In Vitro Propagation of Clausena lenis Drake
Abstract
:1. Introduction
2. Results
2.1. Seed Surface Sterilization of C. lenis
2.2. Effect of Plant Growth Regulators on Callus Induction
2.3. Effect of Plant Growth Regulators on Shoot Induction
2.4. Effect of Plant Growth Regulators on Root Induction
2.5. Plantlet Acclimatization
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Seed Surface Sterilization
4.3. Effects of Plant Growth Regulators on In Vitro Culture of C. lenis
4.4. Root Induction
4.5. Plantlet Acclimatization
4.6. Data Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, D.X.; Hartley, T.G.; Mabberley, D.J. Flora of China; Science Press: Beijing, China, 2008; Volume 11. [Google Scholar]
- Arbab, I.A.; Abdul, A.B.; Aspollah, M.; Abdullah, R.; Abdelwahab, S.I.; Ibrahim, M.Y.; Ali, L.Z. A review of traditional uses, phytochemical and pharmacological aspects of selected members of Clausena genus (Rutaceae). J. Med. Plants Res. 2012, 6, 5107–5118. [Google Scholar] [CrossRef]
- He, H.P.; Shen, Y.M.; Chen, S.T.; He, Y.N.; Hao, X.J. Dimeric coumarin and phenylpropanoids from Clausena lenis. Helv. Chim. Acta 2006, 89, 2836–2840. [Google Scholar] [CrossRef]
- Liu, Y.P.; Wen, Q.; Hu, S.; Ma, Y.L.; Jiang, Z.H.; Tang, J.Y.; Fu, Y.H.; Qiu, S.X. Furanocoumarins with potential antiproliferative activities from Clausena lenis. Nat. Prod. Res. 2019, 33, 2631–2637. [Google Scholar] [CrossRef] [PubMed]
- Wongthet, N.; Sanevas, N.; Schinnerl, J.; Brecker, L.; Santimaleeworagun, W.; Rosenau, T.; Bacher, M.; Vajrodaya, S. Chemical constituents of Clausena lenis. Nat. Prod. Res. 2020, 35, 3873–3879. [Google Scholar] [CrossRef]
- Tangjitman, K.; Trisonthi, C.; Wongsawad, C.; Jitaree, S.; Svenning, J.C. Potential impact of climatic change on medicinal plants used in the Karen women’s health care in northern Thailand. Songklanakarin J. Sci. Technol. 2015, 37, 369–379. [Google Scholar]
- Chapagain, D.J.; Meilby, H.; Baniya, C.B.; Budha-Magar, S.; Ghimire, S.K. Illegal harvesting and livestock grazing threaten the endangered orchid Dactylorhiza hatagirea (D. Don) Soó in Nepalese Himalaya. Ecol. Evol. 2021, 11, 6672–6687. [Google Scholar] [CrossRef]
- Paul, A.K.; Bharali, S.; Khan, M.L.; Tripathi, O.P. Anthropogenic disturbances led to risk of extinction of Taxus wallichiana Zuccarini, an endangered medicinal tree in Arunachal Himalaya. Nat. Areas J. 2013, 33, 447–454. [Google Scholar] [CrossRef]
- Paul, A.K.; Gajurel, P.R.; Das, A.K. Threats and conservation of Paris polyphylla an endangered, highly exploited medicinal plant in the Indian Himalayan Region. Biodiversitas 2015, 16, 295–302. [Google Scholar] [CrossRef]
- Sudhersan, C.; AboEl-Nil, M.; Hussain, J. Tissue culture technology for the conservation and propagation of certain native plants. J. Arid Environ. 2003, 54, 133–147. [Google Scholar] [CrossRef]
- Hussain, A.; Ahmed, I.; Nazir, H.; Ullah, I. Plant Tissue Culture: Current Status and Opportunities. In Recent Advances in Plant In Vitro Culture; Leva, A., Rinaldi, L.M., Eds.; InTech: Berlin, Germany, 2012. [Google Scholar] [CrossRef]
- Bairu, M.W.; Kane, M.E. Physiological and developmental problems encountered by in vitro cultured plants. Plant Growth Regul. 2011, 63, 101–103. [Google Scholar] [CrossRef]
- Kitisripanya, T.; Laoburee, M.; Puengsiricharoen, L.; Pratoomtong, P.; Daodee, S.; Wangboonskul, J.; Putalun, W. Production of carbazole alkaloids through callus and suspension cultures in Clausena harmandiana. Nat. Prod. Res. 2020, 34, 434–440. [Google Scholar] [CrossRef] [PubMed]
