Next Article in Journal
Yield Performance of Super Hybrid Rice Grown in Subtropical Environments at a Similar Latitude but Different Altitudes in Southwest China
Next Article in Special Issue
Chemical and Biological Study of the Essential Oil Isolated from Fruits of Citrus x limonia
Previous Article in Journal
Genetic Variation in Ornamental and Growth Traits in Hybrid Populations of Lilium davidii var. unicolor
Previous Article in Special Issue
Comparative Metabolic Profiling and Biological Evaluation of Essential Oils from Conocarpus Species: Antidiabetic, Antioxidant, and Antimicrobial Potential
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Gynoxys hallii Hieron., Gynoxys calyculisolvens Hieron., and Gynoxys azuayensis Cuatrec. Essential Oils—Chemical and Enantioselective Analyses of Three Unprecedented Volatile Fractions from the Ecuadorian Biodiversity

by
Yessenia E. Maldonado
1,
María del Carmen Rodríguez
2,
María Emilia Bustamante
2,
Stefanny Cuenca
2,
Omar Malagón
3,
Nixon Cumbicus
4 and
Gianluca Gilardoni
3,*
1
Programa de Doctorado en Química, Universidad Técnica Particular de Loja (UTPL), Calle Paris s/n y Praga, Loja 110107, Ecuador
2
Carrera de Bioquímica y Farmacia, Universidad Técnica Particular de Loja (UTPL), Calle Paris s/n y Praga, Loja 110107, Ecuador
3
Departamento de Química, Universidad Técnica Particular de Loja (UTPL), Calle Paris s/n y Praga, Loja 110107, Ecuador
4
Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja (UTPL), Calle Paris s/n y Praga, Loja 110107, Ecuador
*
Author to whom correspondence should be addressed.
Plants 2025, 14(5), 659; https://doi.org/10.3390/plants14050659
Submission received: 31 January 2025 / Revised: 18 February 2025 / Accepted: 19 February 2025 / Published: 21 February 2025
(This article belongs to the Special Issue Chemical Analysis and Biological Activities of Plant Essential Oils)

Abstract

:
The present study is the first report on the chemical and enantiomeric compositions of essential oils from the Ecuadorian species Gynoxys hallii Hieron., Gynoxys calyculisolvens Hieron., and Gynoxys azuayensis Cuatrec. All the volatile fractions presented a sesquiterpene-based chemical profile, typical of other volatile fractions from this genus. Both qualitative (GC-MS) and quantitative (GC-FID) chemical analyses were carried out on two stationary phases of different polarity (non-polar and polar). The main constituents of G. hallii essential oil on the two columns, respectively, were α-pinene (33.6–31.5%), (E)-β-caryophyllene (6.2–6.4%), germacrene D (35.7–38.3%), and bicyclogermacrene (3.8–4.0%). In G. calyculisolvens, the major compounds were α-pinene (11.2–11.0%), p-cymene (4.0–3.7%), α-copaene (3.6–3.7%), (E)-β-caryophyllene (8.1–8.3%), germacrene D (20.8–22.0%), and germacrene D-4-ol (8.4–8.6%). Finally, the main components of G. azuayensis were α-pinene (4.5–4.1%), germacrene D (14.1–12.4%), bicyclogermacrene (2.6–3.0%), tridecanal (6.4–6.2%), and spathulenol (7.8–7.1%). Furthermore, enantioselective analyses were conducted on the three volatile fractions, using two stationary phases based on β-cyclodextrins. As a result, twelve chiral components were investigated, detecting both enantiomerically pure compounds and scalemic mixtures with various enantiomeric excess.

1. Introduction

According to the United Nations, Ecuador has been defined as a megadiverse country, whose outstanding biodiversity includes thousands of phytochemically unstudied botanical species [1,2,3]. For this reason, our group has been studying the secondary metabolites of native and endemic Ecuadorian plants for more than twenty years, with the aim of discovering new natural products of pharmaceutical and biochemical interest [4]. In recent years, we have especially focused on the description of unprecedented essential oils (EOs), describing their chemical and enantiomeric compositions, olfactometric profiles, and biological activities [5]. With these premises, an unfunded project about the volatile fractions of genus Gynoxys in southern Ecuador is currently in progress, based on the chemical compositions and enantiomeric profiles of the EOs from this taxon. The focus of this project is strictly academic and chemotaxonomic due to the low distillation yields that usually characterise these EOs. A total of twelve unprecedented species were selected in the Province of Loja, Ecuador: Gynoxys miniphylla Cuatrec., Gynoxys laurifolia (Kunth) Cass., Gynoxys rugulosa Muschl., Gynoxys buxifolia (Kunth) Cass., Gynoxys cuicochensis Cuatrec., Gynoxys sancti-antonii Cuatrec., Gynoxys szyszylowiczii Hieron., Gynoxys reinaldii Cuatrec., Gynoxys pulchella (Kunth) Cass., Gynoxys hallii Hieron., Gynoxys calyculisolvens Hieron., and Gynoxys azuayensis Cuatrec. The first nine species have already been studied and their EOs published, whereas G. hallii, G. calyculisolvens, and G. azuayensis are the object of the present research [6,7,8,9,10,11,12].
Botanically, the genus Gynoxys Cass. (Asteraceae) is an endemic taxon of the Andean region, diffused from Venezuela to Bolivia, with Ecuador being the country with the highest number of collected specimens [13]. Among the Ecuadorian species, G. hallii, G. calyculisolvens, and G. azuayensis have been reported in the Province of Loja. According to the Catalogue of the Vascular Plants of Ecuador, G. hallii is an endemic treelet growing between 2500–3500 m above sea level and described in the provinces of Azuay, Cañar, Carchi, Chimborazo, Cotopaxi, Imbabura, Pichincha, and Tungurahua. In the same source, G. calyculisolvens is a native shrub growing between 2000–3500 m above sea level (m a.s.l.) and occurring in the provinces of Loja and Morona-Santiago. Finally, G. azuayensis is an endemic tree growing in the range 2500–3500 m a.s.l. that has been observed in the provinces of Azuay and Loja [14]. None of these three species are reported with botanical synonyms or relevant traditional use. To the best of the authors’ knowledge, the present study is the first description of EOs obtained from G. hallii, G. calyculisolvens, and G. azuayensis.

2. Results

2.1. Chemical Composition of the EOs

The leaves of G. hallii, G. calyculisolvens, and G. azuayensis afforded, by analytical distillation, three EOs that, respectively, yielded 0.69 ± 0.105%, 0.08 ± 0.008%, and 0.02 ± 0.002% by weight of dry plant material. A total of 169 compounds were identified and quantified on at least one of the two employed columns. The quantified components, separately considered on the non-polar and polar stationary phase, respectively, and expressed as oil mass percent, corresponded to 93.2–92.7% for G. hallii, 94.9–93.8% for G. calyculisolvens, and 94.2–89.3% for G. azuayensis. All the volatile fractions were dominated by sesquiterpenes and sesquiterpenoids that, considered as a whole, corresponded to 56.8–58.5% for G. hallii, 60.7–59.8% for G. calyculisolvens, and 45.9–39.7% for G. azuayensis. In the EO of G. azuayensis, an important heavy aliphatic fraction is also present (about 30%), as typical of other species from this genus. On the other hand, in G. hallii and G. calyculisolvens, this fraction is absent or represented in a very low amount. Finally, a relevant monoterpene fraction, dominated by α-pinene, can also be observed in the three oils, reaching the maximum amount in G. hallii and the minimum value in G. azuayensis. Main constituents of G. hallii EO (≥3.0% on at least one column) were α-pinene (peak 2), (E)-β-caryophyllene (peak 75), germacrene D (peak 89), and bicyclogermacrene (peak 93). In G. calyculisolvens EO, the major compounds were α-pinene (peak 2), p-cymene (peak 15), α-copaene (peak 64), (E)-β-caryophyllene (peak 75), germacrene D (peak 89), and germacrene D-4-ol (peak 108). Finally, the main components of G. azuayensis EO were α-pinene (peak 2), germacrene D (peak 89), bicyclogermacrene (peak 93), tridecanal (peak 101), and spathulenol (peak 109). The detailed qualitative and quantitative compositions of these EOs are reported in Table 1, whereas the gas chromatographic profiles are represented in Figure 1 and Figure 2. The molecular structures of the nine major compounds are represented in Figure 3.

2.2. Enantioselective Analyses of the EOs

The enantioselective analyses of the three EOs permitted to evaluate the enantiomeric excess of a total of 12 enantiomeric pairs, using one of two available chiral selectors, depending on the chromatographic resolution. In this way, (1S,5S)-(−)-α-pinene, (R)-(−)-α-phellandrene, (R)-(−)-β-phellandrene, and (1S,2R,6R,7R,8R)-(+)-α-copaene resulted as enantiomerically pure in all the EOs where they were present. On the other hand, (R)-(−)-terpinen-4-ol and (S)-(−)-germacrene D were enantiomerically pure in G. azuayensis and G. hallii, respectively, but they were part of scalemic mixtures in the other species. Finally, all the others analysed chiral metabolites produced scalemic mixtures in all the volatile fractions where they were detected. The detailed results of the enantioselective analyses are shown in Table 2.

