Inheritance of Some Salt Tolerance-Related Traits in Bread Wheat (Triticum aestivum L.) at the Seedling Stage: A Study of Combining Ability
Abstract
:1. Introduction
2. Results
2.1. Analysis of Variance
2.2. Effect of Salinity on Pre-Seedling Growth Traits
2.3. Effect of Salinity on Photosynthetic Pigments
2.4. Effect of Salinity on Compatible Solutes
2.5. Effect of Salinity on Ions Content
2.6. Correlation and Regression
2.7. Effect of Salinity on General Combining Ability (GCA)
2.8. Effect of Salinity on Specific Combining Ability (SCA)
2.9. Genetic Component of the Total Variance
3. Discussion
4. Methods
4.1. Plant Material
4.2. Experimental Design
4.3. Data Collection
4.3.1. Total Chlorophyll and Carotenoids
4.3.2. Proline
4.3.3. Total Soluble Sugars
4.3.4. Ions Content
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Chl | Chlorophyll content |
RWC | Relative water content |
Pro | Proline content |
Sug | Total soluble sugars content |
Cart | Catenoids content |
Na+ | Sodium ions content |
K+ | Potassium ions content |
K+/Na+ | Selectivity of potassium ions over sodium ions |
SFW | Shoot fresh weight |
RFW | Root fresh weight |
SDW | Shoot dry weight |
RDW | Root dry weight |
SL | Shoot length |
RL | Root length |
MFVS | Membership function value of salt tolerance |
HMP | Mid-parent heterosis |
HBP | Better-parent heterosis |
SCA | Specific combining ability |
GCA | General combining ability |
EC | Electrical conductivity |
NaCl | Sodium chloride |
References
- Tadesse, W.; Halila, H.; Jamal, M.; El-Hanafi, S.; Assefa, S.; Oweis, T.; Baum, M. Role of Sustainable Wheat Production to Ensure Food Security in the CWANA region. J. Exp. Biol. Agric. Sci. 2017, 5, 15–32. [Google Scholar] [CrossRef]
- Kettlewell, P.; Byrne, R.; Jeffery, S. Wheat area expansion into northern higher latitudes and global food security. Agric. Ecosyst. Environ. 2023, 351, 108499. [Google Scholar] [CrossRef]
- Temirbekova, S.K.; Kulikov, I.M.; Afanasyeva, Y.V.; Beloshapkina, O.O.; Kalashnikova, E.A.; Kirakosyan, R.N.; Dokukin, P.A.; Kucher, D.E.; Latati, M.; Rebouh, N.Y. The Evaluation of Winter Wheat Adaptation to Climate Change in the Central Non-BlackRegion of Russia: Study of the Gene Pool Resistance of Wheat from the N.I. Vavilov Institute of Plant Industry (VIR) World Collection to Abiotic Stress Factors. Plants 2021, 10, 2337. [Google Scholar] [CrossRef] [PubMed]
- Rebouh, N.Y.; Latati, M.; Polityko, P.; Kucher, D.; Hezla, L.; Norezzine, A.; Kalisa, L.; Utkina, A.; Vvedenskiy, V.; Ga-dzhikurbanov, A.; et al. Influence of three cultivation technologies to control Fusarium spp. in winter wheat (Triticum aestivum L.) production under Moscow conditions. Res. Crop. 2020, 21, 17–25. [Google Scholar]
- Abuzaid, A.S.; El-Komy, M.S.; Shokr, M.S.; El Baroudy, A.A.; Mohamed, E.S.; Rebouh, N.Y.; Abdel-Hai, M.S. Predicting Dynamics of Soil Salinity and Sodicity Using Remote Sensing Techniques: A Landscape-Scale Assessment in the Northeastern Egypt. Sustainability 2023, 15, 9440. [Google Scholar] [CrossRef]