- Jumin, H.B.; Nito, N. Plant Regeneration via Somatic Embryogenesis from Protoplast of Clausena Harmandiana. Analele Univ. Din Oradea Fasc. Biol. 2013, 1, 23–28. (In English) [Google Scholar]
- Kanjanawattanawong, S.; Singbumrung, N. Establishment of a protocol for micropropagation of Clausena guillauminii Tanaka. In I International Symposium on Botanical Gardens and Landscapes 1298; ISHS: Leuven, Belgium, 2019; pp. 249–256. [Google Scholar]
- Motte, H.; Werbrouck, S.; Geelen, D. In Vitro Propagation. In Plant Chemical Biology; Audenaert, D., Overvoorde, P., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar] [CrossRef]
- Chen, Y.; Gao, S. Preliminary report of PGR’s influence on multiple shoots induction and plant regeneration on Plumbago auriculata. Am. J. Plant. Sci. 2013, 4, 23–29. [Google Scholar] [CrossRef]
- Benmoussa, M.; Mukhopadhyay, S.; Desjardins, Y. Optimization of callus culture and shoot multiplication of Asparagus densiflorus. Plant Cell Tissue Organ Cult. 1996, 47, 91–94. [Google Scholar]
- De Gyves, E.M.; Royani, J.I.; Rugini, E. Efficient method of micropropagation and in vitro rooting of teak (Tectona grandis L.) focusing on large-scale industrial plantations. Ann. For. Sci. 2007, 64, 73–78. [Google Scholar]
- Ma, X.; Gang, D.R. Metabolic profiling of in vitro micropropagated and conventionally greenhouse grown ginger (Zingiber officinale). Phytochemistry 2006, 67, 2239–2255. [Google Scholar]
- Gammoudi, N.; Nagaz, K.; Ferchichi, A. Establishment of optimized in vitro disinfection protocol of Pistacia vera L. explants mediated a computational approach: Multilayer perceptron–multi–objective genetic algorithm. BMC Plant Biol. 2022, 22, 324. [Google Scholar]
- Ramakrishna, N.; Lacey, J.; Smith, J.E. Effect of surface sterilization, fumigation and gamma irradiation on the microflora and germination of barley seeds. Int. J. Food Microbiol. 1991, 13, 47–54. [Google Scholar]
- Mahmoud, S.N.; Al-Ani, N.K. Effect of different sterilization methods on contamination and viability of nodal segments of Cestrum nocturnum L. Int. J. Res. Stud. Biosci. 2016, 4, 4–9. [Google Scholar] [CrossRef]
- Alam, M.; Uddin, M.; Amin, M.; Razzak, M.A.; Manik, M.; Khatun, M. Studies on the effect of various sterilization procedure for in vitro seed germination and successful micropropagation of Cucumis sativus. Int. J. Res. Stud. Biosci. 2016, 4, 75–81. [Google Scholar] [CrossRef]
- Rather, M.; Thakur, A.; Panwar, M.; Sharma, S. In vitro sterilization protocol for micropropagation of Chimonobambusa jaunsarensis (Gamble) Bahadur and Naithani-A rare and endangered hill bamboo. Indian For. 2016, 142, 871–874. [Google Scholar]
- Waseem, K.; Jilani, M.; Khan, M. Rapid plant regeneration of chrysanthemum (Chrysanthemum morifolium I.) through shoot tip culture. Afr. J. Biotechnol. 2009, 8, 1871–1877. [Google Scholar]
- Endress, R. Plant Cell Biotechnology; Springer: Berlin/Heidelberg, Germany, 1994. [Google Scholar]
- Noor, W.; Lone, R.; Kamili, A.N.; Husaini, A.M. Callus induction and regeneration in high-altitude Himalayan rice genotype SR4 via seed explant. Biotechnol. Rep. 2022, 36, e00762. [Google Scholar] [CrossRef]
- Lu, X.; Fei, L.; Li, Y.; Du, J.; Ma, W.; Huang, H.; Wang, J. Effect of different plant growth regulators on callus and adventitious shoots induction, polysaccharides accumulation and antioxidant activity of Rhodiola dumulosa. Chin. Herb. Med. 2023, 15, 271–277. [Google Scholar]
