.; Nie, X.; Bo, Y.; Javed, Q.; Du, D.; Sonne, C. A review of plants strategies to resist biotic and abiotic environmental stressors. Sci. Total Environ. 2023, 900, 165832. [Google Scholar] [CrossRef] [PubMed]
- Ali, J.; Mukarram, M.; Ojo, J.; Dawam, N.; Riyazuddin, R.; Ghramh, H.A.; Khan, K.A.; Chen, R.; Kurjak, D.; Bayram, A. Harnessing Phytohormones: Advancing Plant Growth and Defence Strategies for Sustainable Agriculture. Physiol. Plant 2024, 176, e14307. [Google Scholar] [CrossRef]
- Cook, C.E.; Whichard, L.P.; Turner, B.; Wall, M.E.; Egley, G.H. Germination of Witchweed (Striga lutea Lour.): Isolation and Properties of a Potent Stimulant. Science 1966, 154, 1189–1190. [Google Scholar] [CrossRef]
- Alvi, A.F.; Sehar, Z.; Fatma, M.; Masood, A.; Khan, N.A. Strigolactone: An Emerging Growth Regulator for Developing Resilience in Plants. Plants 2022, 11, 2604. [Google Scholar] [CrossRef]
- Faizan, M.; Cheng, S.H.; Tonny, S.H.; Robab, M.I. Specific roles of strigolactones in plant physiology and remediation of heavy metals from contaminated soil. Plant Physiol. Biochem. 2022, 192, 186–195. [Google Scholar] [CrossRef]
- Mansoor, S.; Mir, M.A.; Karunathilake, E.M.B.M.; Rasool, A.; Ştefănescu, D.M.; Chung, Y.S.; Sun, H.-J. Strigolactones as promising biomolecule for oxidative stress management: A comprehensive review. Plant Physiol. Biochem. 2024, 206, 108282. [Google Scholar] [CrossRef]
- Janeeshma, E.; Habeeb, H.; Shackira, A.M.; Sinisha, A.K.; Mirshad, P.P.; Khoshru, B.; Henao, S.G.; Rani, A.; Verma, D.; Fathi, A.; et al. Strigolactone and analogues: A new generation of plant hormones with multifactorial benefits in environmental sustainability. Environ. Exp. Bot. 2024, 223, 105775. [Google Scholar] [CrossRef]
- Wang, Y.; Bouwmeester, H.J. Structural diversity in the strigolactones. J. Exp. Bot. 2018, 69, 2219–2230. [Google Scholar] [CrossRef] [PubMed]
- Yoneyama, K.; Xie, X.; Yoneyama, K.; Kisugi, T.; Nomura, T.; Nakatani, Y.; Akiyama, K.; McErlean, C.S.P. Which are the major players, canonical or non-canonical strigolactones? J. Exp. Bot. 2018, 69, 2231–2239. [Google Scholar] [CrossRef] [PubMed]
- Mashiguchi, K.; Seto, Y.; Yamaguchi, S. Strigolactone Biosynthesis, Transport and Perception. Plant J. 2021, 105, 335–350. [Google Scholar] [CrossRef]
- Guercio, A.M.; Palayam, M.; Shabek, N. Strigolactones: Diversity, Perception, and Hydrolysis. Phytochem. Rev. 2023, 22, 339–360. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, K.; Matsuzaki, K.-I.; Hayashi, H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 2005, 435, 824–827. [Google Scholar] [CrossRef]
- Koltai, H. Strigolactones are regulators of root development. New Phytol. 2011, 190, 545–549. [Google Scholar] [CrossRef]
- Umehara, M.; Hanada, A.; Yoshida, S.; Akiyama, K.; Arite, T.; Takeda-Kamiya, N.; Magome, H.; Kamiya, Y.; Shirasu, K.; Yoneyama, K.; et al. Inhibition of shoot branching by new terpenoid plant hormones. Nature 2008, 455, 195–200. [Google Scholar] [CrossRef]
- Gomez-Roldan, V.; Fermas, S.; Brewer, P.B.; Puech-Pagès, V.; Dun, E.A.; Pillot, J.-P.; Letisse, F.; Matusova, R.; Danoun, S.; Portais, J.-C.; et al. Strigolactone inhibition of shoot branching. Nature 2008, 455, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Ueda, H.; Kusaba, M. Strigolactone Regulates Leaf Senescence in Concert with Ethylene in Arabidopsis. Plant Physiol. 2015, 169, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Chi, C.; Xu, X.; Wang, M.; Zhang, H.; Fang, P.; Zhou, J.; Xia, X.; Shi, K.; Zhou, Y.; Yu, J. Strigolactones positively regulate abscisic acid-dependent heat and cold tolerance in tomato. Hortic. Res. 2021, 8, 237. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, L.; Sun, Y.; Zheng, S.; Wang, J.; Zhang, T. Hydrogen peroxide is involved in strigolactone induced low temperature stress tolerance in rape seedlings (Brassica rapa L.). Plant Physiol. Biochem. 2020, 157, 402–415. [Google Scholar] [CrossRef]