- Corwin, D.L. Climate change impacts on soil salinity in agricultural areas. Eur. J. Soil Sci. 2020, 72, 842–862. [Google Scholar] [CrossRef]
- Wang, Y.; Li, K.; Li, X. Auxin redistribution modulates plastic development of root system architecture under salt stress in Arabidopsis thaliana. J. Plant Physiol. 2009, 166, 1637–1645. [Google Scholar] [CrossRef]
- Safdar, H.; Amin, A.; Shafiq, Y.; Ali, A.; Yasin, R. A review: Impact of salinity on plant growth. Nat. Sci. 2019, 17, 34–40. [Google Scholar]
- Munns, R. Comparative physiology of salt and water stress. Plant Cell Environ. 2002, 25, 239–250. [Google Scholar] [CrossRef]
- Horie, T.; Karahara, I.; Katsuhara, M. Salinity tolerance mechanisms in glycophytes: An overview with the central focus on rice plants. Rice 2012, 5, 11. [Google Scholar] [CrossRef]
- Fellahi, Z.E.A.; Boubellouta, T.; Bentouati, I.; Safsaf, H.; Hannachi, A.; Utkina, A.O.; Rebouh, N.Y. Hydroponic Screening at Early Seedling Stage Identified Sources of Salinity Tolerance in Wheat (Triticum aestivum L.) Crop. Agronomy 2024, 14, 984. [Google Scholar] [CrossRef]
- Zaharieva, M.; Bonjean, A.; Monneveux, P. Saharan wheats: Before they disappear. Genet. Resour. Crop Evol. 2014, 61, 1065–1084. [Google Scholar] [CrossRef]
- Oumata, S.; David, J.; Mekliche-Hanifi, L.; Kharsi, M.; Zaharieva, M.; Monneveux, P. Oasis wheats of the South of Algeria: Landraces, cultural practices and utilization. Genet. Resour. Crop Evol. 2020, 67, 325–337. [Google Scholar] [CrossRef]
- Toka, H.; Mouad, B.; Kebaili, F.F.; Maroua, H.; Awatef, G.; Hamdi, B. Assessment of salt tolerance in Algerian oasis wheat landraces: An examination of biochemical, physiological, and agronomical traits. Emir. J. Food Agric. 2024, 36, 1–14. [Google Scholar] [CrossRef]
- Uzair, M.; Ali, M.; Fiaz, S.; Attia, K.; Khan, N.; Al-Doss, A.A.; Khan, M.R.; Ali, Z. The characterization of wheat genotypes for salinity tolerance using morpho-physiological indices under hydroponic conditions. Saudi J. Biol. Sci. 2022, 29, 103299. [Google Scholar] [CrossRef]
- Omrani, S.; Arzani, A.; Moghaddam, M.E.; Mahlooji, M. Genetic analysis of salinity tolerance in wheat (Triticum aestivum L.). PLoS ONE 2022, 17, e0265520. [Google Scholar] [CrossRef]
- Okello, D.; Manna, R.; Imanywoha, J.; Pixley, K.; Edema, R. Agronomic performance and breeding potential of selected inbred lines for improvement of protein quality of adapted Ugandan maize germplasm. Afr. Crop Sci. J. 2006, 14, 37–47. [Google Scholar]
- Ahmed, D.Z.; Ahmed, L.A.; Hussain, W.S.; Bashir, A.; Ishfaq, A.; Gowhar, A.; Altaf, W.M. Analysis of combining ability in maize (Zea mays L.) under temperate conditions. Int. J. Agric. Sci. 2017, 9, 3647–3649. [Google Scholar]
- Fellahi, Z.E.A.; Zaghdoudi, H.; Bensaadi, H.; Boutalbi, W.; Hannachi, A. Assessment of salt stress effect on wheat (Triticum aestivum L.) cultivars at seedling stage. Agric. Conspec. Sci. 2019, 84, 347–355. [Google Scholar]
