Prospective Approaches to the Sustainable Use of Peonies in Bulgaria
Abstract
:1. Introduction
2. Results and Discussion
2.1. Bioactive Compounds of Peonies
2.1.1. Terpenoids
2.1.2. Flavonoids
2.1.3. Phenolic Acids
2.1.4. Tannins
2.1.5. Other Phenolic Compounds
2.1.6. Lipids
2.1.7. Organic Acids
2.1.8. Alkaloids
Paeonia Species | P. peregrina | P. officinalis | P. tenuifolia | P. mascula | P. lactiflora |
---|---|---|---|---|---|
Compounds | |||||
Terpenoids | |||||
(+)-Paeonilactone B | [13] | ||||
(Z)-(1S,5R)-β-Pinen-10-yl β-vicianoside | [7] | ||||
1-O-β-D-Glucosyl-8-O-benzoylpaeonisuffrone | [84] | ||||
1-O-β-D-Glucosylpaeonisuffrone | [84] | ||||
24-Methylenecycloartanol | [49] | ||||
4-O-Methyl-paeoniflorin | [84] | ||||
6′-O-Galloyl desbenzoyl paeoniflorin | [13] | ||||
6′-O-13-D-glucopyranosylalbiflorin | [85] | ||||
6′-O-Benzoylalbiflorin | [85] | ||||
8-Debenzoylpaeonidanin | [40] | ||||
8-Debenzoylpaeoniflorin | [29] | ||||
Albiflorin | [13,42] | [42,86] | [42,51] | [87] | [29,36,66,85,87] |
Benzoylalbiflorin | [86] | ||||
Benzoyloxypaeoniflorin | [41] | ||||
Benzoylpaeoniflorin | [13,35,37,43] | [86] | [41] | [29,36,84,85,87] | |
cis-Myrtanal | [48] | ||||
Desbenzoylpaeoniflorin | [41] | ||||
E-Phytol | [47] | ||||
Galloyl paeoniflorin | [13,42] | [7,42] | [42] | [41] | [87] |
Galloylalbiflorin | [41] | ||||
Geraniol | [47] | ||||
Hexadecanoic acid | [48] | ||||
Isobenzoylpaeoniflorin | [84] | ||||
Isopaeoniflorin | [84] | ||||
Lactiflorin | [7] | [36] | |||
Lactinolide | [44] | ||||
Lactinolide 6-O-β-D-glucopyranoside | [44] | ||||
Methyldesbenzoylpaeoniflorin | [41] | ||||
Methylpaeoniflorin | [41] | ||||
Mudanpioside B | [42] | [42] | [42] | ||
Mudanpioside C | [36] | ||||
Mudanpioside E | [42] | [42] | [42,51] | [41] | [36] |
Mudanpioside F | [51] | ||||
Mudanpioside J | [42] | [42] | [41] | ||
Nopinone | [48] | ||||
Oxypaeoniflorin | [13,42] | [42,86] | [51] | [41] | [36,87] |
Paeonidanin | [35,37] | ||||
Paeonidanin A | [38] | [29,36] | |||
Paeonidanin B | [29,36] | ||||
Paeonidanin C | [29,36] | ||||
Paeonidanin D | [29,36] | ||||
Paeonidanin E | [29,36] | ||||
Paeonidaninol A | [35,43] | ||||
Paeonidaninol B | [35,43] | ||||
Paeoniflorigenone | [13,37] | [71] | [52] | ||
Paeoniflorin | [13,35,42,43] | [7,42,86] | [39,42,51] | [41,51] | [29,36,66,84,85,87] |
Paeonilactone A | [29,46] | ||||
Paeonilactone B | [29,46] | ||||
Paeonilactone C | [86] | [29,46] | |||
Paeonin A | [40] | ||||
Paeonin B | [13] | [51] | [40] | ||
Paeonin C | [40] | ||||
Paeonisuffrone | [43] | ||||
Palbinone | [86] | [29] | |||
p-Cymene | [47] | ||||
Pyrethrin I | [29] | ||||
Pyrethrin II | [29] | ||||
Squalene | [49] | ||||
Texahydrofarnesyl acetone | [47] | ||||
Z-Phytol | [47] | ||||
Flavonoids | |||||
(−)-Epicatechin-3-O-gallate | [60] | ||||
(+)-Catechin-3-O-β-D-glucopyranoside | [60] | ||||
(+)-Catechin-7-O-gallate | [60] | ||||
(2R)-(−)-Naringenin-5-O-β-D-glucopyranoside | [60] | ||||
(2R)-Naringenin-7-O-β-D-glucopyranoside | [60] | ||||
(2S)-(−)-Naringenin-5-O-β-D-glucopyranoside | [60] | ||||
3,5-Di-O-β-D-glucopyranoside | [65] | ||||
6-Hydroxykaempferol | [51] | ||||
Apigenin | [41] | [49] | |||
Astragalin (Kaempferol 3-glucoside) | [41] | ||||
Catehin | [60,66] | ||||
Cyanidin | [69] | [51] | |||
Cyanidin 3,5-diglucoside | [65] | [65] | [65] | ||
Cyanidin 3-glucoside | [65] | [65] | |||
Cyanidin 3-O-rhamnoside | [13] | [51] | |||
Delphinidin | [13] | [51] | |||
Delphinidin 3-glucoside | [69] | ||||
Delphinidin 3-O-rhamnoside | [51] | ||||
Foeniculin | [54] | ||||
Hispidulin | [41] | ||||
Isorhamnetin | [13,42] | [42,51] | [41] | ||
Kaempferol | [41] | [49] | |||
Kaempferol 3,7-β-D-diglucoside | [56] | ||||
Kaempferol 3-O-(6″-galloyl)-β-D-glucopyranoside | [55] | ||||
Kaempherol 3-O-(2″-galloyl)-β-D-glucopyranoside | [55] | ||||
Lactifloraoside | [55] | ||||
Limocitrin | [51] | ||||
Limocitrin-3-O-yl β–Dsophoroside | [57] | ||||
Limocitrinyle 3-O-β-D-sophoroside | [55] | ||||
Liquiritin apioside | [61] | ||||
Luteolin | [41] | [49] | |||