- Ha, C.V.; Leyva-González, M.A.; Osakabe, Y.; Tran, U.T.; Nishiyama, R.; Watanabe, Y.; Tanaka, M.; Seki, M.; Yamaguchi, S.; Dong, N.V.; et al. Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proc. Natl. Acad. Sci. USA 2014, 111, 851–856. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Liu, Y.; Li, Y.; Ling, W.; Fan, X.; Feng, Q.; Ming, R.; Yang, F. Combined analyses of transcriptome and metabolome reveal the mechanism of exogenous strigolactone regulating the response of elephant grass to drought stress. Front. Plant Sci. 2023, 14, 1186718. [Google Scholar] [CrossRef]
- Ren, C.-G.; Kong, C.-C.; Xie, Z.-H. Role of abscisic acid in strigolactone-induced salt stress tolerance in arbuscular mycorrhizal Sesbania cannabina seedlings. BMC Plant Biol. 2018, 18, 74. [Google Scholar] [CrossRef]
- Li, C.; Lu, X.; Liu, Y.; Xu, J.; Yu, W. Strigolactone Alleviates the Adverse Effects of Salt Stress on Seed Germination in Cucumber by Enhancing Antioxidant Capacity. Antioxidants 2023, 12, 1043. [Google Scholar] [CrossRef]
- Alder, A.; Jamil, M.; Marzorati, M.; Bruno, M.; Vermathen, M.; Bigler, P.; Ghisla, S.; Bouwmeester, H.; Beyer, P.; Al-Babili, S. The path from β-carotene to carlactone, a strigolactone-like plant hormone. Science 2012, 335, 1348–1351. [Google Scholar] [CrossRef]
- Abe, S.; Sado, A.; Tanaka, K.; Kisugi, T.; Asami, K.; Ota, S.; Kim, H.I.; Yoneyama, K.; Xie, X.; Ohnishi, T.; et al. Carlactone is converted to carlactonoic acid by MAX1 in Arabidopsis and its methyl ester can directly interact with AtD14 in vitro. Proc. Natl. Acad. Sci. USA 2014, 111, 18084–18089. [Google Scholar] [CrossRef]
- Mashiguchi, K.; Seto, Y.; Onozuka, Y.; Suzuki, S.; Takemoto, K.; Wang, Y.; Dong, L.; Asami, K.; Noda, R.; Kisugi, T.; et al. A carlactonoic acid methyltransferase that contributes to the inhibition of shoot branching in Arabidopsis. Proc. Natl. Acad. Sci. USA 2022, 119, e2111565119. [Google Scholar] [CrossRef] [PubMed]
- Brewer, P.B.; Yoneyama, K.; Filardo, F.; Meyers, E.; Scaffidi, A.; Frickey, T.; Akiyama, K.; Seto, Y.; Dun, E.A.; Cremer, J.E.; et al. LATERAL BRANCHING OXIDOREDUCTASE acts in the final stages of strigolactone biosynthesis in Arabidopsis. Proc. Natl. Acad. Sci. USA 2016, 113, 6301–6306. [Google Scholar] [CrossRef]
- Yoneyama, K.; Mori, N.; Sato, T.; Yoda, A.; Xie, X.; Okamoto, M.; Iwanaga, M.; Ohnishi, T.; Nishiwaki, H.; Asami, T.; et al. Conversion of carlactone to carlactonoic acid is a conserved function of MAX1 homologs in strigolactone biosynthesis. New Phytol. 2018, 218, 1522–1533. [Google Scholar] [CrossRef]
- Zhang, Y.; van Dijk, A.D.J.; Scaffidi, A.; Flematti, G.R.; Hofmann, M.; Charnikhova, T.; Verstappen, F.; Hepworth, J.; van der Krol, S.; Leyser, O.; et al. Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis. Nat. Chem. Biol. 2014, 10, 1028–1033. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.-T.E.; Wang, J.Y.; Votta, C.; Braguy, J.; Jamil, M.; Kirschner, G.K.; Fiorilli, V.; Berqdar, L.; Balakrishna, A.; Blilou, I.; et al. Disruption of the rice 4-DEOXYOROBANCHOL HYDROXYLASE unravels specific functions of canonical strigolactones. Proc. Natl. Acad. Sci. USA 2023, 120, e2306263120. [Google Scholar] [CrossRef] [PubMed]
- Wakabayashi, T.; Hamana, M.; Mori, A.; Akiyama, R.; Ueno, K.; Osakabe, K.; Osakabe, Y.; Suzuki, H.; Takikawa, H.; Mizutani, M.; et al. Direct conversion of carlactonoic acid to orobanchol by cytochrome P450 CYP722C in strigolactone biosynthesis. Sci. Adv. 2019, 5, eaax9067. [Google Scholar] [CrossRef]
- Wakabayashi, T.; Shida, K.; Kitano, Y.; Takikawa, H.; Mizutani, M.; Sugimoto, Y. CYP722C from Gossypium arboreum catalyzes the conversion of carlactonoic acid to 5-deoxystrigol. Planta 2020, 251, 97. [Google Scholar] [CrossRef]