- Thongtam Na Ayudhaya, P.; Kanjanawaraporn, J.; Sridaphan, A.; Tumtuan, N.; Ritti, W.; Chunthaburee, S.; Vongvanrungrueng, A. Influence of 2,4-Dichlorophenoxyacetic acid on callus induction and synthetic cytokinins on plant regeneration of three Phetchaburi indigenous rice varieties. Asian J. Crop Sci. 2023, 15, 1–7. [Google Scholar]
- Zheng, M.Y.; Konzak, C.F. Effect of 2,4-dichlorophenoxyacetic acid on callus induction and plant regeneration in anther culture of wheat (Triticum aestivum L.). Plant Cell Rep. 1999, 19, 69–73. [Google Scholar] [CrossRef]
- Chitdacha, R.; Boonma, P.; Rotduang, P.; Ramasoot, S. Propagation of Moringa oleifera Lam. by tissue culture technique. Wichcha J. NSTRU 2018, 37, 86–95. [Google Scholar]
- Moosikapala, L. Callus Induction, Isolation and Culture of Mesophyll Protoplasts of Some Species in Garcinia. Master’s Thesis, Prince of Songkla University, Songkla, Thailand, 2001. [Google Scholar]
- Soorni, J.; Kahrizi, D. Effect of genotype, explant type and 2, 4-D on cell dedifferentiation and callus induction in Cumin (Cuminum cyminum L.) medicinal plant. J. Appl. Biotechnol. Rep. 2015, 2, 265–270. [Google Scholar]
- Kanwar, K.; Thakur, K. In vitro plant regenerationby organogenesis from leaf callus of Carnation, Dianthus caryophyllus L. cv. ‘Master’. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2018, 88, 1147–1155. [Google Scholar]
- Kongkaew, P.; Yenchon, S.; Te-chato, S. Callus induction in rubber tree (Hevea brasiliensis Muell. Arg.) using longitudinally thin cell layer (lTCL) from different positions of seedling In Vitro. SJPS 2016, 3, 1–7. [Google Scholar]
- Kieber, J.J. Tribute to Folke Skoog: Recent advances in our understanding of cytokinin biology. J. Plant Growth Regul. 2002, 21, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Mandal, J. Exogenous application of 6-benzyladenine and spermine improves shoot bud induction of shoot apex of Terminalia bellerica Roxb. Plant Physiol. Rep. 2021, 26, 311–320. [Google Scholar] [CrossRef]
- Kaneda, Y.; Tabei, Y.; Nishimura, S.; Harada, K.; Akihama, T.; Kitamura, K. Combination of thidiazuron and basal media with low salt concentrations increases the frequency of shoot organogenesis in soybeans [Glycine max (L.) Merr.]. Plant Cell Rep. 1997, 17, 8–12. [Google Scholar] [PubMed]
- Beveridge, C.A.; Rameau, C.; Wijerathna-Yapa, A. Lessons from a century of apical dominance research. J. Exp. Bot. 2023, 74, 3903–3922. [Google Scholar] [CrossRef]
- Abdel-Rahman, S.; Abdul-Hafeez, E.; Saleh, A. Improving rooting and growth of Conocarpus erectus stem cuttings using indole-3-butyric acid (IBA) and some biostimulants. Sci. J. Flowers Ornam. Plants 2020, 7, 109–129. [Google Scholar] [CrossRef]
- Bhatt, B.B.; Tomar, Y.K. Effects of IBA on Rooting Performance of Citrus auriantifolia Swingle (Kagzi-Lime) in Different Growing Conditions. Nat. Sci. 2010, 8, 8–11. [Google Scholar]
- Kumar, S.; Shukla, H.; Kumar, S. Effect of IBA (Indolebutiyric acid) and PHB (p-hydroxybenzoic acid) on the regeneration of sweet lime (Citrus limettioides Tanaka) through stem cuttings. Progress. Agric. 2004, 4, 54–56. [Google Scholar]
- Meena, A.K.; Garhwal, O.P.; Mahawar, A.K.; Singh, S.P. Effect of Different Growing Media on Seedling Growth Parameters and Economics of Papaya (Carica papaya L) cv. Pusa Delicious. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 2964–2972. [Google Scholar] [CrossRef]
- Kumar, A.; Arora, R. Rapid in vitro multiplication of early maturing peaches and their in vivo acclimatization. Indian J. Hort. 2007, 64, 258–262. [Google Scholar]
- R Core Team R. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 27 March 2025).