3. Discussion

The chemical composition of these three EOs presented the typical profile of most Gynoxys volatile fractions. Especially in G. azuayensis and, to a lesser extent in G. calyculisolvens, three characteristic groups of metabolites can be observed: a monoterpene fraction dominated by α-pinene (2); a sesquiterpene fraction with germacrene D (89) as the main component; and a heavy aliphatic fraction composed of alkanes and alkenes. Such a profile is very evident in G. rugulosa, G. szyszylowiczii, and G. pulchella but less important in G. laurifolia, G. sancti-antonii, and G. cuicochensis [7,8,10,11]. In the case of G. hallii, the heavy aliphatic fraction is practically absent, which was previously observed in G. miniphylla and G. buxifolia [6,9]. A comparison among the major constituents (≥3.0% in at least one oil) of G. hallii, G. calyculisolvens, and G. azuayensis volatile fractions is represented in Figure 4. It can be observed that α-pinene (2), (E)-β-caryophyllene (75), germacrene D (89), and bicyclogermacrene (93) are common to the three species, this pattern being characteristic of Gynoxys spp. Other compounds are abundant constituents of only one species, such as p-cymene (15) in G. calyculisolvens and tridecanal (101) and spathulenol (109) in G. azuayensis.
For what concerns the enantiomeric compositions of G. hallii, G. calyculisolvens, and G. azuayensis EOs (see Figure 5), three characteristics can be observed that are quite common to other species of this genus. First of all, a similar pattern can be observed for (1S,5S)-(–)-α-pinene and (S)-(–)-germacrene D. These compounds are in fact enantiomerically pure or close to optical purity in the three EOs, confirming a situation already seen before. Secondly, the oxygenated monoterpenoids are present as scalemic mixtures, with a quite low enantiomeric excess that makes their composition relatively close to a racemate. Finally, it can be observed that α-pinene and β-pinene, despite deriving from the common pinyl cation, exhibited a different enantiomeric excess. As a consequence, since the same absolute configuration should be expected for these two monoterpenes, the existence of some enantiospecific reaction could explain the loss of (1R,5R)-(+)-α-pinene [113].
Among the main components of G. hallii, G. calyculisolvens, and G. azuayensis EOs, five compounds were the most representative constituents. In fact, each one of the following metabolites, α-pinene (2), (E)-β-caryophyllene (75), germacrene D (89), germacrene D-4-ol (108), and spathulenol (109), reached at least 7% of the oil mass in at least one species, suggesting a possible relevant contribution to the properties of the corresponding volatile fractions in terms of biological activities.
According to literature, α-pinene (2), one of the most common monoterpenes, exhibited a wide range of biological capacities. For instance, it is known for its antibacterial potential, particularly against methicillin-resistant Staphylococcus aureus (MRSA). It also exhibited antifungal activity and has been found to be more effective than clotrimazole against Candida spp. This monoterpene also displayed anti-inflammatory properties, reducing the expression of inflammatory mediators like TNF-α and IL-1β. Additionally, it has demonstrated neuroprotective effects, enhancing learning and memory function in cases of scopolamine-induced memory deficit. Further studies have revealed its potential as an anticonvulsant and anti-leishmania agent. In addition, there is evidence of different biological activities exhibited by the enantiomers of α-pinene, highlighting the importance of monitoring enantiomeric distributions [114].
(E)-β-Caryophyllene (BCP, 75) is a natural bicyclic sesquiterpene, perhaps the most common sesquiterpene in plants, and has demonstrated a wide range of biological activities. In fact, BCP binds to CB2 cannabinoid receptors and interacts with peroxisome-proliferator-activated receptors (PPARs). Because of these interactions, BCP exhibited anti-inflammatory effects by reducing the production of pro-inflammatory mediators, including TNF-α, IL-1β, IL-6, and NF-κB. Additionally, BCP showed neuroprotective activity in models of Alzheimer’s disease, where it decreased NO synthesis and reduced the activation of astrocytes and microglia [115,116].
Germacrene D (89) is another natural sesquiterpene that acts as a key intermediate in the biosynthesis of many other metabolites from the same family. Furthermore, it has been shown to influence the behaviour of moths, for example, increasing attraction and oviposition on mated females of Heliotis virescens. In fact, germacrene D receptor neurons have been identified in the moths Helicoverpa armigera, H. assulta, and H. virescens, where an enantiospecific response for the laevorotatory enantiomer of germacrene D has been demonstrated [117,118].
Germacrene D-4-ol (108) is an oxygenated derivative of germacrene D, and few studies have been reported so far about its biological activities. This sesquiterpenoid is abundant in the leaves of Piper corcovadensis, from which it can be obtained by steam distillation or solvent extraction. Both the isolated compound and the oil exhibited significant larvicidal activity against the mosquito Aedes aegypti, with LC50 values of 18.23 ± 1.19 ppm and 6.71 ± 0.16 ppm, respectively. Additionally, both demonstrated oviposition deterrent activity at various concentrations. Molecular docking analysis suggested that germacrene-D-4-ol exerts its oviposition deterrent effect by interacting with the odorant-binding protein 1 (OBP1) of A. aegypti [119].
Finally, spathulenol (109), a major component of G. hallii EO, must be mentioned. It is a sesquiterpene alcohol quite common in many volatile fractions, but little investigated from the pharmacological point of view. One of the few studies about it dealt on the EO of Psidium guineense (EOPG). A total of 38 compounds were identified, with spathulenol (PG-1) being the most abundant (80.7%). Both EOPG and PG-1 demonstrated antioxidant activity in DPPH, ABTS, and MDA assays. They also exhibited anti-inflammatory effects in mice by significantly inhibiting carrageenan-induced paw oedema, pleural cell migration, and protein exudation. Furthermore, EOPG and PG-1 were evaluated for antiproliferative activity against various cancer cell lines, particularly against OVCAR-3 (ovarian cancer). Furthermore, both EOPG and PG-1 displayed moderate antimycobacterial activity against Mycobacterium tuberculosis [120].
Concerning some possible practical applications and based on this bibliographic information, the three EOs from G. hallii, G. calyculisolvens, and G. azuayensis would be expected to be anti-inflammatory products if their relatively low distillation yields did not prevent a sustainable exploitation of the wild species. Similarly, the high content of the laevorotatory germacrene D would suggest a possible use as insect attractants. On the other hand, in the only case of G. calyculisolvens, the latter property could be associated to a larvicidal capacity due to the presence of germacrene D-4-ol in a relatively high amount. Naturally, the same applications could be suggested for each major compound in its pure form.

4. Materials and Methods

4.1. Plant Materials

The leaves of the three species were gathered in the Province of Loja, Ecuador, within approximately 200 m of the following coordinates: 03°31′22″ S, 79°23′59″ W for G. hallii (elevation: 2810 m), 03°43′11″ S, 79°20′04″ W for G. calyculisolvens (elevation: 3490 m), and 03°59′26″ S, 79°09′39″ W for G. azuayensis (elevation: 2590 m). The botanical identification of the specimens was carried out by one of the authors (N.C.) based on reference samples with barcodes 01826294 (G. hallii), 01826134 (G. calyculisolvens), and 01826026 (G. azuayensis) and preserved at the National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.
Following collection, a voucher for each species was also deposited at the herbarium of Universidad Técnica Particular de Loja, assigned the codes 14678 (G. hallii), 14673 (G. calyculisolvens), and 14816 (G. azuayensis). These collections were conducted in accordance with Ecuadorian law and authorised by the Ministry of Environment, Water, and Ecological Transition of Ecuador (MAATE) under permit code MAATE-DBI-CM-2022-0248.
On the same day they were collected, the plant materials were dried at 35 °C for 48 h and then stored in a cool, dark place until the distillation process.

4.2. Distillation of the EOs

The dry leaves were steam distilled using an analytical method, as described in the literature, with a modified Dean–Stark apparatus [8]. In this procedure, the plant material was distilled for four hours over 2 mL of cyclohexane, containing 1.4 mg of n-nonane as an internal standard. This process was carried out four times for each species, yielding samples in cyclohexane solutions that could be directly injected into the GC. Both n-nonane and cyclohexane were obtained from Merck (Sigma–Aldrich, St. Louis, MO, USA). The weights of dry leaves distilled in each repetition were as follows: 81.5 g, 84.5 g, 84.6 g, and 84.6 g for G. hallii; 100.8 g, 100.7 g, 101.1 g, and 109.7 g for G. calyculisolvens; and 57.8 g, 57.7 g, 46.6 g, and 50.0 g for G. azuayensis. Following distillation, all cyclohexane solutions were permanently stored at −14 °C.

4.3. Qualitative Analyses of the EOs (GC-MS)

The qualitative analyses were carried out using a gas chromatograph (GC) model Trace 1310, supplied by Thermo Fisher Scientific (Waltham, MA, USA). The GC was coupled with a single quadrupole mass spectrometer (MS) model ISQ 7000, also obtained from the same provider. The electron impact ion source was set at 70 eV, with the mass analyser operating in SCAN mode over a mass range of 40–400 m/z. The ion source and quadrupole were heated to 250 °C, while the transfer line and injector were set to 230 °C. The samples were injected in split mode (40:1), introducing 1 μL of cyclohexane solution. Elution was performed according to the following thermal programme: 50 °C for 10 min, followed by an initial temperature gradient of 2 °C/min up to 170 °C and a second gradient of 10 °C/min up to 230 °C, which was maintained for 20 min. The carrier gas used was helium, maintained at a constant flow rate of 1 mL/min (Indura, Guayaquil, Ecuador). All essential oils (EOs) were analysed using two stationary phases with different polarities: one based on 5% phenyl-methylpolysiloxane (TR-5, non-polar) and the other one on polyethylene glycol (TR-WAX, polar). Both columns measured 30 m in length, with an internal diameter of 0.25 mm and a film thickness of 0.25 μm, and were purchased from Thermo Fisher Scientific (Waltham, MA, USA). The EO constituents were identified by comparing their linear retention indices (LRIs) and mass spectra with data available in the literature (see Table 1). The LRIs were calculated according to Van den Dool and Kratz, using a series of n-alkanes ranging from C9 to C26 (Sigma–Aldrich, St. Louis, MO, USA) [121].

4.4. Quantitative Analyses of the EOs (GC-FID)

The quantitative analyses were conducted using the same instrument, columns, thermal programme, carrier gas flow, injector temperature, and injection volumes as those used for the qualitative analyses. However, a flame ionisation detector (FID) was used instead of an MS, and the split ratio was set to 10:1. The components of the essential oils (EOs) were quantified by multiplying each peak area by a relative response factor (RRF), calculated based on combustion enthalpy, as described by Alain Chaintreau [122,123]. The corrected peak areas were then applied, for each column, to a six-point calibration curve, using isopropyl caproate as the calibration standard and n-nonane as the internal standard. The standard dilutions were prepared following the previously described methods in the literature, consistently achieving correlation coefficients greater than 0.998 [124]. The calibration standard was synthesised in the authors’ laboratory and purified to 98.8% (GC-FID).

4.5. Enantioselective Analyses of the EOs

The relative abundance of 12 enantiomeric pairs was determined using GC-MS, employing the same instrument, settings, and injection parameters as in the qualitative analyses, except for the carrier gas flow, which was maintained at a constant pressure of 70 kPa. The separations were performed using two enantioselective capillary columns, incorporating 2,3-diacetyl-6-tert-butyldimethylsilyl-β-cyclodextrin (DAC) and 2,3-diethyl-6-tert-butyldimethylsilyl-β-cyclodextrin (DET) as chiral selectors, both obtained from Mega (Milan, Italy). Elution was carried out following this thermal gradient: 50 °C for 1 min, followed by a temperature gradient of 2 °C/min up to 220 °C, which was then held for 10 min. The enantiomers were identified based on their mass spectra and by injecting enantiomerically pure standards under the same conditions. The LRIs of the enantiomers were also calculated for both columns according to Van den Dool and Kratz, using the same n-alkane mixture mentioned in Section 4.3. The choice of chiral selectors was based on the quality of separation achieved for each enantiomeric pair.