- Kang, Z.; Yan, Y.; Lu, R.; Dong, X.; Xu, J.; Zheng, D.; Li, S.; Gao, Q.; Liu, S. Synthesis and Biological Profiling of Novel Strigolactone Derivatives for Arabidopsis Growth and Development. J. Agric. Food Chem. 2023, 71, 12859–12874. [Google Scholar] [CrossRef]
- Marzec, M. Perception and Signaling of Strigolactones. Front. Plant Sci. 2016, 7, 1260. [Google Scholar] [CrossRef]
- Yao, R.; Ming, Z.; Yan, L.; Li, S.; Wang, F.; Ma, S.; Yu, C.; Yang, M.; Chen, L.; Chen, L.; et al. DWARF14 is a non-canonical hormone receptor for strigolactone. Nature 2016, 536, 469–473. [Google Scholar] [CrossRef] [PubMed]
- Shabek, N.; Ticchiarelli, F.; Mao, H.; Hinds, T.R.; Leyser, O.; Zheng, N. Structural plasticity of D3-D14 ubiquitin ligase in strigolactone signalling. Nature 2018, 563, 652–656. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Liu, X.; Xiong, G.; Liu, H.; Chen, F.; Wang, L.; Meng, X.; Liu, G.; Yu, H.; Yuan, Y.; et al. DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature 2013, 504, 401–405. [Google Scholar] [CrossRef]
- Wang, L.; Wang, B.; Yu, H.; Guo, H.; Lin, T.; Kou, L.; Wang, A.; Shao, N.; Ma, H.; Xiong, G.; et al. Transcriptional regulation of strigolactone signalling in Arabidopsis. Nature 2020, 583, 277–281. [Google Scholar] [CrossRef]
- Zhou, F.; Lin, Q.; Zhu, L.; Ren, Y.; Zhou, K.; Shabek, N.; Wu, F.; Mao, H.; Dong, W.; Gan, L.; et al. D14-SCF(D3)-dependent degradation of D53 regulates strigolactone signalling. Nature 2013, 504, 406–410. [Google Scholar] [CrossRef]
- Khan, Z.; Shahwar, D. Role of Heat Shock Proteins (HSPs) and Heat Stress Tolerance in Crop Plants. In Sustainable Agriculture in the Era of Climate Change; Roychowdhury, R., Choudhury, S., Hasanuzzaman, M., Srivastava, S., Eds.; Springer: Cham, Switzerland, 2020; pp. 211–234. [Google Scholar]
- Zhao, J.; Lu, Z.; Wang, L.; Jin, B. Plant Responses to Heat Stress: Physiology, Transcription, Noncoding RNAs, and Epigenetics. Int. J. Mol. Sci. 2020, 22, 117. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Zhang, S.; Huang, B. Strigolactones and interaction with auxin regulating root elongation in tall fescue under different temperature regimes. Plant Sci. 2018, 271, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Zhang, S.; Huang, B. Strigolactones Promote Leaf Elongation in Tall Fescue through Upregulation of Cell Cycle Genes and Downregulation of Auxin Transport Genes in Tall Fescue under Different Temperature Regimes. Int. J. Mol. Sci. 2019, 20, 1836. [Google Scholar] [CrossRef]
- Cooper, J.W.; Hu, Y.; Beyyoudh, L.; Yildiz Dasgan, H.; Kunert, K.; Beveridge, C.A.; Foyer, C.H. Strigolactones positively regulate chilling tolerance in pea and in Arabidopsis. Plant Cell Environ. 2018, 41, 1298–1310. [Google Scholar] [CrossRef]
- Wang, X.; Li, Z.; Shi, Y.; Liu, Z.; Zhang, X.; Gong, Z.; Yang, S. Strigolactones promote plant freezing tolerance by releasing the WRKY41-mediated inhibition of CBF/DREB1 expression. EMBO J. 2023, 42, e112999. [Google Scholar] [CrossRef]
- Kim, J.-S.; Kidokoro, S.; Yamaguchi-Shinozaki, K.; Shinozaki, K. Regulatory networks in plant responses to drought and cold stress. Plant Physiol. 2024, 195, 170–189. [Google Scholar] [CrossRef]
- Omoarelojie, L.O.; Kulkarni, M.G.; Finnie, J.F.; Van Staden, J. Strigolactone analog (rac-GR24) enhances chilling tolerance in mung bean seedlings. S. Afr. J. Bot. 2021, 140, 173–181. [Google Scholar] [CrossRef]
- Li, W.; Nguyen, K.H.; Chu, H.D.; Watanabe, Y.; Osakabe, Y.; Sato, M.; Toyooka, K.; Seo, M.; Tian, L.; Tian, C.; et al. Comparative functional analyses of DWARF14 and KARRIKIN INSENSITIVE 2 in drought adaptation of Arabidopsis thaliana. Plant J. 2020, 103, 111–127. [Google Scholar] [CrossRef]
