The Gene SiPrx from Saussurea involucrata Enhances the Stress Resistance of Silphium perfoliatum L.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Gene Cloning
2.2. Sequence Alignment and Phylogenetic Tree Construction
2.3. Genetic Transformation of Silphium perfoliatum L.
2.4. Stress Treatment of Plants
2.5. SiPrx Gene Expression Analysis Under Stress Conditions
2.6. Physiological and Biochemical Index Determination
2.7. Data Processing and Analysis
3. Results and Analysis
3.1. Sequencing and Analysis of the Phylogenetic Tree of SiPrx
3.2. Analysis of SiPrx Expression Under Stress Conditions
3.3. Overexpression of SiPrx Enhances the Salt Tolerance of Silphium perfoliatum L.
3.4. Overexpression of SiPrx Enhances the Freezing Tolerance of Silphium perfoliatum L.
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Circu, M.L.; Aw, T.Y. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic. Biol. Med. 2010, 48, 749–762. [Google Scholar] [CrossRef] [PubMed]
- Srinivas, U.S.; Tan, B.; Vellayappan, B.A.; Jeyasekharan, A.D. Ros and the dna damage response in cancer. Redox Biol. 2018, 25, 101084. [Google Scholar] [CrossRef] [PubMed]
- Stadtman, E.R.; Berlett, B.S. Reactive oxygen-mediated protein oxidation in aging and disease. Chem. Res. Toxicol. 1997, 10, 485–494. [Google Scholar] [CrossRef] [PubMed]
- Passardi, F.; Cosio, C.; Penel, C.; Dunand, C. Peroxidases have more functions than a swiss army knife. Plant Cell Rep. 2005, 24, 255–265. [Google Scholar] [CrossRef]
- Almagro, L.; Ros, L.V.G.; Belchi-Navarro, S.; Bru, R.; Barceló, A.R.; Pedreño, M.A. Class III peroxidases in plant defence reactions. J. Exp. Bot. 2009, 60, 377–390. [Google Scholar] [CrossRef]
- Wei, G.; Zhang, L.; Wang, W.; Yu, Z.; Yu, D.; Liu, L. Bioinformatics Analysis of Soybean Peroxidase III. Mol. Plant Breed. 2015, 6, 2453–2460. [Google Scholar]
- Cosio, C.; Dunand, C. Transcriptome analysis of various flower and silique development stages indicates a set of class III peroxidase genes potentially involved in pod shattering in Arabidopsis thaliana. BMC Genom. 2010, 11, 528. [Google Scholar] [CrossRef]
- Susumu, H.; Katsutomo, S.; Hiroyuki, I.; Yuko, O.; Hirokazu, M. A large family of class iii plant peroxidases. Plant Cell Physiol. 2001, 42, 462. [Google Scholar]
- Zhu, J.; Yu, N.; Zhang, Y.; Xu, D.; Wang, A. Application of the sikPrx Gene from the Snow Lotus in the Cultivation of Stress-resistant Plants. CN102115758B, 20 November 2013. [Google Scholar]
- Calderón, A.; Lázaro-Payo, A.; Iglesias-Baena, I.; Camejo, D.; Lázaro, J.J.; Sevilla, F.; Jiménez, A. Glutathionylation of Pea Chloroplast 2-Cys Prx and Mitochondrial Prx IIF Affects Their Structure and Peroxidase Activity and Sulfiredoxin Deglutath. Front. Plant Sci. 2017, 8, 118. [Google Scholar] [CrossRef]
- Aran, M.; Ferrero, D.S.; Pagano, E.; Wolosiuk, R.A. Typical 2-cys peroxiredoxins—Modulation by covalent transformations and noncovalent interactions. FEBS J. 2009, 276, 2478. [Google Scholar] [CrossRef]
- Banerjee, M.; Chakravarty, D.; Ballal, A. Redox-dependent chaperone/peroxidase function of 2-cys-prx from the cyanobacterium anabaena pcc7120: Role in oxidative stress tolerance. BMC Plant Biol. 2015, 15, 60. [Google Scholar] [PubMed]
