Research Advances and Perspectives on Early Flowering Traits in Cucumber
Abstract
:1. Introduction
2. Factors Influencing Cucumber Early Flowering Traits
2.1. Light
2.2. Hormones
2.2.1. GAs
2.2.2. JA
2.2.3. ABA
2.2.4. BR and SA
2.3. Other Factors
3. Current Status of Breeding Early Flowering Cucumbers
4. QTL Mapping of Cucumber Early Flowering Traits
Parents | Populations | QTLs | References |
---|---|---|---|
GY14 * PI183967 | BC, S3 | Two chromosome regions | [87] |
G421 * H-19 | RIL | ant1.1, ant2.1, ant5.1, ant6.1 | [88] |
S06 * S52 | F2 | ffn | [89] |
9930 * 9110Gt | F9 | Da1.1 | [10] |
9930 * Muromskij | F2 | Ef1.1 | [85] |
CC3 * SWCC8 | RILs | fft1.1, fft6.1 | [90] |
S1000 * S1002 | F2 and F2:3 | EF3.1-1, EF3.1-2, EF5.1, EF6.1, EF6.2, EF7.1 | [85] |
WI7200 * WI7167 | F2 and F2:3 | FT1.1, FT5.1, FT6.2 | [91] |
Gy14 * WI7221 | RIL, F2, and F2:3 | FT1.1, FT6.3 | [29] |
WI2757 * TL | F2 | FT1.1, FT6.4 | [92] |
CG5479 * 9930 | NILs | Ef1.1 | [93] |
CC3 * SWCC8 | RILs and F9 | DFF1.1 | [27] |
5. Molecular Regulatory Mechanism of Cucumber Early Flowering Traits
Gene Names | Regulation | Interaction Proteins or TFs | References |
---|---|---|---|
CsSPL13A | positive | CsFT and CsBAM | [6] |
CsFT | positive | - | [4,93,119,120] |
CsSHP | positive | CsSEPs | [72] |
CsBCATs | positive | FT and SOC1 | [133] |
CFL | positive | - | [138] |
CsMADS02, 09 | positive | - | [129,130] |
CsMADS08 | positive | - | [131] |
CsPHYB | Negative | CsPIF3/4 | [48] |
CsTFL1b | Negative | - | [144] |
CsACS2 | Negative | - | [145] |
CsERF31 | Negative | - | [146] |
6. Functional Genomics and Omics Insights into Early Flowering Traits in Cucumbers
7. Challenges and Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ABA | abscisic acid |
BCAAs | branched-chain amino acids |
BCATs | branched-chain amino acids and transferases |
BiFC | bimolecular fluorescence complementation |
BR | brassinosteroids |
GAs | gibberellins |
JA | jasmonic acid |
LD | long-day |
PAC | paclobutrazol |
QTL | quantitative trait locus |
RIL | recombinant inbred line |
RNA-seq | RNA sequencing |
SA | salicylic acid |
SD | short-day |
Y2H | yeast two-hybrid |
References
- Li, Y.H.; Wen, C.L.; Weng, Y.Q. Fine mapping of the pleiotropic locus B for black spine and orange mature fruit color in cucumber identifies a 50 kb region containing a R2R3-MYB transcription factor. Theor. Appl. Genet. 2013, 126, 2187–2196. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.L.; Liu, P.; Jin, Z.S.; Sun, J.; Weng, Y.Q.; Chen, P.; Du, S.L.; Wei, A.M.; Li, Y.H. A mutation in CsHY2 encoding a phytochromobilin (PΦB) synthase leads to an elongated hypocotyl 1 (elh1) phenotype in cucumber (Cucumis sativus L.). Theor. Appl. Genet. 2021, 134, 2639–2652. [Google Scholar] [CrossRef]
- Lv, J.; Qi, J.; Shi, Q.; Shen, D.; Zhang, S.; Shao, G.; Li, H.; Sun, Z.; Weng, Y.; Shang, Y.; et al. Genetic diversity and population structure of cucumber (Cucumis sativus L.). PLoS ONE 2012, 7, e46919. [Google Scholar] [CrossRef] [PubMed]
- Yang, A.; Xu, Q.; Hong, Z.; Wang, X.; Zeng, K.; Yan, L.; Liu, Y.; Zhu, Z.; Wang, H.; Xu, Y. Modified photoperiod response of CsFT promotes day neutrality and early flowering in cultivated cucumber. Theor. Appl. Genet. 2022, 135, 2735–2746. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Liu, X.; Shen, D.; Miao, H.; Xie, B.; Li, X.; Zeng, P.; Wang, S.; Shang, Y.; Gu, X.; et al. A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nat. Genet. 2013, 45, 1510–1515. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Deng, Q.; Xu, S.; Huang, Y.; Wei, D.; Wang, Z.; Zhang, H.; Wang, H.; Tang, Q. CsSPL13A directly binds and positively regulates CsFT and CsBAM to accelerate flowering in cucumber. Plant Physiol. Biochem. 2024, 207, 108395. [Google Scholar] [CrossRef]
- Robbins, M.D.; Staub, J.E. Comparative analysis of marker-assisted and phenotypic selection for yield components in cucumber. Theor. Appl. Genet. 2009, 119, 621–634. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, D.L. Preliminary report on the combination ability of early cucumber yield. J. Hebei Agric. Univ. 1991, 14, 84–88. [Google Scholar]
- Gu, X.F.; Fang, X.J.; Zhang, T.M.; Dong, X.H. Analysis of early yield coordination ability of cucumber in protected areas. North. Hortic. 2001, 5, 1–2. [Google Scholar]
- Miao, H.; Gu, X.F.; Zhang, S.P.; Zhang, Z.H.; Huang, S.W.; Wang, Y.; Fang, Z.Y. Mapping QTLs for Seedling-associated Traits in Cucumber. Acta Hortic. Sinica 2012, 39, 879–887. [Google Scholar]
- Soyk, S.; Müller, N.A.; Park, S.J.; Schmalenbach, I.; Jiang, K.; Hayama, R.; Zhang, L.; Van Eck, J.; Jiménez-Gómez, J.M.; Lippman, Z.B. Variation in the flowering gene SELF PRUNING 5G promotes day-neutrality and early yield in tomato. Nat. Genet. 2017, 49, 162–168. [Google Scholar] [CrossRef]