5. Conclusions

The leaves of Gynoxys hallii Hieron., Gynoxys calyculisolvens Hieron., and Gynoxys azuayensis Cuatrec. produced an EO with a yield by weight of 0.69%, 0.08%, and 0.02%, respectively. On the one hand, the yield of G. hallii was sufficiently high to be consistent with a possible practical application; on the other hand, the three EOs were characterised by the typical chemical profile of many other volatile fractions from this genus. Based on literature, these chemical compositions suggested a possible anti-inflammatory activity as the main biological property. Furthermore, the enantioselective analyses permitted to hypothesise that all these EOs are attractive for the insects of genus Helicoverpa, thanks to the extremely high enantiomeric excess of laevorotatory germacrene D.

Author Contributions

Conceptualisation, G.G.; investigation, Y.E.M., M.d.C.R., M.E.B., S.C. and N.C.; data curation, Y.E.M.; writing—original draft preparation, G.G.; writing—review and editing, O.M.; supervision, G.G. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

The datasets presented in this article are not readily available because they are part of an ongoing study. Requests to access the datasets should be directed to the corresponding author.

Acknowledgments

We are grateful to the Universidad Técnica Particular de Loja (UTPL) for supporting this investigation and open access publication. We are also grateful to Carlo Bicchi (University of Turin, Italy) and Stefano Galli (MEGA S.r.l., Legnano, Italy) for their support with enantioselective columns.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Megadiverse Countries, UNEP-WCMC. Available online: https://www.biodiversitya-z.org/content/megadiverse-countries (accessed on 1 January 2025).
  2. Malagón, O.; Ramírez, J.; Andrade, J.; Morocho, V.; Armijos, C.; Gilardoni, G. Phytochemistry and Ethnopharmacology of the Ecuadorian Flora. A Review. Nat. Prod. Commun. 2016, 11, 297. [Google Scholar] [CrossRef] [PubMed]
  3. Armijos, C.; Ramírez, J.; Salinas, M.; Vidari, G.; Suárez, A.I. Pharmacology and Phytochemistry of Ecuadorian Medicinal Plants: An Update and Perspectives. Pharmaceuticals 2021, 14, 1145. [Google Scholar] [CrossRef] [PubMed]
  4. Gilardoni, G.; Chiriboga, X.; Finzi, P.V.; Vidari, G. New 3,4-Secocycloartane and 3,4-Secodammarane Triterpenes from the Ecuadorian Plant Coussarea macrophylla. Chem. Biodivers. 2015, 12, 946–954. [Google Scholar] [CrossRef] [PubMed]
  5. Ramírez, J.; Gilardoni, G.; Jácome, M.; Montesinos, J.; Rodolfi, M.; Guglielminetti, M.L.; Cagliero, C.; Bicchi, C.; Vidari, G. Chemical composition, enantiomeric analysis, AEDA sensorial evaluation and antifungal activity of the essential oil from the Ecuadorian plant Lepechinia mutica Benth (Lamiaceae). Chem. Biodivers. 2017, 14, e1700292. [Google Scholar] [CrossRef]
  6. Malagón, O.; Cartuche, P.; Montaño, A.; Cumbicus, N.; Gilardoni, G. A New Essential Oil from the Leaves of the Endemic Andean Species Gynoxys miniphylla Cuatrec. (Asteraceae): Chemical and Enantioselective Analyses. Plants 2022, 11, 398. [Google Scholar] [CrossRef]
  7. Gilardoni, G.; Lara, L.R.; Cumbicus, N.; Malagón, O. A New Leaf Essential Oil from Endemic Gynoxys laurifolia (Kunth) Cass. of Southern Ecuador: Chemical and Enantioselective Analyses. Plants 2023, 12, 2878. [Google Scholar] [CrossRef]
  8. Maldonado, Y.E.; Malagón, O.; Cumbicus, N.; Gilardoni, G. A New Essential Oil from the Leaves of Gynoxys rugulosa Muschl. (Asteraceae) Growing in Southern Ecuador: Chemical and Enantioselective Analyses. Plants 2023, 12, 849. [Google Scholar] [CrossRef]
  9. Cumbicus, C.; Malagón, O.; Cumbicus, N.; Gilardoni, G. The Leaf Essential Oil of Gynoxys buxifolia (Kunth) Cass. (Asteraceae): A Good Source of Furanoeremophilane and Bakkenolide A. Plants 2023, 12, 1323. [Google Scholar] [CrossRef]
  10. Maldonado, Y.E.; Betancourt, E.A.; León, E.S.; Malagón, O.; Cumbicus, N.; Gilardoni, G. New Essential Oils from Ecuadorian Gynoxys cuicochensis Cuatrec. and Gynoxys sancti-antonii Cuatrec. Chemical Compositions and Enantioselective Analyses. ACS Omega 2024, 9, 25902–25913. [Google Scholar] [CrossRef]
  11. Maldonado, Y.E.; Malagón, O.; Cumbicus, N.; Gilardoni, G. A New Leaf Essential Oil from the Andean Species Gynoxys szyszylowiczii Hieron. of Southern Ecuador: Chemical and Enantioselective Analyses. Sci. Rep. 2024, 14, 16360. [Google Scholar] [CrossRef]
  12. Maldonado, Y.E.; Rodríguez, M.d.C.; Calvopiña, K.; Malagón, O.; Cumbicus, N.; Gilardoni, G. Gynoxys reinaldii Cuatrec. and Gynoxys pulchella (Kunth) Cass.: Chemical and Enantioselective Analyses of Two Unprecedented Essential Oils from Ecuador. Plants 2024, 13, 3543. [Google Scholar] [CrossRef] [PubMed]
  13. Tropicos.org. Missouri Botanical Garden. Available online: https://www.tropicos.org (accessed on 1 January 2025).
  14. Jorgensen, P.; Leon-Yanez, S. Catalogue of the Vascular Plants of Ecuador; Missouri Botanical Garden Press: St. Louis, MO, USA, 1999; pp. 286–288. [Google Scholar]
  15. Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; ISBN 10-193263321. [Google Scholar]
  16. Ding, Q.; Deng, Y.; Sun, Y.; Huagn, A.; Sun, Y. Analysis of volatile components in ox feces by capillary gas chromatography. Beijing Daxue Xuebao Ziran Kexueban 1998, 34, 720–725. [Google Scholar]
  17. Fanciullino, A.-L.; Gancel, A.-L.; Froelicher, Y.; Luro, F.; Ollitrault, P.; Brillouet, J.-M. Effects of Nucleo-Cytoplasmic Interactions on Leaf Volatile Compounds from Citrus Somatic Diploid Hybrids. J. Agric. Food Chem. 2005, 53, 4517–4523. [Google Scholar] [CrossRef]
  18. Kollmannsberger, H.; Nitz, S.; Drawert, F. Uber die Aromastoffzusammensetzung von Hochdruckextrakten. I. Pfeffer (Piper nigrum, Var. muntok). Z. Lebensm. Unters. Forsch. 1992, 194, 545–551. [Google Scholar] [CrossRef]
  19. Pala-Paul, J.; Brophy, J.J.; Perez-Alonso, M.J.; Usano, J.; Soria, S.C. Essential Oil Composition of the Different Parts of Eryngium corniculatum Lam. (Apiaceae) from Spain. J. Chromatogr. A 2007, 1175, 289–293. [Google Scholar] [CrossRef]
  20. Beck, J.J.; Higbee, B.S.; Marrill, G.B.; Roitman, J.N. Comparison of Volatile emissions from undamaged and mechanically damaged almonds. J. Sci. Food Argic. 2008, 88, 1363–1368. [Google Scholar] [CrossRef]
  21. Bianchi, F.; Careri, M.; Mangia, A.; Musci, M. Retention indices in the analysis of food aroma volatile compounds in temperature-programmed gas chromatography: Database creation and evaluation of precision and robustness. J. Sep. Sci. 2007, 39, 563–572. [Google Scholar]
  22. Ruiz Perez-Cacho, P.; Mahattanatawee, K.; Smoot, J.M.; Rouseff, R. Identification of Sulfur Volatiles in Canned Orange Juices Lacking Orange Flavor. J. Agric. Food Chem. 2007, 55, 5761–5767. [Google Scholar] [CrossRef]
  23. Fernandez-Segovia, I.; Escriche, I.; Gomez-Sintes, M.; Fuentes, A.; Serra, J.A. Influence of different preservation treatments on the volatile fraction of desalted cod. Food Chem. 2006, 98, 473–482. [Google Scholar] [CrossRef]
  24. Bendahou, M.; Muselli, A.; Grignon-Dubois, M.; Benyoucef, M.; Desjobert, J.-M.; Bernardini, A.-F.; Costa, J. Antimicrobial activity and chemical composition of Origanum glandulosum Desf. essential oil and extract obtained by microwave extraction: Comparison with hydrodistillation. Food Chem. 2008, 106, 132–139. [Google Scholar]
  25. Chung, H.Y.; Fung, P.K.; Kim, J.-S. Aroma impact components in commercial plain sufu. J. Agric. Food Chem. 2005, 53, 1684–1691. [Google Scholar] [CrossRef] [PubMed]
  26. Gancel, A.-L.; Ollitrault, P.; Froelicher, Y.; Tomi, F.; Jacquemond, C.; Luro, F.; Brillouet, J.-M. Leaf volatile compounds of seven citrus somatic tetraploid hybrids sharing willow leaf mandarin (Citrus deliciosa Ten.) as their common parent. J. Agric. Food Chem. 2003, 51, 6006–6013. [Google Scholar] [CrossRef] [PubMed]
  27. Zeppa, G.; Giordano, M.; Bertolino, M.; Gerbi, V. Application of artificial neural network on mono- and sesquiterpenes compounds determined by headspace solid-phase microextraction-gas chromatography-mass spectrometry for the Piedmont ricotta cheese traceability. J. Chromatogr. A 2005, 1071, 247–253. [Google Scholar]
  28. Cardeal, Z.L.; da Silva, M.D.R.G.; Marriott, P.J. Comprehensive two-dimensional gas chromatography/mass spectrometric analysis of pepper volatiles. Rapid Commun. Mass Spectrom. 2006, 20, 2823–2836. [Google Scholar] [CrossRef]
  29. Buttery, R.G.; Parker, F.D.; Teranishi, R.; Mon, T.R.; Ling, L.C. Volatile components of alfalfa leaf-cutter bee cells. J. Agric. Food Chem. 1981, 29, 955–958. [Google Scholar] [CrossRef]
  30. Dugo, P.; Mondello, L.; Zappia, G.; Bonaccorsi, I.; Cotroneo, A.; Russo, M.T. The composition of the volatile fraction and the enantiomeric distribution of five volatile components of faustrime oil (Monocitrus australatica × Fortunella sp. × Citrus aurantifolia). J. Essent. Oil Res. 2004, 16, 328–333. [Google Scholar] [CrossRef]
  31. Bendimerad, N.; Bendiab, S.A.T. Composition and antibacterial activity of Pseudocytisus integrifolius (Salisb.) essential oil from Algeria. J. Agric. Food Chem. 2005, 53, 2947–2952. [Google Scholar] [CrossRef]
  32. Cavalli, J.-F.; Ranarivelo, L.; Ratsimbason, M.; Bernardini, A.-F.; Casanova, J. Constituents of the essential oil of six Helichrysum species from Madagascar. Flavour Fragr. J. 2001, 16, 253–256. [Google Scholar] [CrossRef]
  33. Miyazawa, M.; Kawauchi, Y.; Utsumi, Y.; Takahashi, T. Character impact odorants of wild edible plant—Cacalia hastata L. var. orientalis—Used in Japanese traditional food. J. Oleo Sci. 2010, 59, 527–533. [Google Scholar]