Malvidin | [69] | ||||
Malvoside | [62] | ||||
Methoxy-kaempferol | [41] | ||||
Methylarbutin | [55] | ||||
Onopordin | [51] | ||||
Pelargonidin | |||||
Pelargonidin 3-Glucoside | [64] | [64] | [64] | ||
Peonidin | |||||
Peonidin 3,5-di-O-β-D-glucopyranoside | [65] | [65] | [65] | ||
Peonidin 3-glucoside | [65] | [65] | [65] | ||
Peonin (Peonidin-3,5-diglucoside) | [29] | ||||
Petunidin | [13] | ||||
Petunidin 3-O-rhamnoside | [51] | ||||
Populnin (Kaempferol-7-O-glucoside) | [56] | ||||
Quercetin | [13] | [42] | [42] | [49] | |
Quercetin 3-galacto-7-rhamnoside | [52] | ||||
Quercetin 3-O-(6″-galloyl)-β-D-glucopyranoside | [55] | ||||
Quercetin 3-O-β-D-Galactopyranoside | [54] | ||||
Quercetin-3-O-glucoside | [51] | ||||
Quercetin-dihexoside | [53] | ||||
Rutin | [49] | ||||
Sexangulareinyle 3-O-β-D-sophoroside | [55] | ||||
Sexangularetin-3-O-yl β–D-sophoroside | [57] | ||||
Taxifolin-3-O-β-D-glucopyranoside | [60] | ||||
Phenolic acids | |||||
Chlorogenic acid | [49] | ||||
Digallic acid | [13] | [53] | |||
Dihydroxybenzoic acid | [13] | ||||
Ellagic acid | [13] | [51] | |||
Ethyl gallate | [13] | ||||
Ferulic acid | [51] | ||||
Gallic acid | [13,37,42] | [42] | [24,42,51] | [41,51] | [29,66] |
Galloylglucose | [29,65] | ||||
Galloyl-norbergenin | [13] | ||||
Methyl gallate | [13,42] | [7,42] | [42,51] | [41] | [66] |
p-Coumaric acid | [13] | [51] | [49] | ||
Phenylethanol gallate | [13] | ||||
p-Hydroxybenzoic acid | [37] | [24] | |||
Vanillic acid | [49] | ||||
Tannins | |||||
Tannic acid | [69] | ||||
1,2,3,4,6-Pentagalloylglucose | [29] | ||||
1,2,3,4,6-Penta-O-galloyl-β-D-glucose (PGG) | [65] | [66] | |||
1,2,3,6-Tetra-O-galloyl-β-D-glucose | [29] | ||||
1,2,3-Tri-O-galloyl-β-D-glucose | [29] | ||||
1,2,6-Tri-O-galloyl-β-D-glucose | [29] | ||||
1,3,6-Trigalloyl-β-D-glucose | [29] | ||||
1-O-Galloyl-β-D-glucose | [29] | ||||
2,3-O-(S)-HexahydroxydiphenoylD-glucopyranose | [29] | ||||
3-O-Digalloyl-1,2,4,6-tetra-O-galloyl-β-D-glucose | [65] | ||||
3-O-Galloylquinic acid | [29] | ||||
4-O-Galloylquinic acid | [29] | ||||
5-Desgalloylstachyurin | [29] | ||||
Casuarictin | [29] | ||||
Casuariin | [29] | ||||
Hexagalloyl glucose | [51] | ||||
Pedunculagin | [29] | ||||
Pentagalloyl glucose | [51] | ||||
Strictinin | [29,61] | ||||
Tellimagrandin I | [86] | [29] | |||
Tetragalloyl glucose | [41,51] | ||||
Tetra-galloyl-hexoside | [53] | ||||
Other phenolic compounds | |||||
Apiopaeonoside | [13] | ||||
Carashipenol A | [41] | ||||
Methyl salicylate | [48] | ||||
Paeonol | [13,42] | [42,71,86] | [42] | [66] | |
Paeonoside | [13,42] | [42] | [42] | ||
Resveratrol | [41] | ||||
Salicylaldehyde | [48,73] | ||||
Viniferin | [41] | ||||
Lipids | |||||
△7-Avenasterol | [49] | ||||
13-Methyl tetradecanoic acid | [29] | ||||
Campesterol | [49] | ||||
Citrostadienol | [49] | ||||
Daucosterol | [29] | ||||
Isofucosterol | [49] | ||||
Linoleic acid | [74] | ||||
Linolenic acid | [74] | ||||
Oleic acid | [74] | ||||
Palmitic acid | [74] | ||||
Stigmasterol | [49] | ||||
α-/δ-Тocopherol | [49] | ||||
β-Sitosterol | [29,49] | ||||
β-Sitosterol 3-O-β-D-glucopyranoside | [7] | ||||
Organic acids | |||||
Benzoic acid | [24] | [7,86] | [24] | [49,66,77] | |
Citric acid | [13] | [51] | |||
Oleanolic acid | [78] | ||||
Picrocrocinic acid | [13] | ||||
Quinic acid | [42] | [42] | [42] | ||
Shikimic acid | [13] | [51] | |||
Ursolic acid | [78] | ||||
Alkaloids | |||||
Oxindole | [82] | ||||
5-Hydroxyquinoline | [82] |
2.2. Pharmacological Properties of Peonies
2.2.1. Antioxidant Activity
2.2.2. Antimicrobial Activity
2.2.3. Neuroprotective Activity
2.2.4. Anti-Inflammatory Activity
2.2.5. Wound-Healing Activity
2.2.6. Anti-Cancer Activity
2.2.7. Other Activities
2.2.8. Toxicity
3. Materials and Methods
3.1. Plant Objects
3.2. Data Search Strings
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Paeonia L. | Plants of the World Online | Kew Science. Available online: http://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:329475-2 (accessed on 9 January 2025).