- Zhang, Y.Z. Genetic Analysis and QTL Mapping of Cucumber Flowering Traits Under Low Light Conditions. Master’s Thesis, Heilongjiang Bayi Agricultural University, Daqing, China, 1 June 2024. [Google Scholar]
- Andrés, F.; Coupland, G. The genetic basis of flowering responses to seasonal cues. Nat. Genet. 2012, 13, 627–639. [Google Scholar]
- Blümel, M.; Dally, N.; Jung, C. Flowering time regulation in crops—What did we learn from Arabidopsis? Curr. Opin. Biotechnol. 2015, 32, 121–129. [Google Scholar] [PubMed]
- Eshed, Y.; Lippman, Z.B. Revolutions in agriculture chart a course for targeted breeding of old and new crops. Science 2019, 366, eaax0025. [Google Scholar] [PubMed]
- Zhang, D.; Ai, G.; Ji, K.; Huang, R.; Chen, C.; Yang, Z.; Wang, J.; Cui, L.; Li, G.; Tahira, M.; et al. EARLY FLOWERING is a dominant gain-of-function allele of FANTASTIC FOUR 1/2c that promotes early flowering in tomato. Plant Biotechnol. J. 2024, 22, 698–711. [Google Scholar] [CrossRef]
- Albani, M.C.; Coupland, G. Comparative Analysis of Flowering in Annual and Perennial Plants. In Current Topics in Developmental Biology; Elsevier: Amsterdam, The Netherlands, 2010; Volume 91, pp. 323–348. [Google Scholar]
- Kim, D.H.; Doyle, M.R.; Sung, S.; Amasino, R.M. Vernalization: Winter and the Timing of Flowering in Plants. Annu. Rev. Cell Dev. Biol. 2009, 25, 277–299. [Google Scholar] [CrossRef]
- Samach, A.; Wigge, P.A. Ambient temperature perception in plants. Curr. Opin. Plant Biol. 2005, 8, 483–486. [Google Scholar]
- Wang, J.W. Regulation of flowering time by the miR156-mediated age pathway. J. Exp. Bot. 2014, 65, 4723–4730. [Google Scholar]
- Zhang, X.; Feng, Q.; Miao, J.; Zhu, J.; Zhou, C.; Fan, D.; Lu, Y.; Tian, Q.; Wang, Y.; Zhan, Q.; et al. The WD40 domain-containing protein Ehd5 positively regulates flowering in rice (Oryza sativa). Plant Cell 2023, 35, 4002–4019. [Google Scholar] [CrossRef]
- Wittern, L.; Steed, G.; Taylor, L.J.; Ramirez, D.C.; Pingarron-Cardenas, G.; Gardner, K.; Greenland, A.; Hannah, M.A.; Webb, A.A.R. Wheat EARLY FLOWERING 3 affects heading date without disrupting circadian oscillations. Plant Physiol. 2023, 191, 1383–1403. [Google Scholar] [PubMed]
- Wang, S.; Feng, D.; Zheng, Y.; Lu, Y.; Shi, K.; Yang, R.; Ma, W.; Li, N.; Liu, M.; Wang, Y.; et al. EARLY FLOWERING 3 alleles affect the temperature responsiveness of the circadian clock in Chinese cabbage. Plant Physiol. 2024, 197, kiae505. [Google Scholar]
- Odipio, J.; Getu, B.; Chauhan, R.D.; Alicai, T.; Bart, R.; Nusinow, D.A.; Taylor, N.J. Transgenic overexpression of endogenous FLOWERING LOCUS T-like gene MeFT1 produces early flowering in cassava. PLoS ONE 2020, 15, e0227199. [Google Scholar]
- Xu, P.; Lian, H.; Xu, F.; Zhang, T.; Wang, S.; Wang, W.; Du, S.; Huang, J.; Yang, H.Q. Phytochrome B and AGB1 Coordinately Regulate Photomorphogenesis by Antagonistically Modulating PIF3 Stability in Arabidopsis. Mol. Plant 2019, 12, 229–247. [Google Scholar]
- Yadav, A.; Singh, D.; Lingwan, M.; Yadukrishnan, P.; Masakapalli, S.K.; Datta, S. Light signaling and UV-B mediated plant growth regulation. J. Integr. Plant Biol. 2020, 62, 1270–1292. [Google Scholar]
- Tian, Z.; Jahn, M.; Qin, X.; Obel, H.O.; Yang, F.; Li, J.; Chen, J. Genetic and Transcriptomic Analysis Reveal the Molecular Basis of Photoperiod-Regulated Flowering in Xishuangbanna Cucumber (Cucumis sativus L. var. xishuangbannesis Qi et Yuan). Genes 2021, 12, 1064. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Koo, D.H.; Li, Y.; Zhang, X.; Luan, F.; Havey, M.J.; Jiang, J.; Weng, Y. Chromosome rearrangements during domestication of cucumber as revealed by high-density genetic mapping and draft genome assembly. Plant J. 2012, 71, 895–906. [Google Scholar] [PubMed]
- Sheng, Y.; Pan, Y.; Li, Y.; Yang, L.; Weng, Y. Quantitative trait loci for fruit size and flowering time-related traits under domestication and diversifying selection in cucumber (Cucumis sativus). Plant Breed. 2020, 139, 176–191. [Google Scholar]
- Oh, J.; Park, E.; Song, K.; Bae, G.; Choi, G. PHYTOCHROME INTERACTING FACTOR8 Inhibits Phytochrome A-Mediated Far-Red Light Responses in Arabidopsis. Plant Cell 2019, 32, 186–205. [Google Scholar] [CrossRef] [PubMed]
- Kahle, N.; Sheerin, D.; Fischbach, P.; Koch, L.; Schwenk, P.; Lambert, D.; Rodriguez, R.; Kerner, K.; Hoecker, U.; Zurbriggen, M. COLD REGULATED 27 and 28 are targets of CONSTITUTIVELY PHOTOMORPHOGENIC 1 and negatively affect phytochrome B signalling. Plant J. 2020, 104, 1038–1053. [Google Scholar] [CrossRef]
