Multi-Omics Analysis Provides Insights into a Mosaic-Leaf Phenotype of Astaxanthin-Producing Tobacco
Abstract
:1. Introduction
2. Results
2.1. Characterization of Astaxanthin-Producing Tobacco Plants with a Scattered Distribution of Astaxanthin-Producing Regions (ASTA-Mosaic)
2.2. Untargeted Metabolomics Analysis of Mosaic_R and Mosaic_G Regions
2.3. Tandem Mass Tags (TMT)-Based Quantitative Proteomics Analysis of Mosaic_R and Mosaic_G Regions
2.4. The Changes of Carotenoid Metabolism, Chlorophyll Metabolism, and Photosystem Structure in the Mosaic_R and Mosaic_G Regions
2.5. Small RNA Transcriptomics Analysis of Mosaic_R and Mosaic_G Regions
3. Discussion
4. Materials and Methods
4.1. Cultivation of Plant Material
4.2. Statistical Analysis of Transformation Efficiency
4.3. Identification and Quantification of Related Pigment by TLC
4.4. Measurement of Astaxanthin in Tobacco
4.5. Measurement of Chlorophyll Content in Tobacco
4.6. Observation of Chloroplast Ultrastructure via TEM
4.7. Untargeted Metabolomics Analysis
4.8. TMT-Based Quantitative Proteomics Analysis
4.9. Western Blotting Analysis
4.10. Total RNA Extraction and qRT-PCR Analysis
4.11. Determination of Enzyme Activity
4.12. Unique Molecular Identifier (UMI) Small RNA Sequencing Analysis
4.13. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kohandel, Z.; Farkhondeh, T.; Aschner, M.; Pourbagher-Shahri, A.M.; Samarghandian, S. Anti-inflammatory action of astaxanthin and its use in the treatment of various diseases. Biomed. Pharmacother. 2022, 145, 112179. [Google Scholar] [CrossRef] [PubMed]
- Ngamwonglumlert, L.; Devahastin, S. Carotenoids. In Encyclopedia of Food Chemistry, 1st ed.; Melton, L., Shahidi, F., Varelis, P., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 40–52. [Google Scholar]
- Abdelazim, K.; Ghit, A.; Assal, D.; Dorra, N.; Noby, N.; Khattab, S.N.; Feky, S.E.E.; Hussein, A. Production and therapeutic use of astaxanthin in the nanotechnology era. Pharmacol. Rep. 2023, 75, 771–790. [Google Scholar] [CrossRef]
- Guerin, M.; Huntley, M.E.; Olaizola, M. Haematococcus astaxanthin: Applications for human health and nutrition. Trends Biotechnol. 2003, 21, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Ma, T.; Nawaz, M.; Chen, H.; Zheng, H. Advances in metabolic engineering for the accumulation of astaxanthin biosynthesis. Mol. Biotechnol. 2024, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Fang, N.; Wang, C.; Liu, X.; Zhao, X.; Liu, Y.; Liu, X.; Du, Y.; Zhang, Z.; Zhang, H. De novo synthesis of astaxanthin: From organisms to genes. Trends Food Sci. Technol. 2019, 92, 162–171. [Google Scholar] [CrossRef]
- Basiony, M.; Ouyang, L.; Wang, D.; Yu, J.; Zhou, L.; Zhu, M.; Wang, X.; Feng, J.; Dai, J.; Shen, Y.; et al. Optimization of microbial cell factories for astaxanthin production: Biosynthesis and regulations, engineering strategies and fermentation optimization strategies. Synth. Syst. Biotechnol. 2022, 7, 689–704. [Google Scholar] [CrossRef]
- Cunningham, F.X., Jr.; Gantt, E. A study in scarlet: Enzymes of ketocarotenoid biosynthesis in the flowers of Adonis aestivalis. Plant J. 2005, 41, 478–492. [Google Scholar] [CrossRef]
- Cunningham, F.X., Jr.; Gantt, E. Elucidation of the pathway to astaxanthin in the flowers of Adonis aestivalis. Plant Cell 2011, 23, 3055–3069. [Google Scholar] [CrossRef]