- Li, P.; Shen, J.; Wang, Z.; Liu, S.; Liu, Q.; Li, Y.; He, C.; Xiao, P. Genus paeonia: A Comprehensive Review on Traditional Uses, Phytochemistry, Pharmacological Activities, Clinical Application, and Toxicology. J. Ethnopharmacol. 2021, 269, 113708. [Google Scholar] [CrossRef] [PubMed]
- Lim, T.K. Edible Medicinal and Non Medicinal Plants: Volume 8, Flowers; Springer: Dordrecht, The Netherlands, 2014; ISBN 978-94-017-8747-5. [Google Scholar]
- Liu, J.; Li, X.; Bai, H.; Yang, X.; Mu, J.; Yan, R.; Wang, S. Traditional Uses, Phytochemistry, Pharmacology, and Pharmacokinetics of the Root Bark of Paeonia x Suffruticosa Andrews: A Comprehensive Review. J. Ethnopharmacol. 2023, 308, 116279. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, F.; Tabassum, N. Medicinal Uses and Phytoconstituents of Paeonia officinalis. Int. Res. J. Pharm. 2012, 3, 82–84. [Google Scholar]
- Rainer, B.; Revoltella, S.; Mayr, F.; Moesslacher, J.; Scalfari, V.; Kohl, R.; Waltenberger, B.; Pagitz, K.; Siewert, B.; Schwaiger, S.; et al. From Bench to Counter: Discovery and Validation of a Peony Extract as Tyrosinase Inhibiting Cosmeceutical. Eur. J. Med. Chem. 2019, 184, 111738. [Google Scholar] [CrossRef]
- Samy, M.N.; Mahmoud, B.K.; Shady, N.H.; Abdelmohsen, U.R.; Ross, S.A. Bioassay-Guided Fractionation with Antimalarial and Antimicrobial Activities of Paeonia officinalis. Molecules 2022, 27, 8382. [Google Scholar] [CrossRef]
- Zangooei Pourfard, M.; Mirmoosavi, S.J.; Beiraghi Toosi, M.; Rakhshandeh, H.; Rashidi, R.; Mohammad-Zadeh, M.; Gholampour, A.; Noras, M. Efficacy and Tolerability of Hydroalcoholic Extract of Paeonia officinalis in Children with Intractable Epilepsy: An Open-Label Pilot Study. Epilepsy Res. 2021, 176, 106735. [Google Scholar] [CrossRef]
- Sakhatska, І.; Zakharchuk, O.; Horoshko, O.; Ezhned, M. Common Peony—As a Promising Source of Raw Materials for the Creation of Medicines. In Proceedings of the Ricerche scientifiche e metodi della loro realizzazione: Esperienza mondiale e realtà domestiche, IV International Scientific and Practical Conference «Ricerche Scientifiche E Metodi Della Loro Realizzazione: Esperienza Mondiale E Realtà Domestiche» Logos, Collection of Scientific Papers, Bologna, Italy, 29 September 2023. European Scientific Platform: 2024. [Google Scholar]
- Ivancheva, S.; Nikolova, M.; Tsvetkova, R. Pharmacological Activities and Biologically Active Compounds of Bulgarian Medicinal Plants. In Phytochemistry: Advances in Research; Research Signpost: Thiruvananthapuram, India, 2006; pp. 87–103. [Google Scholar]
- Evstatieva, L.; Hardalova, R.; Stoyanova, K. Medicinal Plants in Bulgaria: Diversity, Legislation, Conservation and Trade. Phytol. Balc. 2007, 13, 415–427. [Google Scholar]
- Demirboğa, G.; Demirboğa, Y.; Özbay, N. Types of Paeonia and Their Use in Phytotherapy. Karadeniz Fen Bilim. Derg. 2021, 11, 318–327. [Google Scholar] [CrossRef]
- Marković, T.; Čutović, N.; Carević, T.; Gašić, U.; Stojković, D.; Xue, J.; Jovanović, A. Paeonia Peregrina Mill Petals as a New Source of Biologically Active Compounds: Chemical Characterization and Skin Regeneration Effects of the Extracts. Int. J. Mol. Sci. 2023, 24, 11764. [Google Scholar] [CrossRef]
- Paeoniae Radix Rubra—Herbal Medicinal Product | European Medicines Agency (EMA). Available online: https://www.ema.europa.eu/en/medicines/herbal/paeoniae-radix-rubra (accessed on 9 January 2025).
- Paeoniae Radix Alba—Herbal Medicinal Product | European Medicines Agency (EMA). Available online: https://www.ema.europa.eu/en/medicines/herbal/paeoniae-radix-alba (accessed on 9 January 2025).
- Paeonia veitchii Lynch | Plants of the World Online | Kew Science. Available online: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:711885-1 (accessed on 9 January 2025).
- Biological Diversity Act; Promulgated, State Gazette No. 77/9.08.2002 Amended, SG No. 70 of 20.08.2024. 2002. Available online: https://lex.bg/laws/ldoc/2135456926 (accessed on 6 May 2024). (In Bulgarian).
- Medicinal Plants Act; Promulgated, State Gazette No. 29/7.04.2000; Amended, SG No. 102 of 08.12.2023. Available online: https://lex.bg/laws/ldoc/2134916096 (accessed on 6 May 2024). (In Bulgarian).
- Yang, Y.; Sun, M.; Li, S.; Chen, Q.; Teixeira Da Silva, J.A.; Wang, A.; Yu, X.; Wang, L. Germplasm Resources and Genetic Breeding of Paeonia: A Systematic Review. Hortic. Res. 2020, 7, 107. [Google Scholar] [CrossRef]
- Paeonia officinalis | Euro+Med-Plantbase. Available online: https://europlusmed.org/cdm_dataportal/taxon/b71e7ab3-6bd2-49a0-aa47-8763e1f37c8a (accessed on 9 January 2025).