- Miao, T.; Li, D.; Huang, Z.; Huang, Y.; Li, S.; Wang, Y. Gibberellin regulates UV-B-induced hypocotyl growth inhibition in Arabidopsis thaliana. Plant Signal. Behav. 2021, 16, 1966587. [Google Scholar]
- Miao, L.; Zhao, J.; Yang, G.; Xu, P.; Cao, X.; Du, S.; Xu, F.; Jiang, L.; Zhang, S.; Wei, X.; et al. Arabidopsis cryptochrome 1 undergoes COP1 and LRBs-dependent degradation in response to high blue light. New Phytol. 2021, 234, 1347–1362. [Google Scholar] [PubMed]
- Xu, P.; Chen, H.; Li, T.; Xu, F.; Mao, Z.; Cao, X.; Miao, L.; Du, S.; Hua, J.; Zhao, J.; et al. Blue light-dependent interactions of CRY1 with GID1 and DELLA proteins regulate gibberellin signaling and photomorphogenesis in Arabidopsis. Plant Cell 2021, 33, 2375–2394. [Google Scholar]
- Yan, B.; Yang, Z.; He, G.; Jing, Y.; Dong, H.; Ju, L.; Zhang, Y.; Zhu, Y.; Zhou, Y.; Sun, J. The blue light receptor CRY1 interacts with GID1 and DELLA proteins to repress gibberellin signaling and plant growth. Plant Commun. 2021, 2, 100245. [Google Scholar]
- Ichiro, I.S.; Eirini, K.; Xiang, Z.; Thomas, W.; Atsushi, T.; Masaki, O.; Hirotaka, T.; Motoaki, S.; Kazuo, S.; Yaeta, E.; et al. CIPK23 regulates blue light-dependent stomatal opening in Arabidopsis thaliana. Plant J. 2020, 104, 679–692. [Google Scholar]
- Rusaczonek, A.; Czarnocka, W.; Willems, P.; Sujkowska-Rybkowska, M.; Van Breusegem, F.; Karpiński, S. Phototropin 1 and 2 Influence Photosynthesis, UV-C Induced Photooxidative Stress Responses, and Cell Death. Cells 2021, 10, 200. [Google Scholar] [CrossRef]
- Min, G.X.; Xin, H.; Jun, Z.; Mei, H.Q.; Yuan, G.; Qi, L.Z.; Sha, L.; Min, H.J. UV RESISTANCE LOCUS8 mediates ultraviolet-B-induced stomatal closure in an ethylene-dependent manner. Plant Sci. 2020, 301, 110679. [Google Scholar]
- Hajdu, A.; Ádám, É.; Sheerin, D.J.; Dobos, O.; Bernula, P.; Hiltbrunner, A.; Kozma-Bognár, L.; Nagy, F. High-level expression and phosphorylation of phytochrome B modulates flowering time in Arabidopsis. Plant J. 2015, 83, 794–805. [Google Scholar] [CrossRef] [PubMed]
- Fragoso, V.; Oh, Y.; Kim, S.G.; Gase, K.; Baldwin, I.T. Functional specialization of Nicotiana attenuata phytochromes in leaf development and flowering time. J. Integr. Plant Biol. 2017, 59, 205–224. [Google Scholar] [PubMed]
- Zou, Y.; Li, R.; Baldwin, I.T. ZEITLUPE is required for shade avoidance in the wild tobacco Nicotiana attenuata. J. Integr. Plant Biol. 2019, 62, 1341–1351. [Google Scholar]
- Liu, B.; Weng, J.; Guan, D.; Zhang, Y.; Niu, Q.; López-Juez, E.; Lai, Y.; Garcia-Mas, J.; Huang, D. A domestication-associated gene, CsLH, encodes a phytochrome B protein that regulates hypocotyl elongation in cucumber. Mol. Hortic. 2021, 1, 3. [Google Scholar]
- Liu, S.; Yang, L.; Li, J.; Tang, W.; Li, J.; Lin, R. FHY3 interacts with phytochrome B and regulates seed dormancy and germination. Plant Physiol. 2021, 187, 289–302. [Google Scholar] [PubMed]
- Wollenberg, A.C.; Strasser, B.; Cerdán, P.D.; Amasino, R.M. Acceleration of flowering during shade avoidance in Arabidopsis alters the balance between FLOWERING LOCUS C-mediated repression and photoperiodic induction of flowering. Plant Physiol. 2008, 148, 1681–1694. [Google Scholar] [PubMed]
- Iñigo, S.; Alvarez, M.J.; Strasser, B.; Califano, A.; Cerdán, P.D. PFT1, the MED25 subunit of the plant Mediator complex, promotes flowering through CONSTANS dependent and independent mechanisms in Arabidopsis. Plant J. 2012, 69, 601–612. [Google Scholar]
- Yasui, Y.; Mukougawa, K.; Uemoto, M.; Yokofuji, A.; Suzuri, R.; Nishitani, A.; Kohchi, T. The phytochrome-interacting vascular plant one-zinc finger1 and VOZ2 redundantly regulate flowering in Arabidopsis. Plant Cell 2012, 24, 3248–3263. [Google Scholar]
- Lazaro, A.; Mouriz, A.; Piñeiro, M.; Jarillo, J.A. Red Light-Mediated Degradation of CONSTANS by the E3 Ubiquitin Ligase HOS1 Regulates Photoperiodic Flowering in Arabidopsis. Plant Cell 2015, 27, 2437–2454. [Google Scholar]
- Hu, L.; Zhang, M.; Shang, J.; Liu, Z.; Weng, Y.; Yue, H.; Li, Y.; Chen, P. A 5.5-kb LTR-retrotransposon insertion inside phytochrome B gene (CsPHYB) results in long hypocotyl and early flowering in cucumber (Cucumis sativus L.). Theor. Appl. Genet. 2023, 136, 68. [Google Scholar] [PubMed]
- Sysoeva, M.I.; Marovskaia, E.F. Role of phytochrome B in organ formation processes in Cucumis sativus L. Russ. J. Dev. Biol. 2013, 44, 135–138. [Google Scholar]
- Halliday, K.J.; Koornneef, M.; Whitelam, G.C. Phytochrome B and at Least One Other Phytochrome Mediate the Accelerated Flowering Response of Arabidopsis thaliana L. to Low Red/Far-Red Ratio. Plant Physiol. 1994, 104, 1311–1315. [Google Scholar] [PubMed]