- Wang, X.; Phelan, S.A.; Petros, C.; Taylor, E.F.; Ledinski, G.; Jürgens, G.; Forsman-Semb, K.; Paigen, B. Peroxiredoxin 6 deficiency and atherosclerosis susceptibility in mice: Significance of genetic background for assessing atherosclerosis. Atherosclerosis 2004, 177, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, B.N.; Bhatt, I.; Dietz, K.J. Peroxiredoxins: A less studied component of hydrogen peroxide detoxification in photosynthetic organisms. Protoplasma 2009, 235, 3. [Google Scholar] [PubMed]
- Hong, S.H.; Lee, S.S.; Chung, J.M.; Jung, H.S.; Chung, B.Y. Site-specific mutagenesis of yeast 2-cys peroxiredoxin improves heat or oxidative stress tolerance by enhancing its chaperone or peroxidase function. Protoplasma 2017, 254, 327–334. [Google Scholar] [CrossRef]
- Pulido, P.; Spínola, M.C.; Kirchsteiger, K.; Guinea, M.; Cejudo, F.J. Functional analysis of the pathways for 2-cys peroxiredoxin reduction in arabidopsis thaliana chloroplasts. J. Exp. Bot. 2010, 61, 4043–4054. [Google Scholar]
- Vidigal, P.; Martin-Hernandez, A.M.; Guiu-Aragonés, C.; Amâncio, S.; Carvalho, L. Selective silencing of 2cys and type-iib peroxiredoxins discloses their roles in cell redox state and stress signaling. J. Integr. Plant Biol. 2015, 11, 591–601. [Google Scholar]
- Mi, L.E.; Sik, L.S.; Nath, T.B.; Suk, J.H.; Ping, C.G.; Yuno, L.; Sudhir, S.; Hong, S.H.; Woo, L.K.; Yeol, L.S. Site-directed mutagenesis substituting cysteine for serine in 2-cys peroxiredoxin (2-cys prx a) of arabidopsis thaliana effectively improves its peroxidase and chaperone functions. Ann. Bot. 2015, 116, 713–725. [Google Scholar]
- Wang, H. Comparative Genomics of PRX Gene Family in Brassica. Master’s Thesis, Anhui Agricultural University, Hefei, China, 2021. [Google Scholar]
- Xu, S.; Zhou, W.; Wang, S.; Wang, J.; Wang, G. Discussion on the application value and cultivation points of Pinus sylvestris. Liaoning For. Sci. Technol. 2010, 10, 61–62. [Google Scholar]
- Peni, D.; Stolarski, M.J.; Bordiean, A.; Krzyaniak, M.; Dbowski, M. Silphium perfoliatum—A herbaceous crop with increased interest in recent years for multi-purpose use. Agriculture 2020, 10, 640. [Google Scholar] [CrossRef]
- Kowalski, R. Silphium L. extracts—Composition and protective effect on fatty acids content in sunflower oil subjected to heating and storage. Food Chem. 2009, 112, 820–830. [Google Scholar] [CrossRef]
- Feng, W.S.; Pei, Y.Y.; Zheng, X.K.; Li, C.G.; Zhang, Y.L. A new kaempferol trioside from silphium perfoliatum. J. Asian Nat. Prod. Res. 2014, 16, 393–399. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, N.H.; Wojcińska, M.; Drost-Karbowska, K.; Matawska, I.; Williams, J.; Mabry, T.J. Kaempferol triosides from silphium perfoliatum. Phytochemistry 2002, 60, 835–838. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Jia, W.; Zhang, G.; Liu, L.; Wang, L.; Wu, D.; Tao, J.; Yue, H.; Zhang, D.; Zhao, X. Extract of silphium perfoliatum L. improve lipid accumulation in nafld mice by regulating ampk/fxr signaling pathway. J. Ethnopharmacol. 2024, 327, 118054. [Google Scholar] [PubMed]