- Adams, M.; Schneider, S.-V.; Kluge, M.; Kessler, M.; Hamburger, M. Epilepsy in the Renaissance: A Survey of Remedies from 16th and 17th Century German Herbals. J. Ethnopharmacol. 2012, 143, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, A.; Delcheva, I.; Tsvetkova, I.; Kujumgiev, A.; Kostova, I. GC-MS Analysis and Anti-Microbial Activity of Acidic Fractions Obtained from Paeonia peregrina and Paeonia tenuifolia Roots. Z. Für Naturforschung C 2002, 57, 624–628. [Google Scholar] [CrossRef] [PubMed]
- Yordanov, D.; Paeonia, L. Flora of PR Bulgaria; Publishing House of BAS: Sofia, Bulgaria, 1970; Volume 4, pp. 216–224. [Google Scholar]
- Uğulu, İ.; Baslar, S.; Yorek, N.; Doğan, Y. The Investigation and Quantitative Ethnobotanical Evaluation of Medicinal Plants Used around Izmir Province, Turkey. J. Med. Plants Res. 2009, 3, 345–367. [Google Scholar]
- Zhang, J.; Zhang, D.; Wei, J.; Shi, X.; Ding, H.; Qiu, S.; Guo, J.; Li, D.; Zhu, K.; Horvath, D.P.; et al. Annual Growth Cycle Observation, Hybridization and Forcing Culture for Improving the Ornamental Application of Paeonia lactiflora Pall. in the Low-Latitude Regions. PLoS ONE 2019, 14, e0218164. [Google Scholar] [CrossRef]
- Sun, J.; Guo, H.; Tao, J. Effects of Harvest Stage, Storage, and Preservation Technology on Postharvest Ornamental Value of Cut Peony (Paeonia lactiflora) Flowers. Agronomy 2022, 12, 230. [Google Scholar] [CrossRef]
- Feng, L.; Li, Y.; Sheng, L.; Li, T.; Zhao, D.; Tao, J. Comparative Analysis of Headspace Volatiles of Different Herbaceous Peony (Paeonia lactiflora Pall.) Cultivars. J. Essent. Oil Bear. Plants 2016, 19, 167–175. [Google Scholar] [CrossRef]
- Commission, C.P. Pharmacopoeia of the People’s Republic of China 2010; Chemical Industry Press: Beijing, China, 2010; ISBN 978-0-11-920779-8. [Google Scholar]
- Parker, S.; May, B.; Zhang, C.; Zhang, A.L.; Lu, C.; Xue, C.C. A Pharmacological Review of Bioactive Constituents of Paeonia lactiflora Pallas and Paeonia veitchii Lynch: Review of P. lactiflora Pallas and P. veitchii Lynch. Phytother. Res. 2016, 30, 1445–1473. [Google Scholar] [CrossRef]
- Prijić, Ž.; Mikić, S.; Peškanov, J.; Zhang, X.; Guo, L.; Dragumilo, A.; Filipović, V.; Anačkov, G.; Marković, T. Diversity of Treatments in Overcoming Morphophysiological Dormancy of Paeonia Peregrina Mill. Seeds. Plants 2024, 13, 2178. [Google Scholar] [CrossRef]
- Lu, Y.; Yin, L.; Yang, W.; Wu, Z.; Niu, J. Antioxidant Effects of Paeoniflorin and Relevant Molecular Mechanisms as Related to a Variety of Diseases: A Review. Biomed. Pharmacother. 2024, 176, 116772. [Google Scholar] [CrossRef]
- Zhou, Y.-X.; Gong, X.-H.; Zhang, H.; Peng, C. A Review on the Pharmacokinetics of Paeoniflorin and Its Anti-Inflammatory and Immunomodulatory Effects. Biomed. Pharmacother. 2020, 130, 110505. [Google Scholar] [CrossRef]
- Xu, S.; Cao, H.; Yang, R.; Xu, R.; Zhu, X.; Ma, W.; Liu, X.; Yan, X.; Fu, P. Genus paeonia Monoterpene Glycosides: A Systematic Review on Their Pharmacological Activities and Molecular Mechanisms. Phytomedicine 2024, 127, 155483. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Ratha, K.K.; Rao, M.M.; Acharya, R. A Comprehensive Review on the Phytochemistry, Pharmacological, Ethnobotany, and Traditional Uses of Paeonia Species. J. Herbmed. Pharmacol. 2023, 12, 13–24. [Google Scholar] [CrossRef]
- He, C.; Peng, Y.; Zhang, Y.; Xu, L.; Gu, J.; Xiao, P. Phytochemical and Biological Studies of Paeoniaceae. Chem. Biodivers. 2010, 7, 805–838. [Google Scholar] [CrossRef]
- Yean, M.-H.; Lee, J.-Y.; Kim, J.-S.; Kang, S.-S. Phytochemical Studies on Paeoniae Radix (1); Monoterpene Glucosides. Korean J. Pharmacogn. 2008, 39, 19–27. [Google Scholar]
- Kostova, I.N.; Simeonov, M.F.; Todorova, D.I. A Monoterpene Glucoside from Paeonia Peregrina Roots. Phytochemistry 1998, 47, 1303–1307. [Google Scholar] [CrossRef]
- Kritsanida, M.; Magiatis, P.; Skaltsounis, A.-L.; Stables, J.P. Phytochemical Investigation and Anticonvulsant Activity of Paeonia parnassica Radix. Nat. Prod. Commun. 2007, 2, 1934578X0700200401. [Google Scholar] [CrossRef]
- Čutović, N.; Marković, T.; Kostić, M.; Gašić, U.; Prijić, Ž.; Ren, X.; Lukić, M.; Bugarski, B. Chemical Profile and Skin-Beneficial Activities of the Petal Extracts of Paeonia tenuifolia L. from Serbia. Pharmaceuticals 2022, 15, 1537. [Google Scholar] [CrossRef]