- Szymanski, D.B.; Jilk, R.A.; Pollock, S.M.; Marks, M.D. Control of GL2 expression in Arabidopsis leaves and trichomes. Development 1998, 125, 1161–1171. [Google Scholar]
- Vernoud, V.; Laigle, G.; Rozier, F.; Meeley, R.B.; Perez, P.; Rogowsky, P.M. The HD-ZIP IV transcription factor OCL4 is necessary for trichome patterning and anther development in maize. Plant J. 2009, 59, 883–894. [Google Scholar]
- Shi, L.; Katavic, V.; Yuanyuan, Y.; Ljerka, K.; George, H. Arabidopsis glabra2 mutant seeds deficient in mucilage biosynthesis produce more oil. Plant J. 2012, 69, 37–46. [Google Scholar]
- Fu, R.; Liu, W.; Li, Q.; Li, J.; Wang, L.; Ren, Z. Comprehensive analysis of the homeodomain-leucine zipper IV transcription factor family in Cucumis sativus. Genome 2013, 56, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.J.; Foster, K.R.; Morgan, P.W. Effect of Gibberellin Biosynthesis Inhibitors on Native Gibberellin Content, Growth and Floral Initiation in Sorghum bicolor. J. Plant Growth Regul. 1998, 17, 185–195. [Google Scholar] [PubMed]
- Lee, I.J.; Foster, K.R.; Morgan, P.W. Photoperiod Control of Gibberellin Levels and Flowering in Sorghum. Plant Physiol. 1998, 116, 1003–1011. [Google Scholar]
- Blázquez, M.A.; Weigel, D. Independent Regulation of Flowering by Phytochrome B and Gibberellins in Arabidopsis. Plant Physiol. 1999, 120, 1025–1032. [Google Scholar] [PubMed]
- Yu, H.; Ito, T.; Zhao, Y.; Peng, J.; Kumar, P.; Meyerowitz, E.M. Floral homeotic genes are targets of gibberellin signaling in flower development. Proc. Natl. Acad. Sci. USA 2004, 101, 7827–7832. [Google Scholar]
- Endo, M.; Nakamura, S.; Araki, T.; Mochizuki, N.; Nagatani, A. Phytochrome B in the Mesophyll Delays Flowering by Suppressing FLOWERING LOCUS T Expression in Arabidopsis Vascular Bundles. Plant Cell 2005, 17, 1941–1952. [Google Scholar]
- Fukazawa, J.; Ohashi, Y.; Takahashi, R.; Nakai, K.; Takahashi, Y. DELLA degradation by gibberellin promotes flowering via GAF1-TPR-dependent repression of floral repressors in Arabidopsis. Plant Cell 2021, 33, 2258–2272. [Google Scholar]
- Chini, A.; Gimenez-Ibanez, S.; Goossens, A.; Solano, R. Redundancy and specificity in jasmonate signalling. Curr. Opin. Plant Biol. 2016, 33, 147–156. [Google Scholar]
- Chung, H.S.; Koo, A.J.K.; Gao, X.; Jayanty, S.; Thines, B.; Jones, A.D.; Howe, G.A. Regulation and Function of Arabidopsis JASMONATE ZIM-Domain Genes in Response to Wounding and Herbivory. Plant Physiol. 2008, 146, 952–964. [Google Scholar]
- Fernández-Calvo, P.; Chini, A.; Fernández-Barbero, G.; Chico, J.-M.; Gimenez-Ibanez, S.; Geerinck, J.; Eeckhout, D.; Schweizer, F.; Godoy, M.; Franco-Zorrilla, J.M.; et al. The Arabidopsis bHLH Transcription Factors MYC3 and MYC4 Are Targets of JAZ Repressors and Act Additively with MYC2 in the Activation of Jasmonate Responses(C)(W). Plant Cell 2011, 23, 701–715. [Google Scholar] [PubMed]
- Schweizer, F.; Fernández-Calvo, P.; Zander, M.; Diez-Diaz, M.; Fonseca, S.; Glauser, G.; Lewsey, M.G.; Ecker, J.R.; Solano, R.; Reymond, P. Arabidopsis basic helix-loop-helix transcription factors MYC2, MYC3, and MYC4 regulate glucosinolate biosynthesis, insect performance, and feeding behavior. Plant Cell 2013, 25, 3117–3132. [Google Scholar] [PubMed]
- Qi, T.; Huang, H.; Song, S.; Xie, D. Regulation of Jasmonate-Mediated Stamen Development and Seed Production by a bHLH-MYB Complex in Arabidopsis. Plant Cell 2015, 27, 1620–1633. [Google Scholar] [CrossRef]
- Wang, H.; Li, Y.; Pan, J.; Lou, D.; Hu, Y.; Yu, D. The bHLH Transcription Factors MYC2, MYC3, and MYC4 Are Required for Jasmonate-Mediated Inhibition of Flowering in Arabidopsis. Mol. Plant 2017, 10, 1461–1464. [Google Scholar]
- Cai, Y.; Bartholomew, E.S.; Dong, M.; Zhai, X.; Yin, S.; Zhang, Y.; Feng, Z.; Wu, L.; Liu, W.; Shan, N.; et al. The HD-ZIP IV transcription factor CsGL2-LIKE regulates male flowering time and fertility in cucumber. J. Exp. Bot. 2020, 71, 5425–5437. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Zapater, J.; Coupland, G.; Dean, C.; Koornneef, M. The transition to flowering in Arabidopsis. In Cold Spring Harbor Monograph Archive; Cold Spring Harbor Laboratory: New York, NY, USA, 1994; Volume 27, pp. 403–433. [Google Scholar]
- Yong, H.R.; Lee, S.Y.; Kim, K.S. ABA synthesis inhibitor inducing flowering of dormant peony without bud abortion. Acta Hort. 2020, 1291, 97–102. [Google Scholar]
- Hurr, B.M.; Huber, D.J.; Vallejos, C.E.; Talcott, S.T. Developmentally dependent responses of detached cucumber (Cucumis sativus L.) fruit to exogenous ethylene. Postharvest Biol. Technol. 2008, 52, 207–215. [Google Scholar]