- Zhang, G.; Jia, W.; Liu, L.; Wang, L.; Xu, J.; Tao, J.; Xu, M.; Yue, M.; Luo, H.; Hai, P.; et al. Caffeoylquinic acids from Silphium perfoliatum L. show hepatoprotective effects on cholestatic mice by regulating enterohepatic circulation of bile acids. J. Ethnopharmacol. 2025, 337 Pt 2, 16. [Google Scholar]
- Mu, J.; Fu, Y.; Liu, B.; Zhang, Y.; Zhu, J. Sifba5, a cold-responsive factor from Saussurea involucrata promotes cold resilience and biomass increase in transgenic tomato plants under cold stress. BMC Plant Biol. 2021, 21, 75. [Google Scholar]
- Guo, X.; Zhang, L.; Dong, G.; Xu, Z.; Li, G.; Liu, N.; Wang, A.; Zhu, J. A novel cold-regulated protein isolated from Saussurea involucrata confers cold and drought tolerance in transgenic tobacco (Nicotiana tabacum). Plant Sci. 2019, 289, 110246. [Google Scholar]
- Guo, X.; Zhang, L.; Wang, X.; Zhang, M.; Zhu, J. Overexpression of Saussurea involucrata dehydrin gene sidhn promotes cold and drought tolerance in transgenic tomato plants. PLoS ONE 2019, 14, e0225090. [Google Scholar] [CrossRef]
- Xia, W.; Liu, X.; Xin, H.; Wu, X.; Liu, R.; Li, J.; Zhu, J. Saussurea involucrata pip2; 7 improves photosynthesis and drought resistance by decreasing the stomatal density and increasing intracellular osmotic pressure. Environ. Exp. Bot. 2021, 191, 104605. [Google Scholar]
- Xin, H.; Li, Q.; Wang, S.; Zhang, Z.; Wu, X.; Liu, R.; Zhu, J.; Li, J. Saussurea involucrata PIP2; 4 improves growth and drought tolerance in Nicotiana tabacum by increasing stomatal density and sensitivity. Plant Sci. 2023, 326, 111526. [Google Scholar] [CrossRef]
- Wang, M.; Yu, X.; Zhao, J.; Tian, Z.; Chen, B.; Li, Q.; Zhang, D.; Zhang, F.; Zhang, L.; Guo, X. Overexpression of sikpsaf can increase the biomass of Broussonetia papyrifera by improving its photosynthetic efficiency and cold tolerance. Plant Sci. 2025, 352, 112380. [Google Scholar]
- Chen, J.; Cai, D.; Zhang, Y. Rapid determination of lipid peroxidation using a novel pyridoxamine-participating ferrous oxidation-sulfosalicylic acid spectrophotometric method. Food Chem. 2016, 211, 637–644. [Google Scholar] [PubMed]
- Jungklang, J.; Saengnil, K.; Uthaibutra, J. Effects of water-deficit stress and paclobutrazol on growth, relative water content, electrolyte leakage, proline content and some antioxidant changes in Curcuma alismatifolia Gagnep. cv. Chiang Mai Pink. Saudi J. Biol. Sci. 2017, 24, 1505–1512. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Xia, W.; Zhang, D.; Li, A.; Li, J.; Zhu, J. Cold Tolerance Gene SiLEA B19.3 of Saussurea involucrate Increases the Yield of Transgenic Tomato. S. Afr. J. Bot. 2023, 160, 657–666. [Google Scholar]
- Stacy, R.A.P.; Munthe, E.; Steinum, T.; Sharma, B.; Aalen, R.B. A peroxiredoxin antioxidant is encoded by a dormancy-related gene, per1, expressed during late development in the aleurone and embryo of barley grains. Plant Mol. Biol. 1996, 31, 1205–1216. [Google Scholar] [CrossRef]
- Baier, M.; Dietz, K.J. The plant 2-cys peroxiredoxin bas1 is a nuclear-encoded chloroplast protein: Its expressional regulation, phylogenetic origin, and implications for its specific physiological function in plants. Plant J. 2010, 12, 179–190. [Google Scholar] [CrossRef]