- Wang, H.-B.; Gu, W.-F.; Chu, W.-J.; Zhang, S.; Tang, X.-C.; Qin, G.-W. Monoterpene Glucosides from Paeonia lactiflora. J. Nat. Prod. 2009, 72, 1321–1324. [Google Scholar] [CrossRef]
- Dimitropoulou, E.; Graikou, K.; Klontza, V.; Chinou, I. Chemical Profiling on Bioactive Stilbenoids in the Seeds of Paeonia Species Growing Wild in Greece. Separations 2023, 10, 540. [Google Scholar] [CrossRef]
- Batinić, P.; Jovanović, A.; Stojković, D.; Zengin, G.; Cvijetić, I.; Gašić, U.; Čutović, N.; Pešić, M.B.; Milinčić, D.D.; Carević, T.; et al. Phytochemical Analysis, Biological Activities, and Molecular Docking Studies of Root Extracts from Paeonia Species in Serbia. Pharmaceuticals 2024, 17, 518. [Google Scholar] [CrossRef]
- Kostova, I.N.; Simeonov, M.F.; Todorova, D.I.; Petkova, P.L. Two Acylated Monoterpene Glucosides from Paeonia Peregina. Phytochemistry 1998, 48, 511–514. [Google Scholar] [CrossRef]
- Murakami, N.; Saka, M.; Shimada, H.; Matsuda, H.; Yamahara, J.; Yoshikawa, M. New Bioactive Monoterpene Glycosides from Paeoniae Radix. Chem. Pharm. Bull. 1996, 44, 1279–1281. [Google Scholar] [CrossRef]
- Calonghi, N.; Farruggia, G.; Boga, C.; Micheletti, G.; Fini, E.; Romani, L.; Telese, D.; Faraci, E.; Bergamini, C.; Cerini, S.; et al. Root Extracts of Two Cultivars of Paeonia Species: Lipid Composition and Biological Effects on Different Cell Lines: Preliminary Results. Molecules 2021, 26, 655. [Google Scholar] [CrossRef]
- Hayashi, T.; Shinbo, T.; Shimizu, M.; Arisawa, M.; Morita, N.; Kimura, M.; Matsuda, S.; Kikuchi, T. Paeonilactone-A, -B, and -C, New Monoterpenoids from Paeony Root. Tetrahedron Lett. 1985, 26, 3699–3702. [Google Scholar] [CrossRef]
- Yaylı, N.; Yaşar, A.; Yaylı, N.; Albay, M.; Coşkunçelebi, K. Essential Oil Analysis and Antimicrobial Activity of Paeonia mascula from Turkey. Nat. Prod. Commun. 2008, 3, 1934578X0800300624. [Google Scholar] [CrossRef]
- Orhan, I.; Demirci, B.; Omar, I.; Siddiqui, H.; Kaya, E.; Choudhary, M.I.; Ecevit-Genç, G.; Özhatay, N.; Şener, B.; Başer, K.H.C. Essential Oil Compositions and Antioxidant Properties of the Roots of Twelve Anatolian Paeonia Taxa with Special Reference to Chromosome Counts. Pharm. Biol. 2010, 48, 10–16. [Google Scholar] [CrossRef]
- Nie, R.; Zhang, Y.; Zhang, H.; Jin, Q.; Wu, G.; Wang, X. Effect of Different Processing Methods on Physicochemical Properties, Chemical Compositions and in Vitro Antioxidant Activities of Paeonia lactiflora Pall Seed Oils. Food Chem. 2020, 332, 127408. [Google Scholar] [CrossRef]
- Billowria, K.; Ali, R.; Rangra, N.K.; Kumar, R.; Chawla, P.A. Bioactive Flavonoids: A Comprehensive Review on Pharmacokinetics and Analytical Aspects. Crit. Rev. Anal. Chem. 2022, 54, 1002–1016. [Google Scholar] [CrossRef]
- Kurt-Celep, İ.; Zengin, G.; Celep, E.; Dall’Acqua, S.; Sut, S.; Ferrase, I.; Ak, G.; Uba, A.I.; Polat, R.; Canlı, D.; et al. A Multifunctional Key to Open a New Window on the Path to Natural Resources-Lessons from a Study on Chemical Composition and Biological Capability of Paeonia mascula L. from Turkey. Food Biosci. 2023, 51, 102194. [Google Scholar] [CrossRef]
- Ulubelen, A. Phytochemical Investigation of Leaves of Paeonia Decora. J. Fac. Pharm. Istanb. Univ. 1969, 5, 93–97. [Google Scholar]
- Dienaitė, L.; Pukalskienė, M.; Pukalskas, A.; Pereira, C.V.; Matias, A.A.; Venskutonis, P.R. Isolation of Strong Antioxidants from Paeonia officinalis Roots and Leaves and Evaluation of Their Bioactivities. Antioxidants 2019, 8, 249. [Google Scholar] [CrossRef] [PubMed]
- Stosic, D.; Gorunovic, M.; Skaltsounis, A.-L. Flavone Glycosides of Paeonia tenuifolia L. Leaves. Plant Med. Phytother. 1989, 23, 275–282. [Google Scholar]
- Ogawa, K.; Nakamura, S.; Sugimoto, S.; Tsukioka, J.; Hinomaru, F.; Nakashima, S.; Matsumoto, T.; Ohta, T.; Fujimoto, K.; Yoshikawa, M.; et al. Constituents of Flowers of Paeoniaceae Plants, Paeonia Suffruticosa and Paeonia lactiflora. Phytochem. Lett. 2015, 12, 98–104. [Google Scholar] [CrossRef]
- Al-Rawi, S. Constituents of Peony Flowers: Kaempferol Glucosides of Paeonia lactiflora Var Festiva Maxima. Bull. Acad. Pol. Sci. Biol. 1963, 11, 315–316. [Google Scholar]
- Stošić, D.; Gorunović, M.; Skaltsounis, A.; Tillequin, F.; Koch, M. Nouveaux Flavonosides de Paeonia tenuifolia L. Helv. Chim. Acta 1988, 71, 348–353. [Google Scholar] [CrossRef]