- Marzec, M.; Daszkowska-Golec, A.; Collin, A.; Melzer, M.; Eggert, K.; Szarejko, I. Barley strigolactone signalling mutant hvd14.d reveals the role of strigolactones in abscisic acid-dependent response to drought. Plant Cell Environ. 2020, 43, 2239–2253. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, F.; Jiao, P.; Liu, J.; Zhang, H.; Liu, S.; Guan, S.; Ma, Y. The Overexpression of Zea mays Strigolactone Receptor Gene D14 Enhances Drought Resistance in Arabidopsis thaliana L. Int. J. Mol. Sci. 2024, 25, 1327. [Google Scholar] [CrossRef] [PubMed]
- Nisa, Z.-U.; Wang, Y.; Ali, N.; Chen, C.; Zhang, X.; Jin, X.; Yu, L.; Jing, L.; Chen, C.; Elansary, H.O. Strigolactone signaling gene from soybean GmMAX2a enhances the drought and salt-alkaline resistance in Arabidopsis via regulating transcriptional profiles of stress-related genes. Funct. Integr. Genom. 2023, 23, 216. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Lian, Y.; Kang, J.; Bian, Z.; Xuan, L.; Gao, Z.; Wang, X.; Deng, J.; Wang, C. The SUPPRESSOR of MAX2 1 (SMAX1)-Like SMXL6, SMXL7 and SMXL8 Act as Negative Regulators in Response to Drought Stress in Arabidopsis. Plant Cell Physiol. 2020, 61, 1477–1492. [Google Scholar] [CrossRef]
- Min, Z.; Li, R.; Chen, L.; Zhang, Y.; Li, Z.; Liu, M.; Ju, Y.; Fang, Y. Alleviation of drought stress in grapevine by foliar-applied strigolactones. Plant Physiol. Biochem. 2019, 135, 99–110. [Google Scholar] [CrossRef]
- Sedaghat, M.; Emam, Y.; Mokhtassi-Bidgoli, A.; Hazrati, S.; Lovisolo, C.; Visentin, I.; Cardinale, F.; Tahmasebi-Sarvestani, Z. The Potential of the Synthetic Strigolactone Analogue GR24 for the Maintenance of Photosynthesis and Yield in Winter Wheat under Drought: Investigations on the Mechanisms of Action and Delivery Modes. Plants 2021, 10, 1223. [Google Scholar] [CrossRef] [PubMed]
- Sattar, A.; Ul-Allah, S.; Ijaz, M.; Sher, A.; Butt, M.; Abbas, T.; Irfan, M.; Fatima, T.; Alfarraj, S.; Alharbi, S.A. Exogenous application of strigolactone alleviates drought stress in maize seedlings by regulating the physiological and antioxidants defense mechanisms. Cereal Res. Commun. 2021, 50, 263–272. [Google Scholar] [CrossRef]
- Luqman, M.; Shahbaz, M.; Maqsood, M.F.; Farhat, F.; Zulfiqar, U.; Siddiqui, M.H.; Masood, A.; Aqeel, M.; Haider, F.U. Effect of strigolactone on growth, photosynthetic efficiency, antioxidant activity, and osmolytes accumulation in different maize (Zea mays L.) hybrids grown under drought stress. Plant Signal. Behav. 2023, 18, 2262795. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; He, H.; Vitali, M.; Visentin, I.; Charnikhova, T.; Haider, I.; Schubert, A.; Ruyter-Spira, C.; Bouwmeester, H.J.; Lovisolo, C.; et al. Osmotic stress represses strigolactone biosynthesis in Lotus japonicus roots: Exploring the interaction between strigolactones and ABA under abiotic stress. Planta 2015, 241, 1435–1451. [Google Scholar] [CrossRef]
- Visentin, I.; Vitali, M.; Ferrero, M.; Zhang, Y.; Ruyter-Spira, C.; Novák, O.; Strnad, M.; Lovisolo, C.; Schubert, A.; Cardinale, F. Low levels of strigolactones in roots as a component of the systemic signal of drought stress in tomato. New Phytol. 2016, 212, 954–963. [Google Scholar] [CrossRef]
- Qiao, M.; Hong, C.; Jiao, Y.; Hou, S.; Gao, H. Impacts of Drought on Photosynthesis in Major Food Crops and the Related Mechanisms of Plant Responses to Drought. Plants 2024, 13, 1808. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, V.; Shahzad, B.; Ramakrishnan, M.; Singh Sidhu, G.P.; Bali, A.S.; Handa, N.; Kapoor, D.; Yadav, P.; Khanna, K.; et al. Photosynthetic Response of Plants Under Different Abiotic Stresses: A Review. J. Plant Growth Regul. 2019, 39, 509–531. [Google Scholar] [CrossRef]
- Xu, J.; Li, L.; Liu, Y.; Yu, Y.; Li, H.; Wang, X.; Pang, Y.; Cao, H.; Sun, Q. Molecular and physiological mechanisms of strigolactones-mediated drought stress in crab apple (Malus hupehensis Rehd.) seedlings. Sci. Hortic. 2023, 311, 111800. [Google Scholar] [CrossRef]