  34. Viña, A.; Murillo, E. Essential oil composition from twelve varieties of basil (Ocimum spp.) grown in Columbia. J. Braz. Chem. Soc. 2003, 14, 744–749. [Google Scholar] [CrossRef]
  35. Petersen, M.A.; Poll, L.; Larsen, L.M. Comparison of volatiles in raw and boiled potatoes using a mild extraction technique combined with GC odour profiling and GC-MS. Food Chem. 1998, 61, 461–466. [Google Scholar] [CrossRef]
  36. Schieberle, P.; Grosch, W. Identifizierung von Aromastoffen aus der Kruste von Roggenbrot. Z. Lebensm. Unters. Forsch. 1983, 177, 173–180. [Google Scholar] [CrossRef]
  37. Chisholm, M.G.; Jell, J.A.; Cass, D.M., Jr. Characterization of the major odorants found in the peel oil of Citrus reticulata Blanco cv. Clementine using gas chromatography-olfactometry. Flavour Fragr. J. 2003, 18, 275–281. [Google Scholar] [CrossRef]
  38. Kawakami, M.; Sachs, R.M.; Shibamoto, T. Volatile constituents of essential oils obtained from newly developed tea tree (Melaleuca alternifolia) clones. J. Agric. Food Chem. 1990, 38, 1657–1661. [Google Scholar] [CrossRef]
  39. Petka, J.; Ferreira, V.; González-Viñas, M.A.; Cacho, J. Sensory and Chemical Characterization of the Aroma of a White Wine Made with Devín Grapes. J. Agric. Food Chem. 2006, 54, 909–915. [Google Scholar] [CrossRef]
  40. Selli, S.; Rannou, C.; Prost, C.; Robin, J.; Serot, T. Characterization of Aroma-Active Compounds in Rainbow Trout (Oncorhynchus mykiss) Eliciting an Off-Odor. J. Agric. Food Chem. 2006, 54, 9496–9502. [Google Scholar] [CrossRef]
  41. Polatoglu, K.; Demirci, F.; Demirci, B.; Goren, N.; Baser, K.H.C. Antimicrobial activity and essential oil composition of a new T. argyrophyllum (C. Koch) Tvzel var. argyrophyllium chemotype. J. Oleo Sci. 2010, 59, 307–313. [Google Scholar] [CrossRef]
  42. Lee, G.-H.; Suriyaphan, O.; Cadwallader, K.R. Aroma components of cooked tail meat of American lobster (Homarus americanus). J. Agric. Food Chem. 2001, 49, 4324–4332. [Google Scholar] [CrossRef]
  43. Baser, K.H.C.; Özek, T.; Demirci, B.; Kürkcüoglu, M.; Aytac, Z.; Duman, H. Composition of the essential oils of Zosima absinthifolia (Vent.) Link and Ferula elaeochytris Korovin from Turkey. Flavour Fragr. J. 2000, 15, 371–372. [Google Scholar] [CrossRef]
  44. Salgueiro, L.R.; Pinto, E.; Goncalves, M.J.; Costa, I.; Palmeira, A.; Cavaleiro, C.; Pina-Vaz, C.; Rodrigues, A.G.; Martinez-De-Oliveira, J. Antifungal activity of the essential oil of Thymus capitellatus against Candida, Aspergillus and dermatophyte strains. Flavour Fragr. J. 2006, 21, 749–753. [Google Scholar] [CrossRef]
  45. Jerkovic, I.; Mastelic, J.; Milos, M.; Juteau, F.; Masotti, V.; Viano, J. Chemical variability of Artemisia vulgaris L. essential oils originated from the Mediterranean area of France and Croatia. Flavour Fragr. J. 2003, 18, 436–440. [Google Scholar] [CrossRef]
  46. Gauvin, A.; Ravaomanarivo, H.; Smadja, J. Comparative analysis by gas chromatography-mass spectrometry of the essential oils from bark and leaves of Cedrelopsis grevei Baill, an aromatic and medicinal plant from Madagascar. J. Chromatogr. A 2004, 1029, 279–282. [Google Scholar] [CrossRef] [PubMed]
  47. Pala-Paul, J.; Copeland, L.M.; Brophy, J.J.; Goldsack, R.J. Essential oil composition of two variants of Prostanthera lasianthos Labill. from Australia. Biochem. Syst. Ecol. 2006, 34, 48–55. [Google Scholar] [CrossRef]
  48. Watcharananun, W.; Cadwallader, K.R.; Huangrak, K.; Kim, H.; Lorjaroenphon, Y. Identification of predominant odorants in Thai desserts flavored by smoking with Tian Op, a traditional Thai scented candle. J. Agric. Food Chem. 2009, 57, 996–1005. [Google Scholar] [CrossRef]
  49. Brophy, J.J.; Goldsack, R.J.; O’Sullivan, W. Chemistry of the Australian gymnosperms. Part VII. The leaf oils of the genus Actinostrobus. Biochem. Syst. Ecol. 2004, 32, 867–873. [Google Scholar] [CrossRef]
  50. Smadja, J.; Rondeau, P.; Sing, A.S.C. Volatile constituents of five Citrus Petitgrain essential oils from Reunion. Flavour Fragr. J. 2005, 20, 399–402. [Google Scholar] [CrossRef]
  51. Stashenko, E.E.; Jaramillo, B.E.; Martínez, J.R. HRGC/FID/MSD Analysis of Secondary Metabolites Isolated from Xilopia aromatica by Different Extraction Techniques. In Proceedings of the 25th International Symposium on Capillary Chromatography, Riva Del Garda, Italy, 13–17 May 2002. [Google Scholar]
  52. Guillot, S.; Peytavi, L.; Bureau, S.; Boulanger, R.; Lepoutre, J.-P.; Crouzet, J.; Schorr-Galindo, S. Aroma characterization of various apricot varieties using headspace-solid phase microextraction combined with gas chromatography-mass spectrometry and gas chromatography-olfactometry. Food Chem. 2006, 96, 147–155. [Google Scholar] [CrossRef]
  53. Skaltsa, H.D.; Demetzos, C.; Lazari, D.; Sokovic, M. Essential oil analysis and antimicrobial activity of eight Stachys species from Greece. Phytochemistry 2003, 64, 743–752. [Google Scholar] [CrossRef]
  54. Riu-Aumatell, M.; Lopez-Tamames, E.; Buxaderas, S. Assessment of the Volatile Composition of Juices of Apricot, Peach, and Pear According to Two Pectolytic Treatments. J. Agric. Food Chem. 2005, 53, 7837–7843. [Google Scholar] [CrossRef]
  55. Noorizadeh, H.; Farmany, A.; Noorizadeh, M. Quantitative structure-retention relationships analysis of retention index of essential oils. Quim. Nova 2011, 34, 242–249. [Google Scholar] [CrossRef]
  56. Paolini, J.; Costa, J.; Bernardini, A.F. Analysis of the essential oil from the roots of Eupatorium cannabinum subsp. corsicum (L.) by GC, GC-MS and C13-NMR. Phytochem. Anal. 2007, 18, 235–244. [Google Scholar] [CrossRef] [PubMed]
  57. Mahattanatawee, K.; Rouseff, R.; Filomena Valim, M.; Naim, M. Identification and aroma impact of norisoprenoids in orange juice. J. Agric. Food Chem. 2005, 53, 393–397. [Google Scholar] [CrossRef] [PubMed]
  58. Pintore, G.; Chessa, M.; Manconi, P.; Zanetti, S.; Deriu, A.; Trillini, B. Chemical composition and antimicrobial activities of essential oil of Stachys glutinosa L. from Sardinia. Nat. Prod. Commun. 2006, 12, 1133–1136. [Google Scholar]
  59. Bassole, I.H.N.; Ouattara, A.S.; Nebie, R.; Ouattara, C.A.T.; Kabore, Z.I.; Traore, S.A. Chemical composition and antibacterial activities of the essential oils of Lippia chevalieri and Lippia multiflora from Burkina Faso. Phytochemistry 2003, 62, 209–212. [Google Scholar] [CrossRef]
  60. Mondello, L.; Dugo, P.; Basile, A.; Dugo, G. Interactive use of linear retention indices, on polar and apolar columns, with a MS-library for reliable identification of complex mixtures. J. Microcolumn Sep. 1995, 7, 581–591. [Google Scholar] [CrossRef]
  61. Gonzalez-Rios, O.; Suarez-Quiroz, M.L.; Boulanger, R.; Barel, M.; Guyot, B.; Guiraud, J.-P.; Schorr-Galindo, S. Impact of ecological post-harvest processing of coffee aroma: II Roasted coffee. J. Food Compos. Anal. 2007, 20, 297–307. [Google Scholar] [CrossRef]
  62. Pozo-Bayon, M.A.; Ruiz-Rodriguez, A.; Pernin, K.; Cayot, N. Influence of eggs on the aroma composition of a sponge cake and on the aroma release in model studies on flavored sponge cakes. J. Agric. Food Chem. 2007, 55, 1418–1426. [Google Scholar] [CrossRef]
  63. Flamini, G.; Tebano, M.; Cioni, P.L.; Bagci, Y.; Dural, H.; Ertugrul, K.; Uysal, T.; Savran, A. A multivariate statistical approach to Centaurea classification using essential oil composition data of some species from Turkey. Plant Syst. Evol. 2006, 261, 217–228. [Google Scholar] [CrossRef]
  64. Buttery, R.G.; Ling, L.C. Corn leaf volatiles: Identification using Tenax trapping for possible insect attractants. J. Agric. Food Chem. 1984, 32, 1104–1106. [Google Scholar] [CrossRef]
  65. Muselli, A.; Rossi, P.-G.; Desjobert, J.-M.; Bernardini, A.-F.; Berti, L.; Costa, J. Chemical composition and antibacterial activity of Otanthus maritimus (L.) Hoffmanns. Link essential oils from Corsica. Flavour Fragr. J. 2007, 22, 217–223. [Google Scholar] [CrossRef]
  66. Waggott, A.; Davies, I.W. Identification of Organic Pollutants Using Linear Temperature Programmed Retention Indices (LTPRIs)—Part II. 1984. Available online: https://dwi-content.s3.eu-west-2.amazonaws.com/wp-content/uploads/2020/10/27110228/dwi0382.pdf (accessed on 1 January 2025).
  67. Brat, P.; Rega, B.; Alter, P.; Reynes, M.; Brillouet, J.-M. Distribution of volatile compounds in the pulp, cloud, and serum of freshly squeezed orange juice. J. Agric. Food Chem. 2003, 51, 3442–3447. [Google Scholar] [CrossRef] [PubMed]
  68. Verzera, A.; Trozzi, A.; Cotroneo, A.; Lorenzo, D.; Dellacassa, E. Uruguayan essential oil. 12. Composition of Nova and Satsuma mandarin oils. J. Agric. Food Chem. 2000, 48, 2903–2909. [Google Scholar] [CrossRef] [PubMed]
  69. Bertoli, A.; Menichini, F.; Noccioli, C.; Morelli, I.; Pistelli, L. Volatile constituents of different organs of Psoralea bituminosa L. Flavour Fragr. J. 2004, 19, 166–171. [Google Scholar] [CrossRef]
  70. Iwatsuki, K.; Mizota, Y.; Kubota, T.; Nishimura, O.; Masuda, H.; Sotoyama, K.; Tomita, M. Aroma extract dilution analysis. Evluation of aroma of pasteurized and UHT processed milk by aroma extract dilution analysis. Nippon Shokuhin Kagaku Kogaku Kaishi 1999, 46, 587–597. [Google Scholar] [CrossRef]
  71. Museli, A.; Pau, M.; Desjobert, J.-M.; Foddai, M.; Usai, M.; Costa, J. Volatile constituents of Achillea ligustica All. by HS-SPME/GC/GC-MS. Comparison with essential oils obtained by hydrodistillation from Corsica and Sardinia. Chromatographia 2009, 69, 575–585. [Google Scholar] [CrossRef]
  72. Jirovetz, L.; Buchbauer, G.; Shafi, P.M.; Rosamma, M.K.; Geissler, M. Analysis of the composition and aroma of the essential leaf oil of Syzygium travancoricum from South India by GC-FID, GC-MS, and olfactometry. Seasonal changes of composition. Chromatogr. Sup. 2001, 53 (Suppl. S1), s372–s374. [Google Scholar]