- Imran, M.; Aslam Gondal, T.; Atif, M.; Shahbaz, M.; Batool Qaisarani, T.; Hanif Mughal, M.; Salehi, B.; Martorell, M.; Sharifi-Rad, J. Apigenin as an Anticancer Agent. Phytother. Res. 2020, 34, 1812–1828. [Google Scholar] [CrossRef]
- Nabavi, S.F.; Khan, H.; D’onofrio, G.; Šamec, D.; Shirooie, S.; Dehpour, A.R.; Argüelles, S.; Habtemariam, S.; Sobarzo-Sanchez, E. Apigenin as Neuroprotective Agent: Of Mice and Men. Pharmacol. Res. 2018, 128, 359–365. [Google Scholar] [CrossRef]
- Shi, Y.-H.; Zhu, S.; Tamura, T.; Kadowaki, M.; Wang, Z.; Yoshimatsu, K.; Komatsu, K. Chemical Constituents with Anti-Allergic Activity from the Root of Edulis Superba, a Horticultural Cultivar of Paeonia lactiflora. J. Nat. Med. 2016, 70, 234–240. [Google Scholar] [CrossRef]
- Tanaka, T.; Zhang, H.; Jiang, Z.-H.; Kouno, I. Relationship between Hydrophobicity and Structure of Hydrolyzable Tannins, and Association of Tannins with Crude Drug Constituents in A Queous Solution. Chem. Pharm. Bull. 1997, 45, 1891–1897. [Google Scholar] [CrossRef]
- Deibner, L. Sur la séparation du paeonoside et du malvoside au moyen de la chromatographie sur papier et sur couche mince de cellulose. J. Chromatogr. A 1968, 34, 425–427. [Google Scholar] [CrossRef]
- Ma, Z.; Du, B.; Li, J.; Yang, Y.; Zhu, F. An Insight into Anti-Inflammatory Activities and Inflammation Related Diseases of Anthocyanins: A Review of Both In Vivo and In Vitro Investigations. Int. J. Mol. Sci. 2021, 22, 11076. [Google Scholar] [CrossRef] [PubMed]
- Hosoki, T.F.A.; Seo, M. Flower Anthocyanins of Herbaceous Peony [Paeonia]. Bull. Fac. Agric. Shimane Univ. Jpn. 1991, 25, 11–14. [Google Scholar]
- Hosoki, T.; Hamada, M.; Kando, T.; Moriwaki, R.; Inaba, K. Comparative Study of Anthocyanins in Tree Peony Flowers. J. Jpn. Soc. Hortic. Sci. 1991, 60, 395–403. [Google Scholar] [CrossRef]
- Bae, J.-Y.; Kim, C.Y.; Kim, H.J.; Park, J.H.; Ahn, M.-J. Differences in the Chemical Profiles and Biological Activities of Paeonia lactiflora and Paeonia obovata. J. Med. Food 2015, 18, 224–232. [Google Scholar] [CrossRef]
- Masota, N.E.; Ohlsen, K.; Schollmayer, C.; Meinel, L.; Holzgrabe, U. Isolation and Characterization of Galloylglucoses Effective against Multidrug-Resistant Strains of Escherichia coli and Klebsiella pneumoniae. Molecules 2022, 27, 5045. [Google Scholar] [CrossRef]
- Sarker, U.; Oba, S. Polyphenol and Flavonoid Profiles and Radical Scavenging Activity in Leafy Vegetable Amaranthus Gangeticus. BMC Plant Biol. 2020, 20, 499. [Google Scholar] [CrossRef]
- Ulubelen, A.; Cetin, E.T.; Isildatici, S.; Oztürk, S. Phytochemical Investigation of Paeonia Decora. Lloydia 1968, 31, 249–251. [Google Scholar]
- Melo, L.F.M.D.; Aquino-Martins, V.G.D.Q.; Silva, A.P.D.; Oliveira Rocha, H.A.; Scortecci, K.C. Biological and Pharmacological Aspects of Tannins and Potential Biotechnological Applications. Food Chem. 2023, 414, 135645. [Google Scholar] [CrossRef]
- Shady, N.H.; Mokhtar, F.A.; Mahmoud, B.K.; Yahia, R.; Ibrahim, A.M.; Sayed, N.A.; Samy, M.N.; Alzubaidi, M.A.; Abdelmohsen, U.R. Capturing the Antimicrobial Profile of Paeonia officinalis, Jasminum Officinale and Rosa Damascene against Methicillin Resistant Staphylococcus Aureus with Metabolomics Analysis and Network Pharmacology. Sci. Rep. 2024, 14, 13621. [Google Scholar] [CrossRef]
- Ajvazi, M.; Osmani, I.; Gashi, D.; Krasniqi, E.; Zeneli, L. Radical Scavenging, Antioxidant and Antimicrobial Activity of Paeonia Peregrina Mill., Paeonia mascula (L.) Mill. and Paeonia officinalis (L.). Iran. J. Chem. Chem. Eng. 2023, 42, 3835–3848. [Google Scholar] [CrossRef]
- Sgadari, F.; Vaglica, A.; Porrello, A.; Savoca, D.; Schicchi, R.; Bruno, M. Paeonia mascula Subsp. Russoi (Biv.) Cullen & Heywood: The Chemical Composition of the Aerial Parts Essential Oils of Two Different Populations Collected in Sicily (Italy). Nat. Prod. Res. 2024, 13, 1–8. [Google Scholar] [CrossRef]
- Sevim, D.; Senol, F.S.; Gulpinar, A.R.; Orhan, I.E.; Kaya, E.; Kartal, M.; Sener, B. Discovery of Potent in Vitro Neuroprotective Effect of the Seed Extracts from Seven paeonia L. (Peony) Taxa and Their Fatty Acid Composition. Ind. Crops Prod. 2013, 49, 240–246. [Google Scholar] [CrossRef]
- Barkas, F.; Bathrellou, E.; Nomikos, T.; Panagiotakos, D.; Liberopoulos, E.; Kontogianni, M.D. Plant Sterols and Plant Stanols in Cholesterol Management and Cardiovascular Prevention. Nutrients 2023, 15, 2845. [Google Scholar] [CrossRef] [PubMed]
- Gladyshev, M.I. Fatty Acids: Essential Nutrients and Important Biomarkers. Biomolecules 2022, 12, 1250. [Google Scholar] [CrossRef]