- Li, Y.; Li, S.; Feng, Q.; Zhang, J.; Han, X.; Zhang, L.; Yang, F.; Zhou, J. Effects of exogenous Strigolactone on the physiological and ecological characteristics of Pennisetum purpureum Schum. Seedlings under drought stress. BMC Plant Biol. 2022, 22, 578. [Google Scholar] [CrossRef]
- Ali, A.; Shah, T.; Haider, G.; Awan, M.I.; Gohar, M.; Munsif, F.; Ahmad, I. Strigolactone-Mediated Oxidative Stress Alleviation in Brassica rapa Through Upregulating Antioxidant System Under Water Deficit Conditions. J. Plant Growth Regul. 2023, 42, 4675–4687. [Google Scholar] [CrossRef]
- Impa, S.M.; Nadaradjan, S.; Jagadish, S.V.K. Drought Stress Induced Reactive Oxygen Species and Anti-oxidants in Plants. In Abiotic Stress Responses in Plants; Ahmad, P., Prasad, M., Eds.; Springer: New York, NY, USA, 2012; pp. 131–147. [Google Scholar]
- Yang, Y.W.; Gu, M.Z.; Chen, J.M.; Zhang, R.L.; Liu, Z.Y.; Shi, Y.H.; Liu, D.L.; Wang, L. Comparative Transcriptomes Reveal the Mitigation Effect of GR24 in Alfalfa Under Drought Stress. J. Plant Growth Regul. 2023, 42, 3150–3161. [Google Scholar] [CrossRef]
- Ozturk, M.; Turkyilmaz Unal, B.; García-Caparrós, P.; Khursheed, A.; Gul, A.; Hasanuzzaman, M. Osmoregulation and its actions during the drought stress in plants. Physiol. Plant 2021, 172, 1321–1335. [Google Scholar] [CrossRef] [PubMed]
- Sedaghat, M.; Sarvestani, Z.T.; Emam, Y.; Bidgoli, A.M.; Sorooshzadeh, A. Foliar-Applied GR24 and Salicylic Acid Enhanced Wheat Drought Tolerance. Russ. J. Plant Physiol. 2020, 67, 733–739. [Google Scholar] [CrossRef]
- Sedaghat, M.; Tahmasebi-Sarvestani, Z.; Emam, Y.; Mokhtassi-Bidgoli, A. Physiological and antioxidant responses of winter wheat cultivars to strigolactone and salicylic acid in drought. Plant Physiol. Biochem. 2017, 119, 59–69. [Google Scholar] [CrossRef]
- Bidabadi, S.S.; Sharifi, P. Strigolactone and Methyl Jasmonate-Induced Antioxidant Defense and the Composition Alterations of Different Active Compounds in Dracocephalum kotschyi Boiss Under Drought Stress. J. Plant Growth Regul. 2021, 40, 878–889. [Google Scholar] [CrossRef]
- Ma, N.; Hu, C.; Wan, L.; Hu, Q.; Xiong, J.; Zhang, C. Strigolactones Improve Plant Growth, Photosynthesis, and Alleviate Oxidative Stress under Salinity in Rapeseed (Brassica napus L.) by Regulating Gene Expression. Front. Plant Sci. 2017, 8, 1671. [Google Scholar] [CrossRef]
- Zhang, X.H.; Ma, C.; Zhang, L.; Su, M.; Wang, J.; Zheng, S.; Zhang, T.G. GR24-mediated enhancement of salt tolerance and roles of H2O2 and Ca2+ in regulating this enhancement in cucumber. J. Plant Physiol. 2022, 270, 153640. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, L.; Ma, C.; Su, M.; Wang, J.; Zheng, S.; Zhang, T. Exogenous strigolactones alleviate the photosynthetic inhibition and oxidative damage of cucumber seedlings under salt stress. Sci. Hortic. 2022, 297, 110962. [Google Scholar] [CrossRef]
- Zahra, N.; Al Hinai, M.S.; Hafeez, M.B.; Rehman, A.; Wahid, A.; Siddique, K.H.M.; Farooq, M. Regulation of photosynthesis under salt stress and associated tolerance mechanisms. Plant Physiol. Biochem. 2022, 178, 55–69. [Google Scholar] [CrossRef]
- Ling, F.; Su, Q.; Jiang, H.; Cui, J.; He, X.; Wu, Z.; Zhang, Z.; Liu, J.; Zhao, Y. Effects of strigolactone on photosynthetic and physiological characteristics in salt-stressed rice seedlings. Sci. Rep. 2020, 10, 6183. [Google Scholar] [CrossRef]
- Faisal, M.; Faizan, M.; Tonny, S.H.; Rajput, V.D.; Minkina, T.; Alatar, A.A.; Pathirana, R. Strigolactone-Mediated Mitigation of Negative Effects of Salinity Stress in Solanum lycopersicum through Reducing the Oxidative Damage. Sustainability 2023, 15, 5805. [Google Scholar] [CrossRef]
- Liu, H.; Li, C.; Yan, M.; Zhao, Z.; Huang, P.; Wei, L.; Wu, X.; Wang, C.; Liao, W. Strigolactone is involved in nitric oxide-enhanced the salt resistance in tomato seedlings. J. Plant Res. 2022, 135, 337–350. [Google Scholar] [CrossRef]