- Rebouh, N.Y.; Khugaev, C.V.; Utkina, A.O.; Isaev, K.V.; Mohamed, E.S.; Kucher, D.E. Contribution of Eco-Friendly Agricultural Practices in Improving and Stabilizing Wheat Crop Yield: A Review. Agronomy 2023, 13, 2400. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Saha, N.R.; Farabi, S.; Tahjib-Ul-Arif, M.; Yasmin, S.; Haque, M.S. Screening of salt-tolerant wheat (Triticum aestivum L.) through morphological and molecular markers. Cereal Res. Commun. 2022, 51, 87–100. [Google Scholar] [CrossRef]
- Saddiq, M.S.; Afzal, I.; Basra, S.M.A.; Ali, Z.; Ibrahim, A.M.H. Sodium exclusion is a reliable trait for the improvement of salinity tolerance in bread wheat. Arch. Agron. Soil Sci. 2018, 64, 272–284. [Google Scholar] [CrossRef]
- Ashraf, M.A.; Hafeez, A.; Rasheed, R.; Hussain, I.; Farooq, U.; Rizwan, M.; Ali, S. Evaluation of Physio-Morphological and Biochemical Responses for Salt Tolerance in Wheat (Triticum aestivum L.) Cultivars. J. Plant Growth Regul. 2023, 42, 4402–4422. [Google Scholar] [CrossRef]
- Khan, M.M.; Rahman, M.M.; Hasan, M.M.; Amin, M.F.; Matin, M.Q.I.; Faruq, G.; Alkeridis, L.A.; Gaber, A.; Hossain, A. Assessment of the salt tolerance of diverse bread wheat (Triticum aestivum L.) genotypes during the early growth stage under hydroponic culture conditions. Heliyon 2024, 10, e29042. [Google Scholar] [CrossRef]
- Gupta, B.; Huang, B. Mechanism of Salinity Tolerance in Plants: Physiological, Biochemical, and Molecular Characterization. Int. J. Genom. 2014, 701596. [Google Scholar] [CrossRef]
- Farooq, M.; Hussain, M.; Wakeel, A.; Siddique, K.H. Salt stress in maize: Effects, resistance mechanisms, and management. A review. Agron. Sustain. Dev. 2015, 35, 461–481. [Google Scholar] [CrossRef]
- Nakamura, C.; Takenaka, S.; Nitta, M.; Yamamoto, M.; Kawazoe, T.; Ono, S.; Takenaka, M.; Inoue, K.; Kawai, S. High sensitivity of roots to salt stress as revealed by novel tip bioassay in wheat seedlings. Biotechnol. Biotechnol. Equip. 2020, 35, 238–246. [Google Scholar] [CrossRef]
- Srinivas, V.; Balasubramanian, D. Proline is a protein-compatible hydrotrope. Langmuir 1995, 11, 2830–2833. [Google Scholar] [CrossRef]
- Pastuszak, J.; Dziurka, M.; Hornyák, M.; Szczerba, A.; Kopeć, P.; Płażek, A. Physiological and biochemical parameters of salinity resistance of three durum wheat genotypes. Int. J. Mol. Sci. 2022, 23, 8397. [Google Scholar] [CrossRef]
- Shabala, S.; Pottosin, I. Regulation of potassium transport in plants under hostile conditions: Implications for abiotic and biotic stress tolerance. Physiol. Plant. 2014, 151, 257–279. [Google Scholar] [CrossRef]
- Fellahi, Z.E.A.; Hannachi, A.; Bouzerzour, H.; Boutekrabt, A. Line × Tester Mating Design Analysis for Grain Yield and Yield Related Traits in Bread Wheat (Triticum aestivum L.). Int. J. Agron. 2013, 201851. [Google Scholar] [CrossRef]