Treatments | 1st Disinfection | 2nd Disinfection | Disinfection Rate (%) | Germination Rate (%) |
---|---|---|---|---|
1 | 0.12% NaClO (20 min) | - | 0 c | 80.00 ± 13.33 b |
2 | 0.3% NaClO (20 min) | - | 0 c | 100.00 ± 0.00 a |
3 | 0.6% NaClO (20 min) | - | 0 c | 100.00 ± 0.00 a |
4 | 0.9% NaClO (20 min) | - | 20.00 ± 13.33 c | 100.00 ± 0.00 a |
5 | 1.2% NaClO (20 min) | - | 10.00 ± 10.00 c | 100.00 ± 0.00 a |
6 | 0.6% NaClO (20 min) | 0.1% HgCl2 (5 min) | 10.00 ± 10.00 c | 100.00 ± 0.00 a |
7 | 0.9% NaClO (20 min) | 0.1% HgCl2 (5 min) | 40.00 ± 16.33 bc | 100.00 ± 0.00 a |
8 | 1.2% NaClO (20 min) | 0.1% HgCl2 (5 min) | 50.00 ± 16.67 abc | 100.00 ± 0.00 a |
9 | 0.1% HgCl2 (10 min) | - | 80.00 ± 13.33 ab | 100.00 ± 0.00 a |
10 | 0.1% HgCl2 (20 min) | - | 100.00 ± 0.00 a | 100.00 ± 0.00 a |
11 | 0.2% HgCl2 (10 min) | - | 80.00 ± 13.33 ab | 100.00 ± 0.00 a |
12 | 0.2% HgCl2 (20 min) | - | 100.00 ± 0.00 a | 100.00 ± 0.00 a |
Kruskal-Wallis test | <0.001 * | <0.001 * |
Treatments | PGRs (mg/L) | Callus Induction (%) | |||||
---|---|---|---|---|---|---|---|
BA | 2,4-D | TDZ | NAA | Seed | Stem with Nodes | 1-Week-Old Shoot | |
1 | 0 | 0 | 0 | 0 | 0 c | 0 b | 0 c |
2 | 0 | 0.5 | 0 | 0 | 100.00 ± 0.00 a | 70.00 ± 15.28 a | 80.00 ± 13.33 a |
3 | 0 | 1.0 | 0 | 0 | 100.00 ± 0.00 a | 40.00 ± 16.33 ab | 90.00 ± 10.00 a |
4 | 1.0 | 0 | 0 | 0 | 0 c | 0 b | 0 c |
5 | 1.0 | 0.5 | 0 | 0 | 70.00 ± 15.27 ab | 30.00 ± 15.28 ab | 0 c |
6 | 1.0 | 1.0 | 0 | 0 | 50.00 ± 16.67 b | 40.00 ± 16.33 ab | 40.00 ± 16.33 b |
7 | 2.0 | 0 | 0 | 0 | 0 c | 0 b | 0 c |
8 | 2.0 | 0.5 | 0 | 0 | 0 c | 0 b | 20.00 ± 13.33 bc |
9 | 2.0 | 1.0 | 0 | 0 | 100.00 ± 0.00 a | 60.00 ± 16.33 ab | 0 c |
10 | 0 | 0 | 0 | 1.0 | 60.00 ± 16.33 b | 50.00 ± 16.67 ab | 0 c |
11 | 0 | 0 | 0 | 2.0 | 100.00 ± 0.00 a | 0 b | 0 c |
12 | 0 | 0 | 0.1 | 0 | 0 c | 0 b | 0 c |
13 | 0 | 0 | 0.1 | 1.0 | 0 c | 40.00 ± 16.33 ab | 0 c |
14 | 0 | 0 | 0.1 | 2.0 | 0 c | 30.00 ± 15.28 ab | 0 c |
Kruskal-Wallis test | <0.001 * | <0.001 * | <0.001 * |
Treatments | PGRs (mg/L) | Seed | Stem with Nodes | 1-Week-Old Shoot | ||||||
---|---|---|---|---|---|---|---|---|---|---|
BA | 2,4-D | TDZ | NAA | Multiple Shoot Frequency (%) | Number of Shoots per Explant | Multiple Shoot Frequency (%) | Number of Shoots per Explant | Multiple Shoot Frequency (%) | Number of Shoots per Explant | |
1 | 0 | 0 | 0 | 0 | 0 | 0 c | 100 | 1.00 ± 0.00 f | 0 | 0 e |
2 | 0 | 0.5 | 0 | 0 | 0 | 0 c | 100 | 1.00 ± 0.00 f | 0 | 0 e |