- Akinori, K.; Masahiro, N.; Nobue, T.; Takashi, N.; Yoshiaki, K.; Saburo, Y. A peroxiredoxin q homolog from gentians is involved in both resistance against fungal disease and oxidative stress. Plant Cell Physiol. 2005, 46, 1007–1015. [Google Scholar]
- Li, H.; Dong, J.; Jing, J.; Liu, G. Cloning and expression analysis of two Tamarix chinensis Prx genes. J. Beijing For. Univ. 2012, 34, 48–52. [Google Scholar] [CrossRef]
- Yue, S.; Zhou, J.; Zheng, R.; Fan, H.; Su, J. Cloning and expression analysis of NfPrx gene from Nostoc flagelliforme. J. Plant Physiol. 2016, 52, 1287–1294. [Google Scholar]
- Nonn, L.; Berggren, M.; Powis, G. Increased expression of mitochondrial peroxiredoxin-3 (thioredoxin peroxidase-2) protects cancer cells against hypoxia and drug-induced hydrogen peroxide-dependent apoptosis11ca52995 and ca772049. Mol. Cancer Res. 2003, 1, 682–689. [Google Scholar]
- Peterson, T.M.L.; Luckhart, S. A mosquito 2-cys peroxiredoxin protects against nitrosative and oxidative stresses associated with malaria parasite infection. Free. Radic. Biol. Med. 2006, 40, 1067–1082. [Google Scholar] [CrossRef]
- Noh, D.Y.; Ahn, S.J.; Lee, R.A.; Kim, S.W.; Park, I.A.; Chae, H.Z. Overexpression of peroxiredoxin in human breast cancer. Anticancer. Res. 2001, 21, 2085–2090. [Google Scholar] [PubMed]
- Yuan, H.; Meng, X.; Gao, Q.; Qu, W.; Xu, T.; Xu, Z.; Song, R. The characterization of two peroxiredoxin genes in dunaliella viridis provides insights into antioxidative response to salt stress. Plant Cell Rep. 2011, 30, 1503–1512. [Google Scholar] [CrossRef] [PubMed]
- Contreras, L.; Moenne, A.; Gaillard, F.; Potin, P.; Correa, J.A. Proteomic analysis and identification of copper stress-regulated proteins in the marine alga scytosiphon gracilis (phaeophyceae). Aquat. Toxicol. 2010, 96, 85–89. [Google Scholar] [CrossRef] [PubMed]
- Jing, L. Further Functional Study on SsPrxQ Gene of Suaeda salsa and AtPrxQ Gene of Arabidopsis thaliana. Master’s Thesis, Shandong Normal University, Jinan, China, 2006. [Google Scholar]
- Zuo, X.; Wang, T.; Chen, Y.; Yan, Y.; Huang, G.; Li, R. Cloning and functional analysis of CLasPrx, a peroxide reductase gene of Citrus Huanglongbing. J. Plant Prot. 2024, 51, 654–662. [Google Scholar] [CrossRef]
- Larbi, A. Relative Water Content (RWC) and Leaf Senescence as Screening Tools for Drought Tolerance in Wheat. In Mediterranean Rainfed Agriculture: Strategies for Sustainability; Options Méditerranéennes: Série A. Séminaires, Méditerranéens; Cantero-Martínez, C., Gabiña, D., Eds.; CIHEAM: Zaragoza, Spain, 2004; Volume 60, pp. 193–196. [Google Scholar]
- Ghosh, U.K.; Islam, M.N.; Siddiqui, M.N.; Cao, X.; Khan, M.A.R. Proline, a multifaceted signalling molecule in plant responses to abiotic stress: Understanding the physiological mechanisms. Plant Biol. 2022, 24, 227–239. [Google Scholar] [CrossRef]
- Hu, J.; Li, S.; Zhang, Y.; Du, D.; Zhu, X. Potential Regulatory Effects of Arbuscular Mycorrhizal Fungi on Lipid Metabolism of Maize in Response to Low-Temperature Stress. J. Agric. Food Chem. 2024, 72, 22574–22587. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Y.; Wang, Y. Effects of low temperature treatment on chlorophyll, soluble sugar and malondialdehyde of white clover. Chin. Agric. Sci. Bull. 2016, 32, 83–86. [Google Scholar]