- Aquino, R.P.; Santoro, A.; Prota, L.; Mencherini, T.; Esposito, E.; Ursini, M.V.; Picerno, P.; Nori, S.; Sansone, F.; Russo, P. Composition and Anti-Inflammatory Activity of Extracts from Three Paeonia Species. Pharmacologyonline 2014, 1, 137–147. [Google Scholar]
- Zhou, C.; Zhang, Y.; Sheng, Y.; Zhao, D.; Lv, S.; Hu, Y.; Tao, J. Herbaceous Peony (Paeonia lactiflora Pall.) as an Alternative Source of Oleanolic and Ursolic Acids. Int. J. Mol. Sci. 2011, 12, 655–667. [Google Scholar] [CrossRef]
- Joye, I.J. Acids and Bases in Food. In Encyclopedia of Food Chemistry; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–9. ISBN 978-0-12-814045-1. [Google Scholar]
- Gandhi, G.R.; Vasconcelos, A.B.S.; Antony, P.J.; Montalvão, M.M.; De Franca, M.N.F.; Hillary, V.E.; Ceasar, S.A.; Liu, D. Natural Sources, Biosynthesis, Biological Functions, and Molecular Mechanisms of Shikimic Acid and Its Derivatives. Asian Pac. J. Trop. Biomed. 2023, 13, 139–147. [Google Scholar] [CrossRef]
- Benali, T.; Bakrim, S.; Ghchime, R.; Benkhaira, N.; El Omari, N.; Balahbib, A.; Taha, D.; Zengin, G.; Hasan, M.M.; Bibi, S.; et al. Pharmacological Insights into the Multifaceted Biological Properties of Quinic Acid. Biotechnol. Genet. Eng. Rev. 2024, 40, 3408–3437. [Google Scholar] [CrossRef]
- Li, Y.; Tian, Y.; Zhou, X.; Guo, X.; Ya, H.; Li, S.; Yu, X.; Yuan, C.; Gao, K. Widely Targeted Metabolomics Reveals Differences in Metabolites of Paeonia lactiflora Cultivars. PLoS ONE 2024, 19, e0298194. [Google Scholar] [CrossRef]
- Ahmad, F.; Tabassum, N. Preliminary Phytochemical, Acute Oral Toxicity and Antihepatotoxic Study of Roots of Paeonia officinalis Linn. Asian Pac. J. Trop. Biomed. 2013, 3, 64–68. [Google Scholar] [CrossRef]
- Braca, A.; Kiem, P.V.; Yen, P.H.; Nhiem, N.X.; Quang, T.H.; Cuong, N.X.; Minh, C.V. New Monoterpene Glycosides from Paeonia lactiflora. Fitoterapia 2008, 79, 117–120. [Google Scholar] [CrossRef] [PubMed]
- Yen, P.H.; Van Kiem, P.; Nhiem, N.X.; Tung, N.H.; Quang, T.H.; Van Minh, C.; Kim, J.W.; Choi, E.M.; Kim, Y.H. A New Monoterpene Glycoside from the Roots of Paeonia Lacti-Flora Increases the Differentiation of Osteoblastic MC3T3-E1 Cells. Arch. Pharm. Res. 2007, 30, 1179–1185. [Google Scholar] [CrossRef] [PubMed]
- Stosic, D.; Gorunovic, M. Peoniflorine from the Underground Organs of the Paeony (Paeonia tenuifolia L., Paeoniaceae). CABI Databases 1989, 44, 510. [Google Scholar]
- Dong, H.; Liu, Z.; Song, F.; Yu, Z.; Li, H.; Liu, S. Structural Analysis of Monoterpene Glycosides Extracted from Paeonia lactiflora Pall. Using Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry and High-performance Liquid Chromatography/Electrospray Ionization Tandem Mass Spectrometry. Rapid Commun. Mass Spectrom. 2007, 21, 3193–3199. [Google Scholar] [CrossRef]
- Cutovic, N.; Marković, T.; Žugić, A.; Batinic, P.; Bugarski, B.; Jovanović, A. Antioxidant Activity of Paeonia tenuifolia L. Petal Extract-Loaded Liposomes. Lek. Sirovine 2023, 43, e167. [Google Scholar] [CrossRef]
- Oancea, S.; Perju, M.; Olosutean, H. Influence of Enzyme-Aided Extraction and Ultrasonication on the Phenolics Content and Antioxidant Activity of Paeonia officinalis L. Petals. J. Serbian Chem. Soc. 2020, 85, 845–856. [Google Scholar] [CrossRef]
- Papandreou, V.; Magiatis, P.; Chinou, I.; Kalpoutzakis, E.; Skaltsounis, A.-L.; Tsarbopoulos, A. Volatiles with Antimicrobial Activity from the Roots of Greek Paeonia Taxa. J. Ethnopharmacol. 2002, 81, 101–104. [Google Scholar] [CrossRef]
- Ngan, L.T.M.; Moon, J.-K.; Kim, J.-H.; Shibamoto, T.; Ahn, Y.-J. Growth-Inhibiting Effects of Paeonia lactiflora Root Steam Distillate Constituents and Structurally Related Compounds on Human Intestinal Bacteria. World J. Microbiol. Biotechnol. 2012, 28, 1575–1583. [Google Scholar] [CrossRef]
- NavaneethaKrishnan, S.; Rosales, J.L.; Lee, K.-Y. ROS-Mediated Cancer Cell Killing through Dietary Phytochemicals. Oxid. Med. Cell. Longev. 2019, 2019, 9051542. [Google Scholar] [CrossRef]
- Fernando, W.; Rupasinghe, H.P.V.; Hoskin, D.W. Dietary Phytochemicals with Anti-Oxidant and pro-Oxidant Activities: A Double-Edged Sword in Relation to Adjuvant Chemotherapy and Radiotherapy? Cancer Lett. 2019, 452, 168–177. [Google Scholar] [CrossRef]