- Zhong, Y.J.; Huang, J.C.; Liu, J.; Li, Y.; Jiang, Y.; Xu, Z.F.; Sandmann, G.; Chen, F. Functional characterization of various algal carotenoid ketolases reveals that ketolating zeaxanthin efficiently is essential for high production of astaxanthin in transgenic Arabidopsis. J. Exp. Bot. 2011, 62, 3659–3669. [Google Scholar] [CrossRef]
- Ralley, L.; Enfissi, E.M.A.; Misawa, N.; Schuch, W.; Bramley, P.M.; Fraser, P.D. Metabolic engineering of ketocarotenoid formation in higher plants. Plant J. 2004, 39, 477–486. [Google Scholar] [CrossRef]
- Enfissi, E.M.A.; Nogueira, M.; D’Ambrosio, C.; Stigliani, A.L.; Giorio, G.; Misawa, N.; Fraser, P.D. The road to astaxanthin production in tomato fruit reveals plastid and metabolic adaptation resulting in an unintended high lycopene genotype with delayed over-ripening properties. Plant Biotechnol. J. 2019, 17, 1501–1513. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Ma, X.; Wang, H.; Li, S.; Yang, W.; Nugroho, R.D.; Luo, L.; Zhou, X.; Tang, C.; Fan, Y.; et al. Metabolic engineering of astaxanthin-rich maize and its use in the production of biofortified eggs. Plant Biotechnol. J. 2021, 19, 1812–1823. [Google Scholar] [CrossRef] [PubMed]
- Mortimer, C.L.; Misawa, N.; Perez-Fons, L.; Robertson, F.P.; Harada, H.; Bramley, P.M.; Fraser, P.D. The formation and sequestration of nonendogenous ketocarotenoids in transgenic Nicotiana glauca. Plant Physiol. J. 2017, 173, 1617–1635. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Zeng, D.; Yu, S.; Cui, C.; Li, J.; Li, H.; Chen, J.; Zhang, R.; Zhao, X.; Chen, L.; et al. From golden rice to aSTARice: Bioengineering astaxanthin biosynthesis in rice endosperm. Mol. Plant 2018, 11, 1440–1448. [Google Scholar] [CrossRef]
- Agrawal, S.; Karcher, D.; Ruf, S.; Erban, A.; Hertle, A.P.; Kopka, J.; Bock, R. Riboswitch-mediated inducible expression of an astaxanthin biosynthetic operon in plastids. Plant Physiol. 2022, 188, 637–652. [Google Scholar] [CrossRef]
- Hasunuma, T.; Miyazawa, S.-I.; Yoshimura, S.; Shinzaki, Y.; Tomizawa, K.-I.; Shindo, K.; Choi, S.-K.; Misawa, N.; Miyake, C. Biosynthesis of astaxanthin in tobacco leaves by transplastomic engineering. Plant J. 2008, 55, 857–868. [Google Scholar] [CrossRef]
- Allen, Q.M.; Febres, V.J.; Rathinasabapathi, B.; Chaparro, J.X. Engineering a plant-derived astaxanthin synthetic pathway into Nicotiana benthamiana. Front. Plant Sci. 2022, 12, 831785. [Google Scholar] [CrossRef]
- Lu, Y.; Stegemann, S.; Agrawal, S.; Karcher, D.; Ruf, S.; Bock, R. Horizontal transfer of a synthetic metabolic pathway between plant species. Curr. Biol. 2017, 27, 3034–3041.e3. [Google Scholar] [CrossRef]
- Fang, N.; Du, Z.; Liu, X.; Tian, T.; Chai, M.; Wang, W.; Du, Y.; Zhao, S.; Timko, M.; Xue, Z.; et al. Engineering tobacco for efficient astaxanthin production using a linker-free monocistronic dualprotein expression system and interspecific hybridization method. Plant Physiol. Biochem. 2025, 221, 109607. [Google Scholar] [CrossRef]
- Röding, A.; Dietzel, L.; Schlicke, H.; Grimm, B.; Sandmann, G.; Büchel, C. Production of ketocarotenoids in tobacco alters the photosynthetic efficiency by reducing photosystem II supercomplex and LHCII trimer stability. Photosynth. Res. 2015, 123, 157–165. [Google Scholar] [CrossRef]