  73. Gancel, A.-L.; Ollé, D.; Ollitrault, P.; Luro, F.; Brillouet, J.-M. Leaf and peel volatile compounds of an interspecific citrus somatic hybrid [Citrus aurantifolia (Christm.) Swing. + Citrus paradisi Macfayden]. Flavour Fragr. J. 2002, 17, 416–424. [Google Scholar] [CrossRef]
  74. Limberger, R.P.; Scopel, M.; Sobral, M.; Henriques, A.T. Comparative analysis of volatiles from Drimys brasiliensis Miers and D. angustifolia Miers (Winteraceae) from Southern Brazil. Biochem. Syst. Ecol. 2007, 35, 130–137. [Google Scholar] [CrossRef]
  75. Ferhat, M.A.; Tigrine-Kordjani, N.; Chemat, S.; Meklati, B.Y.; Chemat, F. Rapid Extraction of Volatile Compounds Using a New Simultaneous Microwave Distillation: Solvent Extraction Device. Chromatographia 2007, 65, 217–222. [Google Scholar] [CrossRef]
  76. Hachicha, S.F.; Skanji, T.; Barrek, S.; Ghrabi, Z.G.; Zarrouk, H. Composition of the essential oil of Teucrium ramosissimum Desf. (Lamiaceae) from Tunisia. Flavour Fragr. J. 2007, 22, 101–104. [Google Scholar] [CrossRef]
  77. Sylvestre, M.; Pichette, A.; Longtin, A.; Martin, M.-A.C.; Bercion, S.R.; Legault, J. Chemical composition of leaf essential oil of Hedyosmum arborescens and evaluation of its anticancer activity. Nat. Prod. Commun. 2007, 2, 1269–1272. [Google Scholar] [CrossRef]
  78. Suleimenov, Y.M.; Atazhanova, G.A.; Ozek, T.; Demirci, B.; Kulyyasov, A.T.; Adekenov, S.M.; Baser, K.H.C. Essential oil composition of three species of Achillea from Kazakhstan. Chem. Nat. Compd. 2006, 37, 447–450. [Google Scholar] [CrossRef]
  79. Takeoka, G.; Butter, R.G. Volatile constituents of pineapple (Ananas comosus [L.] Merr.). In Flavor Chemistry. Trends and Developments; Teranishi, R., Buttery, R.G., Shahidi, F., Eds.; American Chemical Society: Washington, DC, USA, 1989; pp. 223–237. [Google Scholar]
  80. Shellie, R.; Marriott, P.; Zappia, G.; Mondello, L.; Dugo, G. Interactive use of linear retention indices on polar and apolar columns with an MS-Library for reliable characterization of Australian tea tree and other Melaleuca sp. Oils. J. Essent. Oil Res. 2003, 15, 305–312. [Google Scholar] [CrossRef]
  81. Mau, J.-L.; Ko, P.T.; Chyau, C.-C. Aroma characterization and antioxidant activity of supercritical carbon dioxide extracts from Terminalia catappa leaves. Food Res. Int. 2003, 36, 97–104. [Google Scholar] [CrossRef]
  82. Bortolomeazzi, R.; Berno, P.; Pizzale, L.; Conte, L.S. Sesquiterpene, alkene, and alkane hydrocarbons in virgin olive oils of different varieties and geographical origins. J. Agric. Food Chem. 2001, 49, 3278–3283. [Google Scholar] [CrossRef]
  83. Yu, E.J.; Kim, T.H.; Kim, K.H.; Lee, H.J. Aroma-active compounds of Pinus densiflora (red pine) needles. Flavour Fragr. J. 2004, 19, 532–537. [Google Scholar] [CrossRef]
  84. Ka, M.-H.; Choi, E.H.; Chun, H.-S.; Lee, K.-G. Antioxidative activity of volatile extracts isolated from Angelica tenuissima roots, peppermint leaves, pine needles, and sweet flag leaves. J. Agric. Food Chem. 2005, 53, 4124–4129. [Google Scholar] [CrossRef]
  85. Cavalli, J.-F.; Tomi, F.; Bernardini, A.-F.; Casanova, J. Chemical variability of the essential oil of Helichrysum faradifani Sc. Ell. from Madagascar. Flavour Fragr. J. 2006, 21, 111–114. [Google Scholar] [CrossRef]
  86. Zheng, C.H.; Kim, K.H.; Kim, T.H.; Lee, H.J. Analysis and characterization of aroma-active compounds of Schizandra chinensis (omija) leaves. J. Sci. Food Agric. 2005, 85, 161–166. [Google Scholar] [CrossRef]
  87. Boti, J.B.; Bighelli, A.; Cavaleiro, C.; Salgueiro, L.; Casanova, J. Chemical variability of Juniperus oxycedrus ssp. oxycedrus berry and leaf oils from Corsica, analysed by combination of GC, GC-MS and 13C-NMR. Flavour Fragr. J. 2006, 21, 268–273. [Google Scholar] [CrossRef]
  88. Martinez, J.; Rosa, P.T.V.; Menut, C.; Leydet, A.; Brat, P.; Pallet, D.; Meireles, M.A.A. Valorization of Brazilian vetiver (Vetiveria zizanioides (L.) Nash ex Small) oil. J. Agric. Food Chem. 2004, 52, 6578–6584. [Google Scholar] [CrossRef] [PubMed]
  89. Kim, T.H.; Thuy, N.T.; Shin, J.H.; Baek, H.H.; Lee, H.J. Aroma-active compounds of miniature beefsteakplant (Mosla dianthera Maxim.). J. Agric. Food Chem. 2000, 48, 2877–2881. [Google Scholar] [CrossRef] [PubMed]
  90. Vinogradov, B.A. Production, Composition, Properties and Application of Essential Oils. 2004. Available online: http://viness.narod.ru (accessed on 7 January 2025).
  91. Orav, A.; Kann, J. Determination of peppermint and orange aroma compounds in food and beverages. Proc. Est. Acad. Sci. Chem. 2001, 50, 217–225. [Google Scholar]
  92. Le Quere, J.-L.; Latrasse, A. Composition of the Essential Oils of Blackcurrant Buds (Ribes nigrum L.). J. Agric. Food Chem. 1990, 38, 3–10. [Google Scholar] [CrossRef]
  93. Cozzani, S.; Muselli, A.; Desjobert, J.-M.; Bernardini, A.-F.; Tomi, F.; Casanova, J. Chemical composition of essential oil of Teucrium polium subsp. capitatum (L.) from Corsica. Flavour Fragr. J. 2005, 20, 436–441. [Google Scholar] [CrossRef]
  94. Cavalli, J.-F.; Tomi, F.; Bernardini, A.-F.; Casanova, J. Composition and chemical variability of the bark oil of Cedrelopsis grevei H. Baillon from Madagascar. Flavour Fragr. J. 2003, 18, 532–538. [Google Scholar] [CrossRef]
  95. Peppard, T.L.; Ramus, S.A. Use of Kovats’ gas chromatographic retention indices in beer flavor studies. Am. Soc. Brew. Chem. Proc. 1988, 46, 26–30. [Google Scholar] [CrossRef]
  96. Paolini, J.; Muselli, A.; Bernardini, A.-F.; Bighelli, A.; Casanova, J.; Costa, J. Thymol derivatives from essential oil of Doronicum corsicum L. Flavour Fragr. J. 2007, 22, 479–487. [Google Scholar] [CrossRef]
  97. Paolini, J.; Tomi, P.; Bernardini, A.-F.; Bradesi, P.; Casanova, J.; Kaloustian, J. Detailed analysis of the essential oil from Cistus albidus L. by combination of GC/RI, GC/MS and 13C-NMR spectroscopy. Nat. Prod. Res. 2008, 22, 1270–1278. [Google Scholar] [CrossRef]
  98. Molleken, U.; Sinnwell, V.; Kubeczka, K.H. The essential oil composition of fruits from Smyrnium perfoliatum. Phytochemistry 1998, 47, 1079–1083. [Google Scholar] [CrossRef]
  99. Quijano, C.E.; Linares, D.; Pino, J.A. Changes in volatile compounds of fermented cereza agria [Phyllanthus acidus (L.) Skeels] fruit. Flavour Fragr. J. 2007, 22, 392–394. [Google Scholar] [CrossRef]
  100. Choi, H.-S. Character impact odorants of Citrus hallabong [(C. unshiu Marcov × C. sinensis Osbeck) × C. reticulata Blanco] cold-pressed peel oil. J. Agric. Food Chem. 2003, 51, 2687–2692. [Google Scholar] [CrossRef] [PubMed]
  101. Pennarun, A.-L.; Prost, C.; Haure, J.; Demaimay, M. Comparison of two microalgal diets. 2. Influence on odorant composition and organoleptic qualities of raw oysters (Crassostrea gigas). J. Agric. Food Chem. 2003, 51, 2011–2018. [Google Scholar] [CrossRef] [PubMed]
  102. Shiratsuchi, H.; Shimoda, M.; Imayoshi, K.; Noda, K.; Osajima, Y. Off-flavor compounds in spray-dried skim milk powder. J. Agric. Food Chem. 1994, 42, 1323–1327. [Google Scholar] [CrossRef]
  103. Bendiabdellah, A.; El Amine Dib, M.; Djabou, N.; Allali, H.; Tabti, B.; Costa, J.; Myseli, A. Biological activities and volatile constituents of Daucus muricatus L. from Algeria. Chem. Centr. J. 2012, 6, 48. [Google Scholar] [CrossRef]
  104. Shiratsuchi, H.; Shimoda, M.; Imayoshi, K.; Noda, K.; Osajima, Y. Volatile flavor compounds in spray-dried skim milk powder. J. Agric. Food Chem. 1994, 42, 984–988. [Google Scholar] [CrossRef]
  105. Pino, J.A.; Marbot, R.; Vázquez, C. Characterization of volatiles in strawberry guava (Psidium cattleianum Sabine) fruit. J. Agric. Food Chem. 2001, 49, 5883–5887. [Google Scholar] [CrossRef]
  106. Condurso, C.; Verzera, A.; Romeo, V.; Ziino, M.; Trozzi, A.; Ragusa, S. The leaf volatile constituents of Isatis tinctoria by solid phase microextraction and gas chromatography/mass spectrometry. Planta Medica 2006, 72, 924–928. [Google Scholar] [CrossRef]
  107. Duman, H.; Kartal, M.; Altun, L.; Demirci, B.; Baser, K.H.C. The essential oil of Stachys laetivirens Kotschy Boiss. ex Rech. fil., endemic in Turkey. Flavour Fragr. J. 2005, 20, 48–50. [Google Scholar] [CrossRef]
  108. Zaikin, V.G.; Borisov, R.S. Chromatographic-mass spectrometric analysis of Fishcer-Tropsch synthesis products. J. Anal. Chem. USSR 2002, 57, 544–551. [Google Scholar] [CrossRef]
  109. Kamariah, A.S.; Lim, L.B.L.; Baser, K.H.C.; Ozek, T.; Demirci, B. Composition of the essential oil of Plumeria obtusa L. Flavour Fragr. J. 1999, 14, 237–240. [Google Scholar] [CrossRef]
  110. Tkachev, A.V.; Dobrotvorsky, A.K.; Vjalkov, A.I.; Morozov, S.V. Chemical composition of lipophylic compounds from the body surface of unfed adult Ixodes persulcatus ticks (Acari: Ixodidae). Exp. Appl. Acarol. 2000, 24, 145–158. [Google Scholar] [CrossRef] [PubMed]
  111. Kaya, A.; Baser, K.H.C.; Demirci, B.; Koca, F. The essential oil of Acinos alpinus (L.) Moench growing in Turkey. Flavour Fragr. J. 1999, 14, 55–59. [Google Scholar] [CrossRef]
  112. Radulovic, N.; Blagojevic, P.; Palic, R. Comparative study of the leaf volatiles of Arctostaphylos uva-ursi (L.) Spreng. and Vaccinium vitis-idaea L. (Ericaceae). Molecules 2010, 15, 6168–6185. [Google Scholar] [CrossRef] [PubMed]
  113. Dewick, P.M. Medicinal Natural Products. A Biosynthetic Approach, 3rd ed.; John Wiley & Sons Ltd.: Chichester, UK, 2009; ISBN 9780470741672. [Google Scholar]
  114. Allenspach, M.; Steuer, C. α-Pinene: A Never-Ending Story. Phytochemistry 2021, 190, 112857. [Google Scholar] [CrossRef]
  115. Francomano, F.; Caruso, A.; Barbarossa, A.; Fazio, A.; La Torre, C.; Ceramella, J.; Mallamaci, R.; Saturnino, C.; Iacopetta, D.; Sinicropi, M.S. β-Caryophyllene: A Sesquiterpene with Countless Biological Properties. Appl. Sci. 2019, 9, 5420. [Google Scholar] [CrossRef]