- Sharifi, P.; Bidabadi, S.S. Strigolactone could enhances gas-exchange through augmented antioxidant defense system in Salvia nemorosa L. plants subjected to saline conditions stress. Ind. Crop Prod. 2020, 151, 112460. [Google Scholar] [CrossRef]
- Iftikhar, I.; Shahbaz, M.; Wahid, M.A. Potential Role of Foliage Applied Strigolactone (GR24) on Photosynthetic Pigments, Gas Exchange Attributes, Mineral Nutrients and Yield Components of Zea mays (L.) Under Saline Regimes. Gesunde Pflanz. 2023, 75, 577–591. [Google Scholar] [CrossRef]
- Kesawat, M.S.; Satheesh, N.; Kherawat, B.S.; Kumar, A.; Kim, H.-U.; Chung, S.-M.; Kumar, M. Regulation of Reactive Oxygen Species during Salt Stress in Plants and Their Crosstalk with Other Signaling Molecules-Current Perspectives and Future Directions. Plants 2023, 12, 864. [Google Scholar] [CrossRef]
- Zulfiqar, H.; Shahbaz, M.; Ahsan, M.; Nafees, M.; Nadeem, H.; Akram, M.; Maqsood, A.; Ahmar, S.; Kamran, M.; Alamri, S.; et al. Strigolactone (GR24) Induced Salinity Tolerance in Sunflower (Helianthus annuus L.) by Ameliorating Morpho-Physiological and Biochemical Attributes Under In Vitro Conditions. J. Plant Growth Regul. 2021, 40, 2079–2091. [Google Scholar] [CrossRef]
- Mehrabi, S.S.; Sabokdast, M.; Bihamta, M.R.; Soorni, J.; Mirmazloum, I. Strigolactone-mediated amelioration of salinity stress in bread wheat: Insights from phytochemical and ion channels related genes expression analyses. Plant Stress 2024, 11, 100324. [Google Scholar] [CrossRef]
- Balasubramaniam, T.; Shen, G.; Esmaeili, N.; Zhang, H. Plants’ Response Mechanisms to Salinity Stress. Plants 2023, 12, 2253. [Google Scholar] [CrossRef] [PubMed]
- Sarwar, Y.; Shahbaz, M. GR24 Triggered Variations in Morpho-Physiological Attributes of Sunflower (Helianthus annuus) under Salinity. Int. J. Agric. Biol. 2019, 21, 34–40. [Google Scholar]
- Sarwar, Y.; Shahbaz, M. Modulation in Growth, Photosynthetic Pigments, Gas Exchange Attributes and Inorganic Ions in Sunflower (Helianthus annuus L.) by Strigolactones (Gr24) Achene Priming under Saline Conditions. Pak. J. Bot. 2020, 52, 23–31. [Google Scholar] [CrossRef]
- Kausar, F.; Shahbaz, M. Influence of Strigolactone (GR24) as a Seed Treatment on Growth, Gas Exchange and Chlorophyll Fluorescence of Wheat under Saline Conditions. Int. J. Agric. Biol. 2017, 19, 321–327. [Google Scholar] [CrossRef]
- Jiang, W.; Lu, C.F.; Xu, X.; Riaz, M.W.; Lv, A.; Shao, Q. Strigolactones: Biosynthetic Regulation, Hormonal Interaction, and Their Involvement in Abiotic Stress Adaption. Sci. Hortic. 2024, 325, 112689. [Google Scholar] [CrossRef]
- Sharma, P.; Jha, A.B.; Dubey, R.S. Strigolactones: Coordination with Other Phytohormones and Enhancement of Abiotic Stress Responses. Environ. Exp. Bot. 2024, 223, 105782. [Google Scholar] [CrossRef]
- Wu, F.; Gao, Y.; Yang, W.; Sui, N.; Zhu, J. Biological Functions of Strigolactones and Their Crosstalk with Other Phytohormones. Front. Plant Sci. 2022, 13, 821563. [Google Scholar] [CrossRef] [PubMed]
- Bhoi, A.; Yadu, B.; Chandra, J.; Keshavkant, S. Contribution of Strigolactone in Plant Physiology, Hormonal Interaction and Abiotic Stresses. Planta 2021, 254, 28. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.-W.; Xi, Z. Strigolactone agonists/antagonists for agricultural applications: New opportunities. Adv. Agrochem. 2022, 1, 61–72. [Google Scholar] [CrossRef]
- Samejima, H.; Babiker, A.G.; Takikawa, H.; Sasaki, M.; Sugimoto, Y. Practicality of the suicidal germination approach for controlling Strigahermonthica. Pest Manag. Sci. 2016, 72, 2035–2042. [Google Scholar] [CrossRef]
- Jamil, M.; Kountche, B.A.; Haider, I.; Guo, X.; Ntui, V.O.; Jia, K.P.; Ali, S.; Hameed, U.S.; Nakamura, H.; Lyu, Y.; et al. Methyl phenlactonoates are efficient strigolactone analogs with simple structure. J. Exp. Bot. 2018, 69, 2319–2331. [Google Scholar] [CrossRef]