- Mackay, I.J.; Cockram, J.; Howell, P.; Powell, W. Understanding the classics: The unifying concepts of transgressive segregation, inbreeding depression and heterosis and their central relevance for crop breeding. Plant Biotechnol. J. 2021, 19, 26–34. [Google Scholar] [CrossRef]
- Rieseberg, L.; Archer, M.; Wayne, R. Transgressive segregation, adaptation and speciation. Heredity 1999, 83, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.M.E.; Nardino, M.; Mezzomo, H.C.; Casagrande, C.R.; Lima, G.W.; Signorini, V.S.; Freitas, D.S.; Batista, C.V.; Reis, E.F.D.; Bhering, L.L.; et al. Selecting tropical wheat genotypes through combining ability analysis. An. Acad. Bras. Cienc. 2023, 95, e20220760. [Google Scholar] [CrossRef] [PubMed]
- Snider, J.L.; Oosterhuis, D.M.; Kawakami, E.M. Genotypic differences in thermotolerance are dependent upon prestress capacity for antioxidant protection of the photosynthetic apparatus in Gossypium hirsutum. Physiol. Plant. 2010, 138, 268–277. [Google Scholar] [CrossRef]
- Kulembeka, H.P.; Ferguson, M.; Herselman, L.; Kanju, E.; Mkamilo, G.; Masumba, E.; Fregene, M.; Labuschagne, M.T. Diallel analysis of field resistance to brown streak disease in cassava (Manihot esculenta Crantz) landraces from Tanzania. Euphytica 2012, 187, 277–288. [Google Scholar] [CrossRef]
- Nardino, M.; Barros, W.S.; Olivoto, T.; Cruz, C.D.; Silva, F.F.E.; Pelegrin, A.J.; Souza, V.Q.; Carvalho, I.R.; Szareski, V.J.; Oliveira, A.C.; et al. Multivariate diallel analysis by factor analysis for establish mega-traits. An. Acad. Bras. Cienc. 2020, 92, e20180874. [Google Scholar] [CrossRef]
- Naqi, S.; Khan, A.H.; Rana, R.M.; Hamza, M.I.; Kiedrzyński, M.; Tahir, M.N.; Ahmad, M.; Saud, S.; Hassan, S.; Fahad, S. Inheritance of Cell Membrane Stability and Yield Components Under Drought and Salinity Stress in Bread Wheat (Triticum aestivum L.). J. Plant Growth Regul. 2024. [Google Scholar] [CrossRef]
- Zafar, M.M.; Razzaq, A.; Farooq, M.A.; Rehman, A.; Firdous, H.; Shakeel, A.; Mo, H.; Ren, M.; Ashraf, M.; Youlu, Y. Genetic variation studies of ionic and within boll yield components in cotton (Gossypium Hirsutum L.) Under salt stress. J. Nat. Fibers. 2022, 19, 3063–3082. [Google Scholar] [CrossRef]
- Mohammadi, R.; Mendioro, M.S.; Diaz, G.Q.; Gregorio, G.B.; Singh, R.K. Genetic analysis of salt tolerance at seedling and reproductive stages in rice (Oryza sativa). Plant Breed. 2014, 133, 548–559. [Google Scholar] [CrossRef]
- Tavakkoli, E.; Fatehi, F.; Rengasamy, P.; McDonald, G.K. A comparison of hydroponic and soil-based screening methods to identify salt tolerance in the field in barley. J. Exp. Bot. 2012, 63, 3853–3867. [Google Scholar] [CrossRef] [PubMed]
- Barrs, H. Determination of water deficit in plant tissues. In Water Deficit and Plant Growth; Koslowski, T., Ed.; Academic Press: New York, NY, USA, 1968; pp. 235–368. [Google Scholar]
- Lichtenthaler, H.K.; Wellburn, A.R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 1983, 11, 591–592. [Google Scholar] [CrossRef]