  116. Scandiffio, R.; Geddo, F.; Cottone, E.; Querio, G.; Antoniotti, S.; Gallo, M.P.; Maffei, M.E.; Bovolin, P. Protective Effects of (E)-β-Caryophyllene (BCP) in Chronic Inflammation. Nutrients 2020, 12, 3273. [Google Scholar] [CrossRef]
  117. Mozuraitis, R.; Stranden, M.; Ramirez, M.I.; Borg-Karlson, A.K.; Mustaparta, H. (-)-Germacrene D Increases Attraction and Oviposition by the Tobacco Budworm Moth Heliothis virescens. Chem. Senses 2002, 27, 505–509. [Google Scholar] [CrossRef]
  118. Stranden, M.; Liblikas, I.; Koenig, W.A.; Almaas, T.J.; Borg-Karlson, A.K.; Mustaparta, H. (–)-GermacreneD Receptor Neurones in Three Species of Heliothine Moths: Structure-activity Relationships. J. Comp. Physiol. A 2003, 189, 563–577. [Google Scholar] [CrossRef]
  119. Albuquerque, B.N.D.L.; Da Silva, M.F.R.; Da Silva, P.C.B.; De Lira Pimentel, C.S.; Lino Da Rocha, S.K.; De Aguiar, J.C.R.O.F.; Neto, A.C.A.; Paiva, P.M.G.; Gomes, M.G.M.; Da Silva-Júnior, E.F.; et al. Oviposition Deterrence, Larvicidal Activity and Docking of β-Germacrene-D-4-ol Obtained from Leaves of Piper corcovadensis (Piperaceae) against Aedes aegypti. Ind. Crops Prod. 2022, 182, 114830. [Google Scholar] [CrossRef]
  120. do Nascimento, K.F.; Moreira, F.M.F.; Santos, J.A.; Kassuya, C.A.L.; Croda, J.H.R.; Cardoso, C.A.L.; Vieira, M.d.C.; Tasca, G.R.A.M.; Foglio, M.A.; de Carvalho, J.E.; et al. Antioxidant, Anti-inflammatory, Antiproliferative and Antimycobacterial Activities of the Essential Oil of Psidium guineense Sw. and Spathulenol. J. Ethnopharmacol. 2018, 210, 351–358. [Google Scholar] [CrossRef] [PubMed]
  121. Van Den Dool, H.; Kratz, P.D. A Generalization of the Retention Index System Including Linear Temperature Programmed Gas-Liquid Partition Chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef] [PubMed]
  122. De Saint Laumer, J.Y.; Cicchetti, E.; Merle, P.; Egger, J.; Chaintreau, A. Quantification in Gas Chromatography: Prediction of Flame Ionization Detector Response Factors from Combustion Enthalpies and Molecular Structures. Anal. Chem. 2010, 82, 6457–6462. [Google Scholar] [CrossRef] [PubMed]
  123. Tissot, E.; Rochat, S.; Debonneville, C.; Chaintreau, A. Rapid GC-FID quantification technique without authentic samples using predicted response factors. Flavour Fragr. J. 2012, 27, 290–296. [Google Scholar] [CrossRef]
  124. Gilardoni, G.; Matute, Y.; Ramírez, J. Chemical and Enantioselective Analysis of the Leaf Essential Oil from Piper coruscans Kunth (Piperaceae), a Costal and Amazonian Native Species of Ecuador. Plants 2020, 9, 791. [Google Scholar] [CrossRef]
Figure 1. Compared GC–MS profiles of G. hallii (black), G. calyculisolvens (red), and G. azuayensis (blue) EOs on a 5% phenyl methylpolysiloxane stationary phase. The numbers refer to column N in Table 1.
Figure 1. Compared GC–MS profiles of G. hallii (black), G. calyculisolvens (red), and G. azuayensis (blue) EOs on a 5% phenyl methylpolysiloxane stationary phase. The numbers refer to column N in Table 1.
Plants 14 00659 g001
Figure 2. Compared GC–MS profiles of G. hallii (black), G. calyculisolvens (red), and G. azuayensis (blue) EOs on a polyethylene glycol stationary phase. The numbers refer to column N in Table 1.
Figure 2. Compared GC–MS profiles of G. hallii (black), G. calyculisolvens (red), and G. azuayensis (blue) EOs on a polyethylene glycol stationary phase. The numbers refer to column N in Table 1.
Plants 14 00659 g002
Figure 3. Molecular structures of the major compounds whose abundance is ≥3.0% on at least one column in at least one EO. According to Table 1, these molecules are α-pinene (2), p-cymene (15), α-copaene (64), (E)-β-caryophyllene (75), germacrene D (89), bicyclogermacrene (93), tridecanal (101), germacrene D-4-ol (108), and spathulenol (109).
Figure 3. Molecular structures of the major compounds whose abundance is ≥3.0% on at least one column in at least one EO. According to Table 1, these molecules are α-pinene (2), p-cymene (15), α-copaene (64), (E)-β-caryophyllene (75), germacrene D (89), bicyclogermacrene (93), tridecanal (101), germacrene D-4-ol (108), and spathulenol (109).
Plants 14 00659 g003
Figure 4. Compared abundance of major compounds (≥3.0% in at least one oil) in the EOs of G. hallii (black), G. calyculisolvens (red), and G. azuayensis (blue). Abundances correspond to the mean values of the quantitative results on both columns.
Figure 4. Compared abundance of major compounds (≥3.0% in at least one oil) in the EOs of G. hallii (black), G. calyculisolvens (red), and G. azuayensis (blue). Abundances correspond to the mean values of the quantitative results on both columns.
Plants 14 00659 g004
Figure 5. Compared enantiomeric composition of some chiral compounds in the EOs of G. hallii (black), G. calyculisolvens (red), and G. azuayensis (blue).
Figure 5. Compared enantiomeric composition of some chiral compounds in the EOs of G. hallii (black), G. calyculisolvens (red), and G. azuayensis (blue).
Plants 14 00659 g005
Table 1. Qualitative and quantitative compositions of G. hallii, G. calyculisolvens, and G. azuayensis EOs on two stationary phases of different polarity (5% phenyl methylpolysiloxane and polyethylene glycol).
Table 1. Qualitative and quantitative compositions of G. hallii, G. calyculisolvens, and G. azuayensis EOs on two stationary phases of different polarity (5% phenyl methylpolysiloxane and polyethylene glycol).
N.Compounds5% Phenyl Methyl PolysiloxanePolyethylene Glycol
LRIG. halliiG. calyculisolvensG. azuayensisLit.LRIG. halliiG. calyculisolvensG. azuayensisLit.
Calc.Ref.%σ%σ%σCalc.Ref.%σ%σ%σ
1heptanal9109010.10.02----[15]11581158trace-----[16]
2α-pinene93593233.62.3911.22.594.51.42[15]1015101531.52.3811.02.414.11.14[17]
3α-fenchene9489450.10.01----[15]107410730.30.04----[18]
4thuja-2,4(10)-diene953953trace-----[15]---------
5sabinene9769690.70.051.20.101.20.32[15]111311130.70.051.10.071.20.26[19]
6benzaldehyde978978----0.10.04[15]15141516----trace-[20]
7β-pinene9809790.30.020.30.020.20.11[15]11021102o.t.p. 3-0.30.020.10.08[21]
8myrcene9949880.20.020.40.030.60.10[15]115911590.20.010.50.020.50.06[22]
92-pentyl furan9979840.10.020.20.051.40.34[15]122912290.20.030.30.041.40.10[23]
10meta-mentha-1(7),8-diene10031000trace-----[15]---------
11α-phellandrene10071002--0.90.08--[15]11651164--0.70.02--[24]
12(2E,4E)-heptadienal10131005trace---0.60.10[15]14631463trace---o.t.p. 64-[25]
13n-octanal1015998----[15]12851286----0.20.07[23]
14α-terpinene10211014----0.10.03[15]11681167----0.10.01[26]
15p-cymene102710200.10.01----[15]12371237trace-----[27]
16o-cymene10281022--4.00.56--[15]12381234--3.70.42--[28]
17(2E,4Z)-heptadienal10281013----0.60.09[15]14881480----0.60.18[29]
18limonene10331024trace-1.40.060.40.04[15]118711860.10.011.30.040.20.02[30]
19β-phellandrene10311025trace-----[15]11621161trace-----[31]
20(Z)-β-ocimene10421032----0.10.02[15]12321232----0.20.18[32]
21(E)-β-ocimene10521044trace-0.10.011.40.35[15]12471247trace-0.10.011.40.18[33]
22γ-terpinene10601054trace-----[15]12211221trace-----[34]
23benzene acetaldehyde10611062----0.90.09[15]16391639----1.00.18[35]
24(2E)-octen-1-al10721049----0.20.05[15]14211421----0.10.05[36]
25cis-linalool oxide (furanoid)10781067----0.40.09[15]14421445----0.50.02[37]
26terpinolene10861086trace-----[15]12421239trace-----[38]
276-camphenone11041095--0.200.01--[15]1416---0.100.02--§
28linalool11101095--trace-1.30.06[15]15581560--trace-1.10.07[39]
29n-nonanal111611000.30.020.40.030.80.27[15]138913890.20.010.30.040.40.08[40]
30γ-campholene aldehyde113411220.10.02----[15]14351439trace-----[41]
31trans-pinocarveol11471135trace-----[15]---------
32(E)-epoxy-ocimene11481137trace-----[15]---------
33trans-verbenol115411400.10.020.20.03--[15]---------
34eucarvone11661146trace-0.20.02--[15]---------
35(2E)-nonen-1-al11731157--trace-0.20.03[15]15281528--trace-0.20.05[42]
36safranal11761197--trace---[15]---------
37p-mentha-1,5-dien-8-ol11851166----0.10.03[15]17311738----0.20.02[43]
38terpinen-4-ol119011740.10.020.20.020.40.02[15]159915990.50.020.50.140.40.11[44]
39n-dodecane120012000.10.04--0.80.12-12001200----0.90.20-
40myrtenol120411940.10.11----[15]17401747trace-----[45]
41myrtenal12061195--0.30.05--[15]16011601--0.30.02--[46]
42α-terpineol12071207----0.80.10[15]16981700----o.t.p. 93-[47]
43verbenone12091204trace-0.30.06--[15]---------
44n-decanal121712010.10.030.30.021.10.27[15]14931495trace-0.70.060.90.08[48]
45nerol12371227----0.10.01[15]18051808----o.t.p. 101-[49]
46thymol, methyl ether12381232--0.20.2--[15]15431555--0.30.05--[50]
47cumin aldehyde12561238--trace---[15]17261738--trace---[51]
48geranial12621264--0.20.02--[15]17201718--trace---[52]
49geraniol12631249----1.10.06[15]18561856----1.10.12[53]
50(2E)-decanal127512600.10.010.50.020.10.04[15]163516380.40.020.70.030.10.02[54]
51nonanoic acid12931267----0.10.01[15]21892190----0.20.11[55]
52n-tridecane13001300----0.10.02-13001300----0.10.04-
53trans-pinocarvyl acetate13031298--0.10.01--[15]16381641--0.10.03--[56]
54(2E,4Z)-decadienal13091292trace---0.10.02[15]17601759trace---0.20.05[57]
55carvacrol13171315--2.00.03--[58]21862186--2.70.18--[59]
56undecanal13181305----0.40.07[15]16021598----0.50.09[60]
57p-vinylguaiacol132313091.00.322.20.35--[15]218221821.30.251.90.31--[61]
58δ-elemene133013350.10.02----[15]---------
59unidentified (MW = 150)1332-----0.90.04-1801-----0.70.11-
60(2E,4E)-decadienal13341334----[15]18011800----[62]
61α-cubebene13471348trace-0.10.01--[15]141614200.50.03trace---[63]
62neryl acetate13671359--0.30.02--[15]16821680--0.10.01--[49]
63α-ylangene137413730.50.02----[15]144714500.50.05----[64]