- Xu, P.; Chukhutsina, V.U.; Nawrocki, W.J.; Schansker, G.; Bielczynski, L.W.; Lu, Y.; Karcher, D.; Bock, R.; Croce, R. Photosynthesis without β-carotene. eLife 2020, 9, e58984. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Chang, Y.; Yu, J.; Chen, H.; Wang, Q.; Bi, Y. Identification and functional analysis of two novel genes—Geranylgeranyl pyrophosphate synthase gene (AlGGPPS) and isopentenyl pyrophosphate isomerase gene (AlIDI)—From Aurantiochytrium limacinum significantly enhance de novo β-carotene biosynthesis in Escherichia coli. Mar. Drugs 2023, 21, 249. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Schlicke, H.; Ree, K.V.; Karvonen, K.; Subramaniam, A.; Richter, A.; Grimm, B.; Braam, J. Arabidopsis chlorophyll biosynthesis: An essential balance between the methylerythritol phosphate and tetrapyrrole pathways. Plant Cell 2013, 25, 4984–4993. [Google Scholar] [CrossRef]
- Tanaka, A.; Tanaka, R. Chlorophyll metabolism. Curr. Opin. Plant Biol. 2006, 9, 248–255. [Google Scholar] [CrossRef]
- Li, X.W.; Zhu, Y.L.; Chen, C.Y.; Geng, Z.J.; Li, X.Y.; Ye, T.T.; Mao, X.N.; Du, F. Cloning and characterization of two chlorophyll A/B binding protein genes and analysis of their gene family in Camellia sinensis. Sci. Rep. 2020, 10, 4602. [Google Scholar] [CrossRef]
- Alberte, R.S.; McClure, P.R.; Thornber, J.P. Photosynthesis in trees: Organization of chlorophyll and photosynthetic unit size in isolated gymnosperm chloroplasts. Plant Physiol. 1976, 58, 341–344. [Google Scholar] [CrossRef]
- Suzuki, T.; Shioi, Y. Re-examination of Mg-dechelation reaction in the degradation of chlorophylls using chlorophyllin a as a substrate. Photosynth. Res. 2002, 74, 217–223. [Google Scholar] [CrossRef]
- Bock, R. Transgenic plastids in basic research and plant biotechnology. J. Mol. Biol. 2001, 312, 425–438. [Google Scholar] [CrossRef]
- Napoli, C.; Lemieux, C.; Jorgensen, R. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 1990, 2, 279–289. [Google Scholar] [CrossRef]
- Van der Krol, A.R.; Mur, L.A.; Beld, M.; Mol, J.N.; Stuitje, A.R. Flavonoid genes in petunia: Addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell 1990, 2, 291–299. [Google Scholar]
- Baulcombe, D. RNA silencing in plants. Nature 2004, 431, 356–363. [Google Scholar] [CrossRef]
- Hörtensteiner, S. Stay-green regulates chlorophyll and chlorophyll-binding protein degradation during senescence. Trends Plant Sci. 2009, 14, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wu, X.; Guo, Y.; Wang, D.; Cheng, L.; Wang, Y.; Yang, A.; Liu, G. Phenotypic characterization and gene mapping of a spiral leaf and dwarf (sld) mutant from tetraploid common tobacco (Nicotiana tabacum L.). Agronomy 2023, 13, 2354. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Du, Z.; Lin, X.; Li, P.; Sun, S.; Yang, C.; Chen, Y.; Zhang, Z.; Yin, X.; Fang, N. Multi-Omics Analysis Provides Insights into a Mosaic-Leaf Phenotype of Astaxanthin-Producing Tobacco. Plants 2025, 14, 965. https://doi.org/10.3390/plants14060965
Wang J, Du Z, Lin X, Li P, Sun S, Yang C, Chen Y, Zhang Z, Yin X, Fang N. Multi-Omics Analysis Provides Insights into a Mosaic-Leaf Phenotype of Astaxanthin-Producing Tobacco. Plants. 2025; 14(6):965. https://doi.org/10.3390/plants14060965
Chicago/Turabian StyleWang, Jialin, Zaifeng Du, Xiaoyang Lin, Peng Li, Shihao Sun, Changqing Yang, Yong Chen, Zhongfeng Zhang, Xue Yin, and Ning Fang. 2025. "Multi-Omics Analysis Provides Insights into a Mosaic-Leaf Phenotype of Astaxanthin-Producing Tobacco" Plants 14, no. 6: 965. https://doi.org/10.3390/plants14060965
APA StyleWang, J., Du, Z., Lin, X., Li, P., Sun, S., Yang, C., Chen, Y., Zhang, Z., Yin, X., & Fang, N. (2025). Multi-Omics Analysis Provides Insights into a Mosaic-Leaf Phenotype of Astaxanthin-Producing Tobacco. Plants, 14(6), 965. https://doi.org/10.3390/plants14060965