- Ould Amer, S.; Aliat, T.; Kucher, D.E.; Bensaci, O.A.; Rebouh, N.Y. Investigating the Potential of Arbuscular Mycorrhizal Fungi in Mitigating Water Deficit Effects on Durum Wheat (Triticum durum Desf.). Agriculture 2023, 13, 552. [Google Scholar] [CrossRef]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Asch, J.; Johnson, K.; Mondal, S.; Asch, F. Comprehensive assessment of extraction methods for plant tissue samples for determining sodium and potassium via flame photometer and chloride via automated flow analysis. J. Plant Nutr. Soil Sci. 2022, 185, 308–316. [Google Scholar] [CrossRef]
- Quamruzzaman, M.; Manik, S.M.N.; Livermore, M.; Johnson, P.; Zhou, M.; Shabala, S. Multidimensional screening and evaluation of morpho-physiological indices for salinity stress tolerance in wheat. J. Agron. Crop Sci. 2022, 208, 454–471. [Google Scholar] [CrossRef]
- Wu, H.; Guo, J.; Wang, C.; Li, K.; Zhang, X.; Yang, Z.; Li, M.; Wang, B. An effective screening method and a reliable screening trait for salt tolerance of Brassica napus at the germination stage. Front. Plant Sci. 2019, 10, 530. [Google Scholar] [CrossRef]
- Kempthorne, O. An Introduction to Genetic Statistics; John Wiley: New York, NY, USA, 1957. [Google Scholar]
- Singh, R.K.; Chaudhary, B.D. Biometrical Methods in Quantitative Genetic Analysis; Kalyani Publishers: New Delhi, India, 1979. [Google Scholar]
Genotype | Salinity | Genotype × Salinity | Error | |
---|---|---|---|---|
SFW | 2118.38 *** | 163,348.03 *** | 984.89 *** | 378.46 |
RFW | 290.70 *** | 29,902.47 *** | 330.36 *** | 52.32 |
SDW | 27.57 *** | 119.16 *** | 16.05 *** | 4.83 |
RDW | 3.054 *** | 57.15 *** | 3.36 *** | 0.54 |
SL | 1.756 *** | 436.68 *** | 0.49 | 0.37 |
RL | 2.181 *** | 302.11 *** | 1.52 *** | 0.29 |
RWC | 5.291 *** | 1125.36 *** | 8.82 *** | 0.62 |
Pro | 1.1 × 106 *** | 3.1 × 108 *** | 1.2 × 106 *** | 585.65 |
sug | 254.82 *** | 995.95 *** | 120.80 *** | 0.28 |
Chl | 150,611.68 *** | 2.2 × 107 *** | 1.3 × 105 *** | 4441.00 |
Cart | 4277.09 *** | 28,231.18 *** | 5274.34 *** | 21.00 |
Na+ | 1.742 *** | 573.92 *** | 2.15 *** | 0.02 |
K+ | 0.073 *** | 2.59 *** | 0.17 *** | 0.005 |
Na+/K+ | 3.817 *** | 477.31 *** | 3.92 *** | 0.08 |
SFW | RFW | SDW | RDW | SL | RL | RWC % | |
---|---|---|---|---|---|---|---|
T1 | −35.9 ± 6.2 de | −56.6 ± 11.5 abc | −7.1 ± 7.2 cd | −16.7 ± 27.3 bc | −50.3 ± 12.8 ab | −69.9 ± 3.1 bcde | −7.4 ± 0.4 defgh |
T2 | −44.2 ± 12.2 bcd | −32.4 ± 20.9 de | −33 ± 4.7 abc | −26.1 ± 30.2 abc | −49.4 ± 15.6 ab | −58.9 ± 3.1 ef | −2.4 ± 1.3 k |
T3 | −43.4 ± 0.5 bcd | −55.2 ± 6.2 abc | −10 ± 0.6 bcd | −32.6 ± 14.8 abc | −50.6 ± 12.9 ab | −73 ± 19.2 abcd | −6.3 ± 0.3 ghi |
T4 | −25.6 ± 27.3 e | −29.1 ± 25.9 de | −8.1 ± 16.1 cd | −5.8 ± 32.9 cd | −45.3 ± 2.8 ab | −78.5 ± 2.6 ab | −5.6 ± 0.4 hi |
T5 | −44.1 ± 13.3 bcd | −10.9 ± 26.1 e | −7.5 ± 7 cd | 40.9 ± 15.6 e | −44.9 ± 15.1 ab | −50.3 ± 1.1 f | −12 ± 0 a |