- Wang, Y.; Wang, Y.; Ji, K.; Dai, S.; Hu, Y.; Sun, L.; Li, Q.; Chen, P.; Sun, Y.; Duan, C. The role of abscisic acid in regulating cucumber fruit development and ripening and its transcriptional regulation. Plant Physiol. Biochem. 2013, 64, 70–79. [Google Scholar] [PubMed]
- Cheng, Z.; Zhuo, S.; Liu, X.; Che, G.; Wang, Z.; Gu, R.; Shen, J.; Song, W.; Zhou, Z.; Han, D.; et al. The MADS-Box Gene CsSHP Participates in Fruit Maturation and Floral Organ Development in Cucumber. Front. Plant Sci. 2019, 10, 1781. [Google Scholar] [CrossRef]
- Pal, Y.N.; Vijay, B.; Gyanendra, S.; Vikram, S.N. Influence of Foliar Spray of Brassinosteroids (BR), Salicylic Acid (SA) and Gibberellic Acid (GA3) on Vegetative Growth and Flowering Parameters of Cucumber (Cucumis sativus L) cv. Arpit. Int. J. Environ. Clim. Change 2022, 12, 607–615. [Google Scholar]
- Hedhly, A.; Hormaza, J.I.; Herrero, M. Global warming and sexual plant reproduction. Trends Plant Sci. 2008, 14, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Thiruvengadam, M.; Chung, I. Optimization of factors influencing in vitro flowering of gherkin (Cucumis anguria L.). Acta Biol. Hung. 2014, 65, 72–84. [Google Scholar] [CrossRef]
- Sun, Y.L.; Zang, C.J.; Yao, T.T.; LI, X.L.; Yue, L.X. Research Advances on Heat Tolerance of Cucumber in China. China Fruit Veg. 2018, 38, 57–62. [Google Scholar]
- Prasad, P.H.; Mandal, A.R.; Sarkar, A.; Thapa, U.; Maity, T.K. Effect of bio-fertilizers and nitrogen on growth and yield attributes of bitter gourd (Momordica charantia L.). In Proceedings of the International Conference on Horticulture (ICH-2009), Bangalore, India, 9 December 2009. [Google Scholar]
- Anjanappa, M.; Kumara, B.S.; Indiresh, K.M. Growth, yield and quality attributes of cucumber (Cv. Hassan local) as influenced by integrated nutrient management grown under protected condition. Agric. Food Sci. 2012, 39, 47–50. [Google Scholar]
- Sahu, P.; Tripathy, P.; Sahu, G.S.; Dash, S.K.; Pattnayak, S.K.; Sarkar, S.; Nayak, R.K.; Nayak, N.J.; Mishra, S. Influence of Nutrient Management Practices on Growth, Flowering and Yield Attributes of Cucumber (Cucumis sativus). Int. J. Environ. Clim. Change 2022, 12, 493–503. [Google Scholar] [CrossRef]
- Zhang, S.P.; Miao, H.; Bo, K.L.; Dong, S.Y.; Gu, X.F. Research Progress on Cucumber Genetic Breeding During ‘The Thirteenth Five-year Plan’ in China. China Veg. 2021, 4, 16–26. [Google Scholar]
- Zhang, G.C.; Tong, W.J. “Jinchun No.4” Cucumber. Vegetable 2011, 4, 36–37. [Google Scholar]
- Cui, M.H. Zhongnong No.5 Cucumber. Jilin Veg. 2000, 4, 40. [Google Scholar]
- Liu, M.; Hsieh, C.; Chao, Y. Kaohsiung No. 3 Cucumber: An Early Flowering Variety Tolerant to Heat and Moisture. Hort. Sci. 2017, 52, 1435–1437. [Google Scholar] [CrossRef]
- Fang, X.J.; Wu, W.R.; Tang, J.L. Molecular Marker Assisted Selection; Science Press: Beijing, China, 2001; pp. 1–84. [Google Scholar]
- Qu, M.L. Analysis of Flower-Related Traits in Cucumber (Cucumis sativus L.). Master’s Thesis, Shanghai Jiao Tong University, Shanghai, China, 1 January 2016. [Google Scholar]
- Lu, H.; Lin, T.; Klein, J.; Wang, S.; Qi, J.; Zhou, Q.; Sun, J.; Zhang, Z.; Weng, Y.; Huang, S. QTL-seq identifies an early flowering QTL located near Flowering Locus T in cucumber. Theor. Appl. Genet. 2014, 127, 1491–1499. [Google Scholar] [CrossRef]
- Dijkhuizen, A.; Staub, J.E. QTL Conditioning Yield and Fruit Quality Traits in Cucumber (Cucumis sativus L.). J. New Seeds 2002, 4, 1–30. [Google Scholar]
- Fazio, G.; Staub, J.E.; Stevens, M.R. Genetic mapping and QTL analysis of horticultural traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Theor. Appl. Genet. 2003, 107, 864–874. [Google Scholar]
- Pan, J.S.; Wang, G.; Li, X.Z.; He, H.L.; Wu, A.Z.; Cai, R. Construction of a genetic map with SRAP markers and localization of the gene responsible for the first-flower-node trait in cucumber (Cucumis sativus L.). Prog. Nat. Sci. 2005, 15, 407–413. [Google Scholar]
- Bo, K.; Ma, Z.; Chen, J.; Weng, Y. Molecular mapping reveals structural rearrangements and quantitative trait loci underlying traits with local adaptation in semi-wild Xishuangbanna cucumber (Cucumis sativus L. var. xishuangbannanesis Qi et Yuan). Theor. Appl. Genet. 2015, 128, 25–39. [Google Scholar]
- Pan, Y.; Qu, S.; Bo, K.; Gao, M.; Haider, K.R.; Weng, Y. QTL mapping of domestication and diversifying selection related traits in round-fruited semi-wild Xishuangbanna cucumber (Cucumis sativus L. var. xishuangbannanesis). Theor. Appl. Genet. 2017, 130, 1531–1548. [Google Scholar]
- Pan, Y.; Wen, C.; Han, Y.; Wang, Y.; Li, Y.; Li, X.; Cheng, X.; Weng, Y. QTL for horticulturally important traits associated with pleiotropic andromonoecy and carpel number loci, and a paracentric inversion in cucumber. Theor. Appl. Genet. 2020, 133, 2271–2290. [Google Scholar]