64α-copaene13771374--3.60.430.70.17[15]14691471--3.70.420.70.17[65]
65β-bourbonene13841387--0.20.01--[15]14971490--0.20.02--[66]
66α-isocomene13861387----0.10.06[15]15001510----0.20.03[65]
67geranyl acetate13861379--2.80.29--[15]17161713--2.90.25--[50]
68β-cubebene138613870.40.021.00.04--[15]15101508trace-0.80.07--[67]
69β-elemene138913890.20.01--[15]15541559trace-----[68]
70(E)-β-damascenone13891383----1.70.31[15]18081803----o.t.p. 101-[69]
71decanoic acid13911364----[15]22432244----1.60.56[70]
72n-tetradecane14001400trace-0.10.010.60.02-14001400--0.10.010.50.19-
73α-gurjunene140814090.40.020.30.040.20.04[15]15061507--0.30.020.10.01[71]
74methyl eugenol14161403--0.60.05--[15]---------
75(E)-β-caryophyllene141814176.20.278.10.331.20.25[15]155115506.40.208.30.460.70.17[72]
76dodecanal14201408----[15]17001698----o.t.p. 93-[73]
77unidentified (MW = 190)1420------2115-----0.60.10-
78β-duprezianene14211421----[15]2211-----o.t.p. 126-§
79β-copaene14331430--0.20.030.10.01[15]15491550--trace-0.20.04[64]
80allo-aromadendrene144614370.10.010.10.02--[15]--0.30.02----[74]
81α-humulene145214520.70.031.10.071.10.18[15]164316450.80.061.10.011.20.18[75]
82α-guaiene145514530.90.19----[15]158615831.10.05----[76]
839-epi-(E)-caryophyllene14631464----0.20.03[15]16181630----trace-[77]
84cis-cadina-1(6),4-diene14651461--0.20.07--[15]---------
854,5-di-epi-aristolochene146614710.20.05----[15]--o.t.p. 82------
86β-acoradiene147414690.70.16----[15]169116930.20.02----[78]
87trans-cadina-1(6),4-diene14791475--0.30.17--[15]1613---0.50.12--§
88γ-muurolene14801478----0.20.07[15]16651665----0.10.09[79]
89germacrene D1486148035.71.0220.80.6514.12.35[15]1684168438.31.6322.00.2312.41.69[80]
90(E)-β-ionone14901487----1.90.84[15]19251926----1.60.18[81]
91valencene14911496--0.20.02--[15]---------
92α-zingiberene14951493----0.70.14[15]17201721----0.60.22[82]
93bicyclogermacrene150015003.80.111.20.052.60.54[15]170817114.00.1710.033.00.66[83]
94α-muurolene150115000.20.031.20.05--[15]170517000.20.011.10.02--[84]
95β-himachalene15041500trace-----[15]17041704----[85]
96(E,E)-α-farnesene15091505--trace-2.41.03[15]17421745----2.51.01[49]
97germacrene A15111508--trace---[15]17371738--trace---[86]
98γ-cadinene151515130.30.070.50.04--[15]166616660.10.020.50.04--[87]
99δ-amorphene151915111.20.12----[15]170717101.30.12----[88]
100δ-cadinene15221522--2.40.16--[15]17131708--2.00.16--[89]
101tridecanal15221509----6.40.22[15]18101811----6.20.24[60]
102trans-cadina-1,4-diene15351533trace-----[15]---------
103cis-muurol-5-en-4-β-ol15541550--0.10.03--[15]---------
104(E)-nerolidol156515610.10.020.20.08--[15]200320050.10.020.20.02--[73]
105elemicin15651555--1.91.74--[15]22122214--1.50.09--[90]
106unidentified (MW = 220)1577-----0.40.05-1891-----0.20.03-
107β-copaen-4-α-ol15801590--0.20.02--[15]2226---0.10.01--§
108germacrene D-4-ol158115740.50.188.40.49--[15]203720380.60.078.60.43--[91]
109spathulenol158315770.60.14--7.81.26[15]21212121----7.11.08[92]
110unidentified (mw: 220)1591---0.90.28---2074---1.10.11---
111caryophyllene oxide159115820.50.151.80.263.10.16[15]195519550.20.071.80.221.90.16[89]
112unidentified (MW = 220)1595------1984-----0.30.09-
113unidentified (MW = 220)1596------2247-----0.50.16-
114n-hexadecane16001600----o.t.p. 111--16001600----0.20.04-
115guaiol16051600--0.60.06--[15]20542064--0.40.01--[93]
116ledol161016020.40.04----[15]201820160.30.03----[94]
117humulene epoxide II16211608----1.10.07[15]20122024----0.60.10[95]
118tetradecanal16231611----[15]19151919----0.50.04[96]
119junenol16271618trace---0.50.13[15]20282028trace---0.20.06[95]
120unidentified (MW = 220)1629-----1.10.17-2241-----o.t.p. 71--
121himachalol16411652--0.100.04--[15]---------
122allo-aromadendrene epoxide164116390.10.020.10.03--[15]209220950.10.020.10.01--[97]
123epi-α-cadinol165016380.30.050.70.11--[15]212621260.30.040.70.08--[38]
124epi-α-muurolol165216400.50.090.70.120.40.06[15]218121820.90.060.80.100.50.14[98]
125α-muurolol165416440.10.080.40.130.50.12[15]216621650.30.050.40.030.50.14[99]
126α-cadinol166416520.50.181.90.231.20.07[15]22132211o.t.p. 124-1.80.292.00.13[100]
127unidentified (MW = 220)1673-----0.80.17-2067-----0.60.07-
128epi-zizanone167416680.10.02----[15]---------
12914-hydroxy-9-epi-(E)-caryophyllene168416680.5-----[15]2066-0.60.18----§
130khusinol169216790.10.020.40.04--[15]2237---0.40.02--§
131n-heptadecane17001700----0.20.08-17001700----0.10.07-
132amorpha-4,9-dien-2-ol170117000.10.04--0.90.27[15]2263-0.10.03--1.20.16§
133n-pentadecanal17251724--0.50.022.70.07[15]20232020--0.50.042.90.16[31]
134β-acoradienol17421762trace-----[15]---------
135unidentified (MW = 220)1781-----0.80.12-2231-----0.60.19-
136unidentified (MW = 220)1784-----0.50.03-2268-----0.20.05-
137avocadynofuran17841780--0.30.09 [15]---------
1381-octadecene17951789--0.10.01--[15]18351823--0.40.04--[101]
139n-octadecane18001800trace-trace-0.40.11-180018000.10.02trace-0.20.11-
14014-hydroxy-δ-cadinene18051803trace-----[15]---------
141n-hexadecanal183418300.10.020.10.020.80.22[15]21342137----1.10.04[102]
1426,10,14-trimethyl-2-pentadecanone18561855----0.90.08[15]21272125----0.60.06[103]
1431-nonadecene18931895--0.10.01--[15]19361938--0.10.02--[104]
144n-nonadecane19001900trace-0.50.010.20.03-19001900trace-0.80.02trace--
145(5E,9E)-farnesyl acetone19251913----0.90.06[15]2244-----1.10.22§
146n-heptadecanal19351930trace-0.10.011.50.10[15]2219-----1.60.42§
147methyl hexadecanoate19381921----0.20.02[15]21882191----0.40.17[105]
148unidentified (MW = 262)1978-----0.60.07-2235-----trace--
1491-eicosene19961987--0.20.01--[15]20372047--0.40.01--[106]
150n-eicosane20012000--trace-0.10.02-20002000----0.10.06-
151n-octadecanal20342033----0.20.02[15]23592357----0.20.04[107]
152unidentified (MW = 220)2085-----0.60.10-2294-----0.50.30-
1531-heneicosene20932098--0.10.01--[108]21372127--0.20.02--[109]
154unidentified (MW = 294)2096-----1.10.20-2376-----1.70.15-
155n-heneicosane210121000.10.070.40.060.40.01-21002100trace-0.30.020.50.06-
156(Z)-phytol21202114----2.50.53[53]2362-----2.90.90§
157unidentified (MW = 355)2152-----0.40.05-2323-----0.20.10-
1581-docosene21962189--0.20.030.10.01[15]2289-----0.70.02§
159n-docosane22002200--trace-0.10.01-22002200--0.20.020.10.06-
160n-eicosanal22372229----0.10.01[110]25752571----0.20.02[111]
1611-tricosene22952296trace-0.10.03trace-[108]2346-trace---0.50.05§
162n-tricosane23002300--0.50.060.40.03-23002300--0.30.060.10.01-
1631-tetracosene23962396--0.10.041.50.15[108]2467---0.20.020.40.15§
164n-tetracosane24002400--0.10.03-24002400--trace-1.10.17-
165n-docosanal24402434----0.50.25[110]2425-----0.40.05§
1661-pentacosene24962496--0.20.011.00.07[108]24762488--0.20.021.10.27[63]
167n-pentacosane25002500--0.20.011.00.10-25002500--0.30.071.10.19-
1681-hexacosene25962596--0.10.071.40.21[112]2551---0.50.061.60.29§
169n-hexacosane26002600--0.10.07---26002600--0.30.04---
monoterpenes 35.0 19.5 8.5 32.8 18.7 7.8
oxygenated monoterpenoids 0.4 7.0 4.2 0.5 7.0 3.3
sesquiterpenes 52.4 43.9 25.3 55.0 43.4 21.7
oxygenated sesquiterpenoids 4.4 16.8 20.6 3.5 16.4 18.0
others 1.0 7.7 35.6 0.9 8.3 38.5
total 93.2 94.9 94.2 92.7 93.8 89.3
LRI—linear retention index; calc.—calculated LRI; ref.—LRI from literature; lit.—reference literature; %—percent amount by weight; σ—standard deviation; trace—<0.1%; o.t.p.—overlapped to peak; MW—molecular weight; §—identified only by MS. The number and name of major compounds (≥3.0% on at least one column in at least one EO) are written in bold.
Table 2. Enantioselective analyses of G. hallii, G. calyculisolvens, and G. azuayensis EOs on 2,3-diacetyl-6-tert-butyldimethylsilyl-β-cyclodextrin and 2,3-diethyl-6-tert-butyldimethylsilyl-β-cyclodextrin chiral selectors.
Table 2. Enantioselective analyses of G. hallii, G. calyculisolvens, and G. azuayensis EOs on 2,3-diacetyl-6-tert-butyldimethylsilyl-β-cyclodextrin and 2,3-diethyl-6-tert-butyldimethylsilyl-β-cyclodextrin chiral selectors.
Chiral SelectorEnantiomersLRIG. halliiG. calyculisolvensG. azuayensis
Distribution (%)ee (%)Distribution (%)ee (%)Distribution (%)ee (%)
DAC(1S,5S)-(–)-α-pinene926100.0100.0100.0100.0100.0100.0
DAC(1R,5R)-(+)-α-pinene928---
DET(1R,5R)-(+)-β-pinene9499.181.99.082.069.939.7
DET(1S,5S)-(–)-β-pinene96090.991.030.1
DET(1R,5R)-(+)-sabinene97721.656.747.55.192.985.9
DET(1S,5S)-(–)-sabinene99278.452.57.1
DET(R)-(–)-α-phellandrene1022--100.0100.0--
DET(S)-(+)-α-phellandrene1025---
DET(R)-(–)-β-phellandrene1052100.0100.0----
DET(S)-(+)-β-phellandrene1063---
DET(S)-(–)-limonene105960.821.694.188.2--
DET(R)-(+)-limonene107539.25.9-
DET(R)-(–) cis-linalool oxide (furanoid)1099----30.838.4
DET(S)-(+) cis-linalool oxide (furanoid)1104--69.2
DET(R)-(–)-linalool1181----48.43.3
DET(S)-(+)-linalool1194--51.6
DET(S)-(−)-α-terpineol1300----39.421.2
DET(R)-(+)-α-terpineol1313--60.6
DET(1R,2S,6S,7S,8S)-(–)-α-copaene1321---100.0-100.0
DET(1S,2R,6R,7R,8R)-(+)-α-copaene1323-100.0100.0
DAC(R)-(–)-terpinen-4-ol133866.733.443.514.0100.0-
DAC(S)-(+)-terpinen-4-ol137533.357.5-
DET(R)-(+)-germacrene D1459-100.03.193.81.197.8
DET(S)-(–)-germacrene D1467100.096.998.9
DAC—2,3-diacetyl-6-tert-butyldimethylsilyl-β-cyclodextrin; DET—2,3-diethyl-6-tert-butyldimethylsilyl-β-cyclodextrin; LRI—linear retention index; %—peak area percent; ee—enantiomeric excess.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Maldonado, Y.E.; Rodríguez, M.d.C.; Bustamante, M.E.; Cuenca, S.; Malagón, O.; Cumbicus, N.; Gilardoni, G. Gynoxys hallii Hieron., Gynoxys calyculisolvens Hieron., and Gynoxys azuayensis Cuatrec. Essential Oils—Chemical and Enantioselective Analyses of Three Unprecedented Volatile Fractions from the Ecuadorian Biodiversity. Plants 2025, 14, 659. https://doi.org/10.3390/plants14050659