L1 | −45.7 ± 24.9 bcd | −62.4 ± 2.3 ab | −6.3 ± 25.1 d | −9.8 ± 5.6 bc | −48.0 ± 15.4 ab | −77.4 ± 12.3 abc | −10.9 ± 0.7 ab |
L2 | −68.9 ± 4.6 a | −58.6 ± 10.8 abc | −47.8 ± 0.8 a | −32 ± 21.4 abc | −58.1 ± 6.8 a | −69.4 ± 12.3 bcde | −7.9 ± 2.3 cdefg |
H1 | −37.4 ± 2.2 cde | −37.5 ± 19.7 cd | −13 ± 0.9 bcd | 26.7 ± 31.1 de | −45.3 ± 3.3 a | −61 ± 6.6 def | −4.8 ± 0.5 ij |
H2 | −54.4 ± 4.6 abcd | −59.6 ± 0.6 ab | −17 ± 10.8 bcd | −50.6 ± 2.4 a | −56.2 ± 1 a | −64.4 ± 3 cdef | −8.7 ± 1.8 cdef |
H3 | −37.4 ± 9.8 cde | −63 ± 8.5 ab | −8.3 ± 29.8 d | −26.3 ± 24.9 abc | −47.2 ± 11 ab | −73.1 ± 6.4 abcd | −6.8 ± 1.7 fghi |
H4 | −60.7 ± 13.8 ab | −76.7 ± 8.6 a | −33.2 ± 28 abc | −41.2 ± 23 ab | −52.9 ± 14.7 ab | −76.5 ± 7.1 abc | −7.2 ± 1 efgh |
H5 | −53.4 ± 5.1 abcd | −73.5 ± 2.5 a | −15.4 ± 9.1 bcd | −32.2 ± 2.2 abc | −53.9 ± 4.7 ab | −86.2 ± 6.4 a | −8.7 ± 0.2 cdef |
H6 | −53.7 ± 17.3 abcd | −66.3 ± 20.2 ab | −13.4 ± 26.2 cd | −37 ± 6.6 ab | −55.3 ± 2.5 a | −75.9 ± 1.6 abc | −9.7 ± 0.6 bc |
H7 | −50.2 ± 11 abcd | −46.4 ± 13.8 bcd | −37.5 ± 2.1 ab | −4.5 ± 36 cd | −53.3 ± 7 ab | −56.1 ± 3.7 f | −2.9 ± 0.7 jk |
H8 | −53.5 ± 10.9 abcd | −67.7 ± 1.2 ab | −16.4 ± 3.9 bcd | −43 ± 7.8 ab | −56.6 ± 7.9 a | −54.5 ± 19.1 f | −9.2 ± 2.6 bcde |
H9 | −34.1 ± 2.9 de | −54.9 ± 2.2 abc | −7.5 ± 34.2 d | −21.6 ± 14.9 abc | −43.5 ± 8.1 ab | −63.9 ± 14.1 cdef | −4.9 ± 0.4 ij |
H10 | −56.2 ± 1.9 abc | −66.4 ± 1.5 ab | −9.5 ± 15.6 bcd | −42.3 ± 1.4 ab | −40.3 ± 12.1 b | −63.4 ± 8.5 cdef | −9.5 ± 2.4 bcd |
Pro | Sug | Chl | Cart | Na+ | K+ | K +/Na+ | |
---|---|---|---|---|---|---|---|
T1 | 12.5 ± 17.9 a | 374.5 ± 57.3 i | −65.4 ± 0.2 b | −25.9 ± 0.3 a | 12.7 ± 53.2 f | −10.9 ± 2.7 e | −93.5 ± 0.3 abc |
T2 | 34.1 ± 55.1 d | 380 ± 93.6 i | −67.6 ± 0.2 g | −49.9 ± 1.3 cde | 18.7 ± 90.9 i | −7.3 ± 9.1 e | −95.3 ± 0.6 a |
T3 | 27.9 ± 80 bcd | −27.2 ± 3.3 ab | −68 ± 0.1 e | 140.7 ± 8.1 f | 15.5 ± 65.8 g | −10.5 ± 11.5 e | −94.6 ± 0.9 ab |
T4 | 18.5 ± 31.9 abc | 205.7 ± 38.7 h | −47.6 ± 0.1 f | −44 ± 0.4 ab | 10.7 ± 171.2 e | 12.8 ± 7 g | −90.4 ± 0.8 d |
T5 | 81.3 ± 158.4 f | 78.4 ± 15.4 cd | −55.2 ± 1.4 i | −68.1 ± 1.9 cde | 17.5 ± 163.5 hi | 2 ± 3 f | −94.5 ± 0.7 ab |
L1 | 27.8 ± 149.2 bcd | 40.2 ± 4.3 bc | −61.4 ± 0.2 h | −71.8 ± 0.2 a | 17.2 ± 64.2 ghi | −14.4 ± 3.7 de | −95.3 ± 0.3 a |
L2 | 80.7 ± 121.9 f | 98.1 ± 14.5 cdef | −61.8 ± 0.1 c | −7.6 ± 0.8 bc | 10.7 ± 246.7 e | −33.8 ± 5.9 ab | −94.3 ± 1.7 ab |
H1 | 20.1 ± 79 abc | 130.5 ± 7.9 defg | −61.9 ± 0 d | −49.1 ± 0.2 a | 13.2 ± 117 f | −14.1 ± 2.6 de | −94 ± 0.7 ab |
H2 | 29.3 ± 72.2 cd | 155.6 ± 31.7 efgh | −74.6 ± 0 d | −34.8 ± 1.7 cde | 7.7 ± 17.4 bc | −37.2 ± 3.8 a | −92.8 ± 0.6 abcd |
H3 | 62.5 ± 152.6 e | −60.5 ± 2.6 a | −19.4 ± 0.1 e | −20.9 ± 0.1 a | 10 ± 101.1 de | −21.1 ± 6.1 cd | −92.9 ± 1.2 abcd |
H4 | 23.2 ± 24.3 abcd | 196.1 ± 15 gh | −81.9 ± 0.1 e | −54.4 ± 3.6 e | 9 ± 68.6 cd | −8.5 ± 5.3 e | −90.9 ± 1.1 d |
H5 | 107.1 ± 163.1 h | 114.6 ± 12.2 cdef | −59.2 ± 0 d | −7 ± 0.7 bcd | 1.7 ± 12.3 a | 24 ± 7.1 h | −53.6 ± 4.8 f |