- Wang, S.; Li, H.; Li, Y.; Li, Z.; Qi, J.; Lin, T.; Yang, X.; Zhang, Z.; Huang, S. FLOWERING LOCUS T Improves Cucumber Adaptation to Higher Latitudes. Plant Physiol. 2020, 182, 908–918. [Google Scholar] [PubMed]
- Nishioka, M.; Tamura, K.; Hayashi, M.; Fujimori, Y.; Ohkawa, Y.; Kuginuki, Y.; Harada, K. Mapping of QTLs for Bolting Time in Brassica rapa (syn. campestris) under Different Environmental Conditions. Breed. Sci. 2005, 55, 127–133. [Google Scholar]
- Kazan, K.; Lyons, R. The link between flowering time and stress tolerance. J. Exp. Bot. 2016, 67, 47–60. [Google Scholar]
- Fornara, F.; de Montaigu, A.; Coupland, G. SnapShot: Control of Flowering in Arabidopsis. Cell 2010, 141, 550–550.e2. [Google Scholar]
- Anusha, S.; Markus, S. Regulation of flowering time: All roads lead to Rome. Cell. Mol. Life Sci. 2011, 68, 2013–2037. [Google Scholar]
- Charles, W.; Caroline, D. The FLC Locus: A Platform for Discoveries in Epigenetics and Adaptation. Annu. Rev. Cell Dev. Biol. 2017, 33, 555–575. [Google Scholar]
- Simpson, G.G.; Dean, C. Arabidopsis, the Rosetta Stone of Flowering Time? Science 2002, 296, 285–289. [Google Scholar] [PubMed]
- Abe, M.; Kobayashi, Y.; Yamamoto, S.; Daimon, Y.; Yamaguchi, A.; Ikeda, Y.; Ichinoki, H.; Notaguchi, M.; Goto, K.; Araki, T. FD, a bZIP Protein Mediating Signals from the Floral Pathway Integrator FT at the Shoot Apex. Science 2005, 309, 1052–1056. [Google Scholar]
- Liu, X.; Yang, Y.; Hu, Y.; Zhou, L.; Li, Y.; Hou, X. Temporal-Specific Interaction of NF-YC and CURLY LEAF during the Floral Transition Regulates Flowering. Plant Physiol. 2018, 177, 105–114. [Google Scholar]
- Yamaguchi, A.; Wu, M.F.; Yang, L.; Wu, G.; Poethig, R.S.; Wagner, D. The MicroRNA-Regulated SBP-Box Transcription Factor SPL3 Is a Direct Upstream Activator of LEAFY, FRUITFULL, and APETALA1. Dev. Cell 2009, 17, 268–278. [Google Scholar]
- Klein, J.; Saedler, H.; Huijser, P. A new family of DNA binding proteins includes putative transcriptional regulators of the Antirrhinum majus floral meristem identity gene SQUAMOSA. Mol. Gen. Genet. 1996, 250, 7–16. [Google Scholar]
- Wang, S.; Yang, A.; Wang, H.; Xu, Y.M. Identification and expression analysis of miR156/157-SPL pathway genes in cucumber. Acta Hortic. 2021, 48, 2227–2238. [Google Scholar]
- Hong, Z.; Wang, X.; Fan, Z.; Wang, J.; Yang, A.; Yan, G.; He, Y.; Wang, H.; Zhu, Z.; Xu, X. The intrinsic developmental age signal defines an age-dependent climbing behavior in cucumber. Hortic. Plant J. 2024, 10, 797–808. [Google Scholar]
- Schmid, M.; Uhlenhaut, N.H.; Godard, F.; Demar, M.; Bressan, R.; Weigel, D.; Lohmann, J.U. Dissection of floral induction pathways using global expression analysis. Development 2003, 130, 6001–6012. [Google Scholar]
- Lee, J.; Oh, M.; Park, H.; Lee, I. SOC1 translocated to the nucleus by interaction with AGL24 directly regulates LEAFY. Plant J. 2008, 55, 832–843. [Google Scholar] [CrossRef] [PubMed]
- Preston, J.C.; Hileman, L.C. SQUAMOSA-PROMOTER BINDING PROTEIN 1 initiates flowering in Antirrhinum majus through the activation of meristem identity genes. Plant J. 2010, 62, 704–712. [Google Scholar] [CrossRef]
- Lal, S.; Pacis, L.B.; Smith, H.M.S. Regulation of the SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE genes/microRNA156 Module by the Homeodomain Proteins PENNYWISE and POUND-FOOLISH in Arabidopsis. Mol. Plant 2011, 4, 1123–1132. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.H.; Ju, Y.; Seo, P.J.; Lee, J.H.; Park, C.M. The SOC1-SPL module integrates photoperiod and gibberellic acid signals to control flowering time in Arabidopsis. Plant J. 2012, 69, 577–588. [Google Scholar] [CrossRef]
- Teotia, S.; Tang, G. To Bloom or Not to Bloom: Role of MicroRNAs in Plant Flowering. Mol. Plant 2015, 8, 359–377. [Google Scholar] [CrossRef] [PubMed]
- Wickland, D.P.; Hanzawa, Y. The FLOWERING LOCUS T/TERMINAL FLOWER 1 Gene Family: Functional Evolution and Molecular Mechanisms. Mol. Plant 2015, 8, 983–997. [Google Scholar]
- Sato, H.; Heang, D.; Sassa, H.; Koba, T. Identification and characterization of FT/TFL1 gene family in cucumber. Breed. Sci. 2009, 59, 3–11. [Google Scholar]
- Adeyemo, O.S.; Hyde, P.T.; Setter, T.L. Identification of FT family genes that respond to photoperiod, temperature and genotype in relation to flowering in cassava (Manihot esculenta, Crantz). Plant Reprod. 2019, 32, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Li, F.; Deng, Q.; Zhang, S.; Zhou, Q.; Chen, F.; Liu, B.; Bao, M.; Liu, G. Identification and Characterization of the FLOWERING LOCUS T/TERMINAL FLOWER 1 Gene Family in Petunia. DNA Cell Biol. 2019, 38, 982–995. [Google Scholar] [CrossRef]