- Wang, Y.; Yang, R.; Yuan, S.; Bai, X.; Wang, F.; Shang, S. Stress changes of trehalose, sorbitol, malonaldehyde and protein contents in Tetranyroides dimaculatus under high temperature stress. Northwest Agric. 2024, 33, 1549–1558. [Google Scholar]
- Long, J.; Xing, W.; Wang, Y.; Wu, Z.; Li, W.; Zou, Y.; Sun, J.; Zhang, F.; Pi, Z. Comparative proteomic analysis on chloroplast proteins provides new insights into the effects of low temperature in sugar beet. Bot. Stud. 2022, 63, 18. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Raihan, M.R.H.; Masud, A.A.C.; Rahman, K.; Nowroz, F.; Rahman, M.; Nahar, K.; Fujita, M. Regulation of Reactive Oxygen Species and Antioxidant Defense in Plants under Salinity. Int. J. Mol. Sci. 2021, 22, 9326. [Google Scholar] [CrossRef]
- Kerchev, P.I.; Van Breusegem, F. Improving oxidative stress resilience in plants. Plant J. 2022, 109, 359–372. [Google Scholar] [CrossRef] [PubMed]
- Kurniawan, A.; Chuang, H.W. Rhizobacterial Bacillus mycoides functions in stimulating the antioxidant defence system and multiple phytohormone signalling pathways to regulate plant growth and stress tolerance. Appl. Microbiol. 2022, 132, 1260–1274. [Google Scholar] [CrossRef] [PubMed]
- Shao, H.B.; Chu, L.Y.; Lu, Z.H.; Kang, C.M. Primary antioxidant free radical scavenging and redox signaling pathways in higher plant cells. Int. Biol. Sci. 2007, 4, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Liu, W.C.; Han, C.; Wang, S.; Bai, M.Y.; Song, C.P. Reactive oxygen species: Multidimensional regulators of plant adaptation to abiotic stress and development. Integr. Plant Biol. 2024, 66, 330–367. [Google Scholar] [CrossRef]
- Zhang, S.N.; Huang, Y.Z.; Li, Y.; Bao, Q.L.; Huang, Y.C. Effects of Different Exogenous Plant Hormones on the Antioxidant System and Cd Absorption and Accumulation of Rice Seedlings Under Cd Stress. Huan Jing Ke Xue 2021, 42, 2040–2046. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, T.; Wu, B.; Zhang, Y.; Li, Z.; Xue, Y.; Ding, X.; Yang, Z.; Zhu, J.; Han, Y. The Gene SiPrx from Saussurea involucrata Enhances the Stress Resistance of Silphium perfoliatum L. Plants 2025, 14, 1030. https://doi.org/10.3390/plants14071030
Liu T, Wu B, Zhang Y, Li Z, Xue Y, Ding X, Yang Z, Zhu J, Han Y. The Gene SiPrx from Saussurea involucrata Enhances the Stress Resistance of Silphium perfoliatum L. Plants. 2025; 14(7):1030. https://doi.org/10.3390/plants14071030
Chicago/Turabian StyleLiu, Tao, Baotang Wu, Yao Zhang, Zhongqing Li, Yanhua Xue, Xiaoqin Ding, Zhihui Yang, Jianbo Zhu, and Yajie Han. 2025. "The Gene SiPrx from Saussurea involucrata Enhances the Stress Resistance of Silphium perfoliatum L." Plants 14, no. 7: 1030. https://doi.org/10.3390/plants14071030
APA StyleLiu, T., Wu, B., Zhang, Y., Li, Z., Xue, Y., Ding, X., Yang, Z., Zhu, J., & Han, Y. (2025). The Gene SiPrx from Saussurea involucrata Enhances the Stress Resistance of Silphium perfoliatum L. Plants, 14(7), 1030. https://doi.org/10.3390/plants14071030