Stress | Species | GR24 Treatment | Effect | Reference |
---|---|---|---|---|
Heat | Festuca arundinacea | 0.01 μM | Increases: crown root elongation; cell cycle-related genes expression Decreases: auxin transport related genes expression | [43] |
0.01 μM | Increases: leaf elongation; cell division; cell cycle-related genes expression Decreases: auxin transport related genes expression | [44] | ||
Cold | Brassica rapa | 0.1 μmol L−1 | Increases: SOD, POD, CAT and APX activities; soluble protein and proline contents; SOD, POD, CAT, APX, MPK3, MPK6, ICE1 and COR expression Decreases: MDA and H2O2 contents | [20] |
Vigna radiata | 1 and 10 μM | Increases: RWC; SOD, PAL, TAL and LOX activities; total soluble sugar and proline contents Decreases: O2•−, H2O2, phenolics and MDA contents | [48] | |
Heat and Cold | Solanum lycopersicum | 3 µM | Increases: SOD, APX, GR, MDAR and DHAR activities; leaf ABA content; NCED6, HSP70 and CBF1 expression | [19] |
Drought | Brassica rapa | 10 μM | Increases: photosynthesis traits; antioxidant defenses Decreases: MDA content | [64] |
Dracocephalum kotschyi | 10 µM | Increases: fresh and dry weights; essential oil content and yield Decreases: electrolyte leakage; MDA and H2O2 contents | [70] | |
Malus hupehensis | 1 µM | Increases: chlorophyll contents; photosynthetic parameters; antioxidant capacity Decreases: O2•−, H2O2 and MDA contents | [62] | |
Medicago sativa | 0.1 µM | Increases: root, stem and leaf FW; plant height; root length; POD and CAT activities in leaves; POD, CAT and SOD activities in roots; leaves and roots soluble protein contents | [66] | |
Pennisetum purpureum | 1, 3, 5 and 7 μmol L−1 | Increases: root development; water-use efficiency; photosynthesis; photosynthetic enzyme activity | [63] | |
3 μmol L−1 | Increases: PpAGT2, PpIVD, PpMCCA and PpMCCB expression to control root development; PpPEPCK, PpRuBPC, PpPGK, PpGAPDH, PpFBA and PpSBPase expression to regulate photosynthetic capacity Decreases: PpACAT and PpMFP2 expression to regulate root development | [22] | ||
Triticum aestivum | 10 μM | Increases: RWC; membrane stability index; POD, CAT and APX activities Decreases: electrolyte leakage; MDA content | [69] | |
10 μM | Increases: stomatal conductance; photosynthetic rate; proline and soluble sugar contents Decreases: H2O2 content | [68] | ||
5 and 10 µM | Increases: root and shoot DW; transpiration rate and stomatal conductance; photosynthetic rate; SOD, POD, CAT and APX activities Decreases: H2O2 content | [55] | ||
Vitis vinifera | 1, 3 and 5 μM | Increases: RWC; chlorophyll content and photosynthetic rate; antioxidant capacity Decreases: stomatal opening; electrolyte leakage; H2O2 and MDA contents | [54] | |
Zea mays | 10 and 20 µM | Increases: water relations; gas exchange parameters; photosynthetic pigments; antioxidant enzymes activities | [56] | |
0.001, 0.01 and 0.1 mg L−1 | Increases: stomatal conductance; water use efficiency; gas exchange characteristics; net CO2 assimilation rate; chlorophyll content; antioxidant enzymes activities; leaf ascorbic acid; total phenolics; glycine betaine; free proline | [57] | ||
Salt | Brassica napus | 0.18 μM | Increases: root and shoot FW and DW; transpiration rate and stomatal conductance; chlorophyll content and photosynthetic rate; SOD and POD activities Decreases: MDA content | [71] |
Cucumis sativus | 1.0 μmol L−1 | Increases: SOD, POD, CAT and APX activities; proline content; SOD, POD, CAT and APX expression Decreases: electrolyte leakage; O2•− and H2O2 contents | [72] | |
10 μM | Increases: SOD, POD, CAT and APX activities; AsA and GSH contents Decreases: MDA, H2O2 and O2•− contents; proline content | [24] | ||
Helianthus annuus | 3.35, 33.5 and 335 nM | Increases: root and shoot FW and DW; gas exchange attributes; osmotic potential and RWC | [84] | |