- Yoshida, A.; Taoka, K.I.; Hosaka, A.; Tanaka, K.; Kobayashi, H.; Muranaka, T.; Toyooka, K.; Oyama, T.; Tsuji, H. Characterization of Frond and Flower Development and Identification of FT and FD Genes From Duckweed Lemna aequinoctialis Nd. Front. Plant Sci. 2021, 12, 697206. [Google Scholar] [CrossRef]
- Ratcliffe, O.J.; Bradley, D.J.; Coen, E.S. Separation of shoot and floral identity in Arabidopsis. Development 1999, 126, 1109–1120. [Google Scholar] [CrossRef]
- Shannon, S.; Meeks-Wagner, D.R. A Mutation in the Arabidopsis TFL1 Gene Affects Inflorescence Meristem Development. Plant Cell 1991, 3, 877–892. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, S.; Chai, S.; Yang, Z.; Zhang, Q.; Xin, H.; Xu, Y.; Lin, S.; Chen, X.; Yao, Z.; et al. Graph-based pan-genome reveals structural and sequence variations related to agronomic traits and domestication in cucumber. Nat. Commun. 2022, 13, 682. [Google Scholar] [CrossRef] [PubMed]
- Song, S.S.; Hao, Q.; Su, L.H.; Xia, S.W.; Zhang, R.J.; Liu, Y.J.; Li, Y.; Zhu, Y.Y.; Luo, Q.Y.; Lai, Y.S. FLOWERING LOCUS T (FT) gene regulates short-day flowering in low latitude Xishuangbanna cucumber (Cucumis sativus var. xishuangbannanesis). Veg. Res. 2023, 3, 15. [Google Scholar]
- Zhang, J.; Yan, S.S.; Zhao, W.S.; Zhang, X.L. Cloning and Functional Analysis of Cucumber CsFT Gene. Hortic. Plant J. 2013, 40, 2180–2188. [Google Scholar]
- Smaczniak, C.; Immink, R.G.; Angenent, G.C.; Kaufmann, K. Developmental and evolutionary diversity of plant MADS-domain factors: Insights from recent studies. Development 2012, 139, 3081–3098. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.S.; Yu, C.; Fan, P.P.; Bao, B.F.; Li, T.; Zhu, Z. Identification of Two Cucumber Putative Silicon Transporter Genes in Cucumis sativus. J. Plant Growth Regul. 2015, 34, 332–338. [Google Scholar] [CrossRef]
- Kater, M.M.; Colombo, L.; Franken, J.; Busscher, M.; Masiero, S.; Campagne, M.M.V.L.; Angenent, G.C. Multiple AGAMOUS homologs from cucumber and petunia differ in their ability to induce reproductive organ fate. Plant Cell 1998, 10, 171–182. [Google Scholar] [CrossRef]
- Kater, M.M.; Franken, J.; Carney, K.J.; Colombo, L.; Angenent, G.C. Sex determination in the monoecious species cucumber is confined to specific floral whorls. Plant Cell 2001, 13, 481–493. [Google Scholar] [CrossRef]
- Sun, J.J.; Li, F.; Wang, D.H.; Liu, X.F.; Li, X.; Liu, N.; Gu, H.T.; Zou, C.; Luo, J.C.; He, C.X.; et al. CsAP3: A Cucumber Homolog to Arabidopsis APETALA3 with Novel Characteristics. Front. Plant Sci. 2016, 7, 1181. [Google Scholar] [CrossRef]
- Wang, X.; Gao, D.; Sun, J.; Liu, M.; Lun, Y.; Zheng, J.; Wang, S.; Cui, Q.; Wang, X.; Huang, S. An exon skipping in a SEPALLATA-Like gene is associated with perturbed floral and fruits development in cucumber. J. Integr. Plant Biol. 2016, 58, 766–771. [Google Scholar]
- Hu, L.; Liu, S. Genome-wide analysis of the MADS-box gene family in cucumber. Genome 2012, 55, 245–256. [Google Scholar]
- Zhou, Y.; Hu, L.; Song, J.; Jiang, L.; Liu, S. Isolation and characterization of a MADS-box gene in cucumber (Cucumis sativus L.) that affects flowering time and leaf morphology in transgenic Arabidopsis. Biotechnol. Biotechnol. Equip. 2019, 33, 54–63. [Google Scholar]
- Zhou, Y.; Hu, L.; Ye, S.; Jiang, L.; Liu, S. Overexpression of an APETALA1 -like gene from cucumber (Cucumis sativus L.) induces earlier flowering and abnormal leaf development in transgenic Arabidopsis. Can. J. Plant Sci. 2019, 99, 210–220. [Google Scholar]
- Xu, S.; An, Y.; Wen, M.; Hu, K.; Yang, Y.; Gan, D. Function and expression analysis of cucumber CsMADS08 and its downstream regulatory genes. J. Northwest A F Univ. (Nat. Sci. Ed.) 2022, 50, 115–124. [Google Scholar]
- Thanda, W.K.; Chunying, Z.; Kihwan, S.; Hwan, L.J.; Sanghyeob, L. Development and characterization of a co-dominant molecular marker via sequence analysis of a genomic region containing the Female (F) locus in cucumber (Cucumis sativus L.). Mol. Breed. 2015, 35, 229. [Google Scholar]
- Hwan, L.J.; Young-Cheon, K.; Youjin, J.; Hoon, H.J.; Chunying, Z.; Cheol-Won, Y.; Sanghyeob, L. The overexpression of cucumber (Cucumis sativus L.) genes that encode the branched-chain amino acid transferase modulate flowering time in Arabidopsis thaliana. Plant Cell Rep. 2019, 38, 25–35. [Google Scholar]
- Engelhorn, J.; Moreau, F.; Fletcher, J.C.; Carles, C.C. ULTRAPETALA1 and LEAFY pathways function independently in specifying identity and determinacy at the Arabidopsis floral meristem. Ann. Bot. 2014, 114, 1497–1505. [Google Scholar] [PubMed]
- Hempel, F.D.; Welch, D.R.; Feldman, L.J. Floral induction and determination: Where is flowering controlled? Trends Plant Sci. 2000, 5, 17–21. [Google Scholar]