3 | 0 | 1.0 | 0 | 0 | 0 | 0 c | 100 | 1.00 ± 0.00 f | 0 | 0 e |
4 | 1.0 | 0 | 0 | 0 | 80 | 1.30 ± 0.26 a | 100 | 3.30 ± 0.21 ab | 100 | 1.30 ± 0.15 ab |
5 | 1.0 | 0.5 | 0 | 0 | 0 | 0 c | 100 | 2.40 ± 0.31 bcd | 10 | 0.10 ± 0.10 de |
6 | 1.0 | 1.0 | 0 | 0 | 0 | 0 c | 100 | 1.40 ± 0.16 ef | 0 | 0 e |
7 | 2.0 | 0 | 0 | 0 | 100 | 1.60 ± 0.16 a | 100 | 3.90 ± 0.31 a | 100 | 2.30 ± 0.21 a |
8 | 2.0 | 0.5 | 0 | 0 | 0 | 0 c | 100 | 3.00 ± 0.21 abcd | 0 | 0 e |
9 | 2.0 | 1.0 | 0 | 0 | 0 | 0 c | 100 | 2.20 ± 0.25 cde | 20 | 0.20 ± 0.13 de |
10 | 0 | 0 | 0 | 1.0 | 0 | 0 c | 100 | 1.00 ± 0.00 f | 0 | 0 e |
11 | 0 | 0 | 0 | 2.0 | 0 | 0 c | 100 | 1.00 ± 0.00 f | 0 | 0 e |
12 | 0 | 0 | 0.1 | 0 | 40 | 0.40 ± 0.16 b | 100 | 3.10 ± 0.18 abc | 60 | 0.80 ± 0.25 bc |
13 | 0 | 0 | 0.1 | 1.0 | 0 | 0 c | 100 | 2.10 ± 0.28 de | 50 | 0.50 ± 0.17 cd |
14 | 0 | 0 | 0.1 | 2.0 | 20 | 0.20 ± 0.13 bc | 100 | 2.60 ± 0.37 bcd | 30 | 0.30 ± 0.15 cde |
Kruskal-Wallis test | NA | <0.001 * | NA | <0.001 * | NA | <0.001 * |
Treatments | Explants | PGRs (mg/L) | 6 Weeks of Culture | ||
---|---|---|---|---|---|
IAA | IBA | Root Induction (%) | Number of Roots per Explant | ||
1 | Shoot with shoot tip | 0 | 0 | 10 | 0.20 ± 0.20 b |
2 | 4.0 | 0 | 0 | 0 b | |
3 | 12.0 | 0 | 0 | 0 b | |
4 | 20.0 | 0 | 0 | 0 b | |
5 | 0 | 4.0 | 20 | 0.70 ± 0.52 b | |
6 | 0 | 12.0 | 0 | 0 b | |
7 | 0 | 20.0 | 40 | 0.80 ± 0.36 b | |
8 | Shoot withoutshoot tip | 0 | 0 | 90 | 3.10 ± 0.69 a |
9 | 4.0 | 0 | 10 | 0.20 ± 0.20 b | |
10 | 12.0 | 0 | 0 | 0 b | |
11 | 20.0 | 0 | 0 | 0 b | |
12 | 0 | 4.0 | 90 | 2.50 ± 0.48 a | |
13 | 0 | 12.0 | 80 | 3.50 ± 0.87 a | |
14 | 0 | 20.0 | 90 | 4.30 ± 0.83 a | |
Kruskal-Wallis test | NA | <0.001 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sathuphan, P.; Vajrodaya, S.; Sanevas, N.; Wongkantrakorn, N. In Vitro Propagation of Clausena lenis Drake. Plants 2025, 14, 1123. https://doi.org/10.3390/plants14071123
Sathuphan P, Vajrodaya S, Sanevas N, Wongkantrakorn N. In Vitro Propagation of Clausena lenis Drake. Plants. 2025; 14(7):1123. https://doi.org/10.3390/plants14071123
Chicago/Turabian StyleSathuphan, Pajaree, Srunya Vajrodaya, Nuttha Sanevas, and Narong Wongkantrakorn. 2025. "In Vitro Propagation of Clausena lenis Drake" Plants 14, no. 7: 1123. https://doi.org/10.3390/plants14071123
APA StyleSathuphan, P., Vajrodaya, S., Sanevas, N., & Wongkantrakorn, N. (2025). In Vitro Propagation of Clausena lenis Drake. Plants, 14(7), 1123. https://doi.org/10.3390/plants14071123