H6 | 63.9 ± 442 e | 366.1 ± 53.6 i | −74.1 ± 0 d | −28.9 ± 2 e | 6.8 ± 36.2 b | −31.4 ± 1.3 ab | −91.2 ± 0.4 cd |
H7 | 18.1 ± 17 ab | 166.9 ± 24.7 fgh | −84 ± 0.1 c | −50.5 ± 2.7 cde | 2.3 ± 37 a | −26.8 ± 2.2 bc | −77.8 ± 3 e |
H8 | 32.8 ± 39.4 d | 121.3 ± 23.9 defg | −64.4 ± 0.2 a | 61.3 ± 0.7 bc | 7 ± 67 b | −27.3 ± 4.3 bc | −91 ± 0.5 cd |
H9 | 16.6 ± 4.1 a | 89.9 ± 14.4 cde | −72.2 ± 0 d | −26.2 ± 1.7 cde | 10.2 ± 54.8 de | −12.1 ± 5.3 de | −92.1 ± 0.8 bcd |
H10 | 60.6 ± 178.6 g | 548 ± 125.1 j | −83.6 ± 0.1 f | −70 ± 3.3 de | 16.3 ± 96.5 gh | −14.8 ± 5.4 de | −95.1 ± 0.4 a |
Trait | Correlation Coefficient |
---|---|
SFW | 0.730 * |
RFW | 0.621 * |
SDW | 0.484 * |
RDW | 0.633 * |
SL | 0.588 * |
RL | 0.139 |
RWC | 0.214 |
Pro | 0.102 |
Sug | −0.074 |
Chl | 0.433 |
Cart | −0.072 |
Na+ | −0.083 |
K+ | 0.674 * |
K+/Na+ | 0.278 |
Independent Variable | Coefficient (B) | Standard Error | t | p Value |
---|---|---|---|---|
Intercept | 0.170 | 0.036 | 4.728 | *** |
SFW | 0.348 | 0.051 | 6.840 | *** |
Pro | 0.165 | 0.043 | 3.828 | ** |
R2 | 0.772 | |||
Adjusted R2 | 0.740 | |||
Cp | 3.000 |
L1 | L2 | T1 | T2 | T3 | T4 | T5 | |
---|---|---|---|---|---|---|---|
SFW | −73.69 | 73.69 | 143.89 | 160.03 | 80.12 | 110.41 | 174.40 |
RFW | −4.75 | 4.75 | −16.43 ** | −10.48 * | 2.55 | 9.02 * | 15.34 * |
SDW | −0.11 | 0.11 | 0.75 | 2.28 * | −0.67 | −1.18 | 0.32 |
RDW | −13.11 | 13.11 | −223.68 | 308.49 | −211.29 | 40.48 | 86.02 |
SL | 0.33 * | −0.33 * | 0.42 | −0.12 | 0.30 | −0.05 | 0.05 |
RL | 0.18 | −0.18 | −0.33 | −0.05 | 0.38 | 0.05 | −0.05 |
RWC | 3.72 | −3.72 | −225.74 | 339.26 | −175.40 | 199.86 | 261.74 |
Pro | −14.32 | 14.32 | −220.25 | 102.98 | 61.75 | −229.76 | 285.28 |
Sug | 54.09 | −54.09 | −162.65 | −167.52 | 364.21 | −165.62 | 131.59 |
Chl | 7.14 | 7.14 | 117.45 | −60.67 | 12.45 | 112.02 | −151.25 |
Cart | 0.15 ** | −0.15 ** | −23.28 ** | 3.37 ** | 2.33 ** | −4.28 ** | 21.85 ** |
Na+ | −0.08 ** | 0.08 ** | −0.12 ** | −0.05 ** | −0.25 ** | 0.69 ** | −0.27 ** |
K+ | 0.11 ** | −0.11 ** | −0.01 | 0.09 ** | 0.16 ** | −0.25 ** | 0.02 |
K+/Na+ | −0.16 * | 0.16 * | −0.14 | 0.56 ** | 1.50 ** | −2.37 ** | 1.57 ** |
L1 | L2 | T1 | T2 | T3 | T4 | T5 | |
---|---|---|---|---|---|---|---|
SFW | 2.17 | −2.17 | 8.66 | −21.29 ** | 8.76 | 2.83 | 1.04 |
RFW | −0.47 | 0.47 | 3.25 | −7.08 ** | 3.05 | 0.07 | 0.72 |
SDW | −0.07 | 0.07 | 0.04 | 0.04 | 0.17 | −1.33 | 1.09 |
RDW | −0.15 | 0.15 | 0.30 | 0.28 | −0.00 | −0.40 | −0.18 |
SL | 0.16 | −0.16 | 0.31 | −0.40 | −0.27 | −0.19 | 0.55 * |
RL | 0.12 | −0.12 | 0.34 ** | −0.38 ** | 0.27 * | −0.14 | −0.09 |
RWC | 0.44 | −0.44 | −0.07 | −0.96 | −0.04 | 1.13 * | −0.06 |
Pro | −254.81 ** | 254.81 ** | 31.74 * | 310.88 ** | −184.55 ** | −123.48 ** | −34.59 |
Sug | 0.36 ** | −0.36 ** | 1.41 ** | 4.57 ** | −5.69 ** | −1.76 ** | 1.46 ** |
Chl | 52.41 ** | −52.41 | 117.47 ** | −171.81 ** | −81.36 ** | −21.50 ** | 157.19 ** |
Cart | −2.34 | 2.34 | 1.68 | −5.65 | 4.90 | 3.98 | −4.90 |