- Liu, F.Q.; Zhu, G.L.; Luo, D.; Wu, X.Y.; Xu, Z.H. Cloning and analysis of CFL-A LFY-like gene from cucumber. Acta Bot. Sin. 1999, 41, 813–819. [Google Scholar]
- Wang, L.L.; Pang, J.L.; Liang, H.M.; Zhu, M.Y. Expression of CFL gene during differentiation of floral and vegetative buds in cucumber cotyledonary nodes cultured in vitro. J. Plant Physiol. Mol. Biol. 2004, 30, 644–650. [Google Scholar]
- Zhang, M.Z.; Ye, D.; Wang, L.L.; Pang, J.L.; Zhang, Y.H.; Zheng, K.; Bian, H.W.; Han, N.; Pan, J.W.; Wang, J.H.; et al. Overexpression of the cucumber LEAFY homolog CFL and hormone treatments alter flower development in gloxinia (Sinningia speciosa). Plant Mol. Biol. 2008, 67, 419–427. [Google Scholar] [PubMed]
- Abhishek, K.; Anamika, S.; Madhusmita, P.; Kumar, S.P.; Panigrahi. Carbon nanoparticles influence photomorphogenesis and flowering time in Arabidopsis thaliana. Plant Cell Rep. 2018, 37, 901–912. [Google Scholar]
- Valverde, F.; Mouradov, A.; Soppe, W.; Ravenscroft, D.; Samach, A.; Coupland, G. Photoreceptor Regulation of CONSTANS Protein in Photoperiodic Flowering. Science 2004, 303, 1003–1006. [Google Scholar]
- Hun, S.Y.; Sung, S.J.; Kinmonth-Schultz, H.A.; Takato, I. Photoperiodic Flowering: Time Measurement Mechanisms in Leaves. Annu. Rev. Plant Biol. 2015, 66, 441–464. [Google Scholar]
- Bradley, D.; Ratcliffe, O.; Vincent, C.; Carpenter, R.; Coen, E. Inflorescence Commitment and Architecture in Arabidopsis. Science 1997, 275, 80–83. [Google Scholar] [CrossRef]
- Conti, L.; Bradley, D. TERMINAL FLOWER1 is a mobile signal controlling Arabidopsis architecture. Plant Cell 2007, 19, 767–778. [Google Scholar]
- Zhao, W.; Gu, R.; Che, G.; Cheng, Z.; Zhang, X. CsTFL1b may regulate the flowering time and inflorescence architecture in cucumber (Cucumis sativus L.). Biochem. Biophys. Res. Commun. 2018, 2, 307–313. [Google Scholar] [CrossRef]
- Zheng, L.; Shu, W.; Qianyi, T.; Junsong, P.; Longting, S.; Zhenhui, G.; Run, C. A putative positive feedback regulation mechanism in CsACS2 expression suggests a modified model for sex determination in cucumber (Cucumis sativus L.). J. Exp. Bot. 2012, 63, 4475–4484. [Google Scholar]
- Pan, J.; Wen, H.; Chen, G.; Lin, W.H.; Du, H.; Chen, Y.; Zhang, L.; Lian, H.; Wang, G.; Cai, R.; et al. A positive feedback loop mediated by CsERF31 initiates female cucumber flower development. Plant Physiol. 2021, 186, 1088–1100. [Google Scholar]
- Huang, S.W.; Li, R.Q.; Zhang, Z.H.; Li, L.; Gu, X.F.; Fan, W.; Lucas, W.J.; Wang, X.W.; Xie, B.Y.; Nie, P.X.; et al. The genome of the cucumber, Cucumis sativus L. Nat. Genet. 2009, 41, 1275–1281. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, Z.; Yan, P.; Huang, S.; Fei, Z.; Lin, K. RNA-Seq improves annotation of protein-coding genes in the cucumber genome. BMC Genom. 2011, 12, 540. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Li, H.; Huang, W.; Xu, Y.; Zhou, Q.; Wang, S.; Ruan, J.; Huang, S.; Zhang, Z. A chromosome-scale genome assembly of cucumber (Cucumis sativus L.). GigaScience 2019, 8, giz072. [Google Scholar] [CrossRef]
- Guan, J.; Miao, H.; Zhang, Z.; Dong, S.; Zhou, Q.; Liu, X.; Beckles, D.M.; Gu, X.; Huang, S.; Zhang, S. A near-complete cucumber reference genome assembly and Cucumber-DB, a multi-omics database. Mol. Plant 2024, 17, 1178–1182. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Zhu, Z.; Lin, X.; Shen, X.; Yang, T.; Wang, H.; Zhou, X. Comparative Genomic Analysis of PEBP Genes in Cucurbits Explores the Interactors of Cucumber CsPEBPs Related to Flowering Time. Int. J. Mol. Sci. 2024, 25, 3815. [Google Scholar] [CrossRef]
- Wen, C.; Zhao, W.; Liu, W.; Yang, L.; Wang, Y.; Liu, X.; Xu, Y.; Ren, H.; Guo, Y.; Li, C.; et al. CsTFL1 inhibits determinate growth and terminal flower formation through interaction with CsNOT2a in cucumber. Development 2019, 146, dev180166. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Ma, M.; Lang, H.; Jiang, M. Research Advances and Perspectives on Early Flowering Traits in Cucumber. Plants 2025, 14, 1158. https://doi.org/10.3390/plants14081158
Zhang M, Ma M, Lang H, Jiang M. Research Advances and Perspectives on Early Flowering Traits in Cucumber. Plants. 2025; 14(8):1158. https://doi.org/10.3390/plants14081158
Chicago/Turabian StyleZhang, Meidi, Ming Ma, Hong Lang, and Mingliang Jiang. 2025. "Research Advances and Perspectives on Early Flowering Traits in Cucumber" Plants 14, no. 8: 1158. https://doi.org/10.3390/plants14081158
APA StyleZhang, M., Ma, M., Lang, H., & Jiang, M. (2025). Research Advances and Perspectives on Early Flowering Traits in Cucumber. Plants, 14(8), 1158. https://doi.org/10.3390/plants14081158