- Geronikaki, A.; Gavalas, A. Antioxidants and Inflammatory Disease: Synthetic and Natural Antioxidants with Anti-Inflammatory Activity. Comb. Chem. High Throughput Screen. 2006, 9, 425–442. [Google Scholar] [CrossRef] [PubMed]
- Flemming, H.-C.; Wingender, J. The Biofilm Matrix. Nat. Rev. Microbiol. 2010, 8, 623–633. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.T.H. Molecular Design of Tyrosinase Inhibitors: A Critical Review of Promising Novel Inhibitors from Synthetic Origins. Pure Appl. Chem. 2007, 79, 2277–2295. [Google Scholar] [CrossRef]
- Erdogan Orhan, I. Current Concepts on Selected Plant Secondary Metabolites with Promising Inhibitory Effects Against Enzymes Linked to Alzheimer’s Disease. Curr. Med. Chem. 2012, 19, 2252–2261. [Google Scholar] [CrossRef]
- Hong, D.-Y.; Zhang, D.-M.; Wang, X.-Q.; Koruklu, S.T.; Tzanoudakis, D. Relationships and Taxonomy of Paeonia arietina G. Anderson Complex (Paeoniaceae) and Its Allies. Taxon 2008, 57, 922–932. [Google Scholar] [CrossRef]
- Pignatti, S. Flora d’Italia, 2nd ed.; Edagricole: Milano, Italy, 2017; Volume 1, ISBN 978-88-506-5242-6. [Google Scholar]
- Passalacqua, N.G.; Bernardo, L. The Genus paeonia L. in Italy: Taxonomic Survey and Revision. Webbia 2004, 59, 215–268. [Google Scholar] [CrossRef]
- Peonies of the World: Taxonomy and Phytogeography: Hong, De-Yuan: Free Download, Borrow, and Streaming. Available online: https://archive.org/details/peoniesofworldta0000hong (accessed on 9 January 2025).
- Paeonia in Flora of China @ Efloras.Org. Available online: http://www.efloras.org/florataxon.aspx?flora_id=2&taxon_id=123659 (accessed on 6 March 2025).
- Jeon, S.; Lee, E.Y.; Nam, S.J.; Lim, K.M. Safety assessment of Paeonia lactiflora root extract for a cosmetic ingredient employing the threshold of toxicological concern (TTC) approach. Regul. Toxicol. Pharmacol. 2024, 149, 105620. [Google Scholar] [CrossRef]
Paeonia Species | P. peregrina | P. officinalis | P. tenuifolia | P. mascula | P. lactiflora |
---|---|---|---|---|---|
Activity | |||||
Antioxidant activity | [13,72] | [7,53,89] | [39,88] | [48,51] | [29,49,56] |
Antimicrobial activity | [13,72] | [7,46] | [39] | [47,90] | [29,91] |
Neuroprotective activity | [74] | [74] | |||
Anti-inflammatory activity | [13] | [29,77] | |||
Wound-healing activity | [13] | [46,100] | [39] | ||
Anti-cancer activity | [49,101,102] | [51] | [29] | ||
Others | Hepatoprotective [2,83] Anti-diabetic activity [53] Antimalaria effect [7] Seizure control in children with medically intractable epilepsy [8] | 50 | Glycemic activity [29] Anti-ulcer effect [66] |
Paeonia Species | P. peregrina | P. officinalis | P. tenuifolia | P. mascula | P. lactiflora |
---|---|---|---|---|---|
Reference | [13,72] | [53] | [39,88] | [48,51] | [53] |
Antioxidant activity |
|
|
|
|
|
Paeonia Species | P. peregrina | P. officinalis | P. tenuifolia | P. mascula | P. lactiflora |
---|---|---|---|---|---|
Reference pathogenic bacteria | [13,72] | [7,46] | [39] | [47,90] | [91] |
Bacillus cereus | 0.125–4 | 0.5–2 | 0.5–4 | 7 | - |
Escherichia coli | 0.5–4 | 0.5–2 | 0.5–2 | - | 1.25 |
Klebsiella pneumoniae | - | 0.43 | - | 5.65 | 1.25 |
Listeria monocytogenes | 0.5–4 | 0.25–2 | 1–4 | - | - |
Proteus vulgaris | 0.25–2 | - | - | - | - |
Pseudomonas aeruginosa | 0.5–4 | 0.25–2 | 0.5–4 | - | - |
Salmonella typhimurium | 0.5–4 | 1–2 | 0.5–4 | - | 0.62 |
Staphylococcus lugdunensis | 0.0625–1 | - | - | - | - |
Staphylococcus aureus | 0.25–4 | 1–2 | 1–4 | 9.30 | 1.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stoycheva, C.; Batovska, D.; Malfa, G.A.; Acquaviva, R.; Statti, G.; Kozuharova, E. Prospective Approaches to the Sustainable Use of Peonies in Bulgaria. Plants 2025, 14, 969. https://doi.org/10.3390/plants14060969
Stoycheva C, Batovska D, Malfa GA, Acquaviva R, Statti G, Kozuharova E. Prospective Approaches to the Sustainable Use of Peonies in Bulgaria. Plants. 2025; 14(6):969. https://doi.org/10.3390/plants14060969
Chicago/Turabian StyleStoycheva, Christina, Daniela Batovska, Giuseppe Antonio Malfa, Rosaria Acquaviva, Giancarlo Statti, and Ekaterina Kozuharova. 2025. "Prospective Approaches to the Sustainable Use of Peonies in Bulgaria" Plants 14, no. 6: 969. https://doi.org/10.3390/plants14060969
APA StyleStoycheva, C., Batovska, D., Malfa, G. A., Acquaviva, R., Statti, G., & Kozuharova, E. (2025). Prospective Approaches to the Sustainable Use of Peonies in Bulgaria. Plants, 14(6), 969. https://doi.org/10.3390/plants14060969