0.001, 0.01 and 0.1 mg L−1 | Increases: plant biomass and shoot length; carotenoids contents; shoots and roots Na+, K+ and Ca2+ contents | [85] | ||
0.001, 0.01 and 0.1 mg L−1 | Increases: callus DW and FW; SOD, POD and CAT activities; free protein, free proline, glycine betaine, K+ and Ca2+ contents Decreases: MDA and H2O2 contents; Na+ content | [81] | ||
Oryza sativa | 0.1, 0.2, 1 and 5 μM | Increases: root and shoot DW; plant height and root length; transpiration rate and stomatal conductance; chlorophyll content and photosynthetic rate; POD and SOD activities Decreases: MDA content | [75] | |
Salvia nemorosa | 0.1, 0.2, 0.3 and 0.4 μM | Increases: plant growth rate; stomatal conductance; chlorophyll content and photosynthetic rate; SOD, POD, CAT and GR activities; proline and total phenolics contents; essential oil yield and content Decreases: electrolyte leakage, MDA and H2O2 contents | [78] | |
Solanum lycopersicum | 15 μM | Increases: leaf area; root length; chlorophyll and carotenoid contents; SOD, POD, CAT, APX and GR activities | [77] | |
2 µM | Increases: photosynthetic efficiency; antioxidant capacity; proline and protein contents | [76] | ||
Triticum aestivum | 0.001, 0.01 and 0.1 mg L−1 | Increases: net CO2 assimilation rate | [86] | |
10 µM | Increases: grain yield; proline and glycine betaine contents; APX and POX activities; K+/Na+ ratio Decreases: electrolyte leakage; H2O2 and MDA contents | [82] | ||
Zea mays | 0.001, 0.01 and 0.1 mg L−1 | Increases: grains/cob number and main cob diameter; transpiration and stomatal conductance; chlorophyll and carotenoids contents, photosynthetic rate; K+ and Ca2+ contents Decreases: Na+ content | [79] |
Stress | Species | Gene | Effect | Reference |
---|---|---|---|---|
Cold | Arabidopsis thaliana | MAX3, MAX4 and MAX2 | positively regulate dark chilling tolerance | [45] |
MAX3, MAX4, MAX1, MAX2, D14, and SMXL6,7,8 | MAX1-4 and D14 positively regulate cold tolerance; SMXL6,7,8 negatively regulate cold tolerance | [46] | ||
Pisum sativum | RMS5, RMS4 and RMS3 | positively regulate dark chilling tolerance | [45] | |
Heat and Cold | Solanum lycopersicum | CCD7, CCD8, MAX1, and MAX2 | positively regulate heat and cold tolerance | [19] |
Drought | Arabidopsis thaliana | D14 | positively regulate drought tolerance | [49] |
SMXL6,7,8 | negatively regulate drought tolerance | [53] | ||
Glycine max | MAX2a | positively regulate drought tolerance | [52] | |
Hordeum vulgare | D14 | positively regulate drought tolerance | [50] | |
Lotus japonicus | CCD7 | positively regulate drought tolerance | [58] | |
Solanum lycopersicum | CCD7 | positively regulate drought tolerance | [59] | |
Zea mays | D14 | positively regulate drought tolerance | [51] | |
Drought and Salt | Arabidopsis thaliana | MAX3, MAX4 and MAX2 | positively regulate drought and salt tolerance | [21] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, J.; Fu, H.; Wang, Z.; Zhang, L.; Liu, Z.; Hu, Y.; Shen, F.; Wang, W. Mechanisms of Strigolactone-Regulated Abiotic Stress Responses in Plants. Plants 2025, 14, 2582. https://doi.org/10.3390/plants14162582
Dong J, Fu H, Wang Z, Zhang L, Liu Z, Hu Y, Shen F, Wang W. Mechanisms of Strigolactone-Regulated Abiotic Stress Responses in Plants. Plants. 2025; 14(16):2582. https://doi.org/10.3390/plants14162582
Chicago/Turabian StyleDong, Jie, Hailin Fu, Zhenyu Wang, Liwei Zhang, Ziyi Liu, Yulin Hu, Fafu Shen, and Wei Wang. 2025. "Mechanisms of Strigolactone-Regulated Abiotic Stress Responses in Plants" Plants 14, no. 16: 2582. https://doi.org/10.3390/plants14162582
APA StyleDong, J., Fu, H., Wang, Z., Zhang, L., Liu, Z., Hu, Y., Shen, F., & Wang, W. (2025). Mechanisms of Strigolactone-Regulated Abiotic Stress Responses in Plants. Plants, 14(16), 2582. https://doi.org/10.3390/plants14162582