Na+ | −0.06 ** | 0.06 ** | 0.84 ** | 0.58 ** | −0.84 ** | −1.02 ** | 0.44 ** |
K+ | −0.09 ** | 0.09 ** | −0.06 * | 0.04 | −0.03 | 0.02 | 0.03 |
K+/Na+ | −0.00 | 0.00 | −0.08 ** | −0.05 ** | 0.06 ** | 0.12 ** | −0.04 ** |
Control | Salinity | |||
---|---|---|---|---|
σ2GCA/σ2SCA | σ2A/σ2D | σ2GCA/σ2GCA | σ2A/σ2D | |
SFW | −0.69 | 0.90 | 0.90 | 0.45 |
RFW | 0.76 | −0.04 | −0.04 | −0.04 |
SDW | −0.01 | −0.07 | −0.07 | −0.07 |
RDW | −0.03 | −0.08 | −0.08 | −0.08 |
SL | 0.04 | 0.62 | 0.62 | 0.45 |
RL | −0.77 | −0.02 | −0.02 | −0.02 |
RWC | −0.09 | −0.06 | −0.06 | −0.06 |
Pro | −0.01 | −0.06 | −0.06 | −0.06 |
Sug | 0.08 | −0.03 | −0.03 | −0.03 |
Chl | 0.05 | −0.05 | −0.05 | −0.05 |
Cart | −0.02 | −0.07 | −0.07 | −0.07 |
Na+ | 0.05 | 0.03 | 0.03 | 0.15 |
K+ | −0.02 | −0.04 | −0.04 | −0.02 |
K+/Na+ | 0.10 | −0.01 | −0.01 | −0.01 |
Code | Name | Origin | Hybrid | Code | |
---|---|---|---|---|---|
Testers ♂ | T1 | Oum Rokba El Baida | Touat | Florence-aurore × Oum Rokba El Baida | H1 |
T2 | Chater | Touat | Florence-aurore × Chater | H2 | |
T3 | Oum Rokba Elhamra | Touat | Florence-aurore × Oum Rokba Elhamra | H3 | |
T4 | Khellouf | Oued Righ | Florence-aurore × Khellouf | H4 | |
T5 | Zeghlou | Touat | Florence-aurore × Zeghlou | H5 | |
Lines ♀ | L1 | Florence-aurore | Tunisia | Ain abid × Oum Rokba El Baida | H6 |
L2 | Ain abid | Spain | Ain abid × Chater Ain abid × Oum Rokba Elhamra Ain abid × Khellouf Ain abid × Zeghlou | H7 H8 H9 H10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hadji, T.; Boulacel, M.; Ghennai, A.; Hadji, M.; Kebaili, F.F.; Khugaev, C.V.; Kucher, O.D.; Utkina, A.O.; Konovalova, A.P.; Rebouh, N.Y. Inheritance of Some Salt Tolerance-Related Traits in Bread Wheat (Triticum aestivum L.) at the Seedling Stage: A Study of Combining Ability. Plants 2025, 14, 911. https://doi.org/10.3390/plants14060911
Hadji T, Boulacel M, Ghennai A, Hadji M, Kebaili FF, Khugaev CV, Kucher OD, Utkina AO, Konovalova AP, Rebouh NY. Inheritance of Some Salt Tolerance-Related Traits in Bread Wheat (Triticum aestivum L.) at the Seedling Stage: A Study of Combining Ability. Plants. 2025; 14(6):911. https://doi.org/10.3390/plants14060911
Chicago/Turabian StyleHadji, Toka, Mouad Boulacel, Awatef Ghennai, Maroua Hadji, Fethi Farouk Kebaili, Chermen V. Khugaev, Olga D. Kucher, Aleksandra O. Utkina, Alena P. Konovalova, and Nazih Y. Rebouh. 2025. "Inheritance of Some Salt Tolerance-Related Traits in Bread Wheat (Triticum aestivum L.) at the Seedling Stage: A Study of Combining Ability" Plants 14, no. 6: 911. https://doi.org/10.3390/plants14060911
APA StyleHadji, T., Boulacel, M., Ghennai, A., Hadji, M., Kebaili, F. F., Khugaev, C. V., Kucher, O. D., Utkina, A. O., Konovalova, A. P., & Rebouh, N. Y. (2025). Inheritance of Some Salt Tolerance-Related Traits in Bread Wheat (Triticum aestivum L.) at the Seedling Stage: A Study of Combining Ability. Plants, 14(6), 911. https://doi.org/10.3390/plants14060911