AMA Style

Maldonado YE, Rodríguez MdC, Bustamante ME, Cuenca S, Malagón O, Cumbicus N, Gilardoni G. Gynoxys hallii Hieron., Gynoxys calyculisolvens Hieron., and Gynoxys azuayensis Cuatrec. Essential Oils—Chemical and Enantioselective Analyses of Three Unprecedented Volatile Fractions from the Ecuadorian Biodiversity. Plants. 2025; 14(5):659. https://doi.org/10.3390/plants14050659

Chicago/Turabian Style

Maldonado, Yessenia E., María del Carmen Rodríguez, María Emilia Bustamante, Stefanny Cuenca, Omar Malagón, Nixon Cumbicus, and Gianluca Gilardoni. 2025. "Gynoxys hallii Hieron., Gynoxys calyculisolvens Hieron., and Gynoxys azuayensis Cuatrec. Essential Oils—Chemical and Enantioselective Analyses of Three Unprecedented Volatile Fractions from the Ecuadorian Biodiversity" Plants 14, no. 5: 659. https://doi.org/10.3390/plants14050659

APA Style

Maldonado, Y. E., Rodríguez, M. d. C., Bustamante, M. E., Cuenca, S., Malagón, O., Cumbicus, N., & Gilardoni, G. (2025). Gynoxys hallii Hieron., Gynoxys calyculisolvens Hieron., and Gynoxys azuayensis Cuatrec. Essential Oils—Chemical and Enantioselective Analyses of Three Unprecedented Volatile Fractions from the Ecuadorian Biodiversity. Plants, 14(5), 659. https://doi.org/10.3390/plants14050659

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop