Phenotypic Diversity in Cell Wall Lignocellulosic Constituents and Ethanol Yield of USDA Guayule and Mariola Germplasm
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phenotypic Variations in Lignocellulosic Components in Guayule and Mariola Accessions
2.2. Heritability of Parthenium Biofuel-Related Traits
2.3. Stress Indices of Parthenium Genotypes Under Water Stress Conditions
2.4. Correlation Among Economic Traits
3. Materials and Methods
3.1. Plant Materials and Experiment Layout
3.2. Lignocellulosic, Rubber, and Resin Analysis
3.3. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ray, D.T.; Foster, M.A.; Coffelt, T.A.; McMahan, C.M. Guayule: A rubber-producing plant. In Industrial Crops and Uses; Singh, B.P., Ed.; CABI: Cambridge, MA, USA, 2010; pp. 384–410. [Google Scholar]
- Abdel-Haleem, H.; Luo, Z.; Ray, D. Genetic Improvement of Guayule (Parthenium argentatum A. Gray): An Alternative Rubber Crop. In Advances in Plant Breeding Strategies: Industrial and Food Crops: Volume 6; Al-Khayri, J.M., Jain, S.M., Johnson, D.V., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 151–178. [Google Scholar]
- Cornish, K.; Brichta, J.L.; Yu, P.; Wood, D.F.; McGlothlin, M.W.; Martin, J.A. Guayule latex provides a solution for the critical demands of the non-allergenic medical products market. Agro Food Ind. Hi Tech 2001, 12, 27–32. [Google Scholar]
- Nakayama, F.S. Guayule future development. Ind. Crops Prod. 2005, 22, 3–13. [Google Scholar] [CrossRef]
- Williams, C.L.; Westover, T.L.; Emerson, R.M.; Tumuluru, J.S.; Li, C. Sources of biomass feedstock variability and the potential impact on biofuels production. BioEnergy Res. 2016, 9, 1–14. [Google Scholar] [CrossRef]
- Liu, W.-J.; Yu, H.-Q. Thermochemical conversion of lignocellulosic biomass into mass-producible fuels: Emerging technology progress and environmental sustainability evaluation. ACS Environ. Au 2022, 2, 98–114. [Google Scholar] [CrossRef]
- Boateng, A.A.; Elkasabi, Y.; Mullen, C.A. Guayule (Parthenium argentatum) pyrolysis biorefining: Fuels and chemicals contributed from guayule leaves via tail gas reactive pyrolysis. Fuel 2016, 163, 240–247. [Google Scholar] [CrossRef]
- Boateng, A.A.; Mullen, C.A.; Elkasabi, Y.; McMahan, C.M. Guayule (Parthenium argentatum) pyrolysis biorefining: Production of hydrocarbon compatible bio-oils from guayule bagasse via tail-gas reactive pyrolysis. Fuel 2015, 158, 948–956. [Google Scholar] [CrossRef]
- Boateng, A.A.; Mullen, C.A.; Goldberg, N.M.; Hicks, K.B.; McMahan, C.M.; Whalen, M.C.; Cornish, K. Energy-dense liquid fuel intermediates by pyrolysis of guayule (Parthenium argentatum) shrub and bagasse. Fuel 2009, 88, 2207–2215. [Google Scholar] [CrossRef]
- Boateng, A.A.; Mullen, C.A.; McMahan, C.M.; Whalen, M.C.; Cornish, K. Guayule (Parthenium argentatum) pyrolysis and analysis by PY–GC/MS. J. Anal. Appl. Pyrolysis 2010, 87, 14–23. [Google Scholar] [CrossRef]
- Sabaini, P.S.; Boateng, A.A.; Schaffer, M.; Mullen, C.A.; Elkasabi, Y.; McMahan, C.M.; Macken, N. Techno-economic analysis of guayule (Parthenium argentatum) pyrolysis biorefining: Production of biofuels from guayule bagasse via tail-gas reactive pyrolysis. Ind. Crops Prod. 2018, 112, 82–89. [Google Scholar] [CrossRef]
- Luo, Z.; Mullen, C.A.; Abdel-Haleem, H. Pyrolysis GC/MS analysis of improved guayule genotypes. Ind. Crops Prod. 2020, 155, 112810. [Google Scholar] [CrossRef]
- Chundawat, S.P.; Beckham, G.T.; Himmel, M.E.; Dale, B.E. Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu. Rev. Chem. Biomol. Eng. 2011, 2, 121–145. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Wei, L.; Wang, J.; Lin, N.; Li, Y.; Li, F.; Zha, X.; Li, W. Application of catalysts in the conversion of biomass and Its derivatives. Catalysts 2024, 14, 499. [Google Scholar] [CrossRef]
- Vasić, K.; Knez, Ž.; Leitgeb, M. Bioethanol production by enzymatic hydrolysis from different lignocellulosic sources. Molecules 2021, 26, 753. [Google Scholar] [CrossRef]
- Chow, P.; Nakayama, F.S.; Blahnik, B.; Youngquist, J.A.; Coffelt, T.A. Chemical constituents and physical properties of guayule wood and bark. Ind. Crops Prod. 2008, 28, 303–308. [Google Scholar] [CrossRef]
- Chundawat, S.P.S.; Chang, L.; Gunawan, C.; Balan, V.; McMahan, C.; Dale, B.E. Guayule as a feedstock for lignocellulosic biorefineries using ammonia fiber expansion (AFEX) pretreatment. Ind. Crops Prod. 2012, 37, 486–492. [Google Scholar] [CrossRef]
- Bekaardt, C.R.; Coffelt, T.A.; Fenwick, J.R.; Wiesner, L.E. Environmental, irrigation and fertilization impacts on the seed quality of guayule (Parthenium argentatum Gray). Ind. Crops Prod. 2010, 31, 427–436. [Google Scholar] [CrossRef]
- Hunsaker, D.J.; Elshikha, D.M. Surface irrigation management for guayule rubber production in the US desert Southwest. Agric. Water Manag. 2017, 185, 43–57. [Google Scholar] [CrossRef]
- Nakayama, F.S.; Bucks, D.A.; Gonzalez, C.L.; Foster, M.A. Water and nutrient requirements of guayule under irrigated and dryland production. In Guayule Natural Rubber; Whitworth, J.W., Whitehead, E.E., Eds.; Office of Arid Lands Studies, University of Arizona: Tucson, AZ, USA, 1991; pp. 145–172. [Google Scholar]
- Luo, Z.; Abdel-Haleem, H. Phenotypic diversity of USDA guayule germplasm collection grown under different irrigation conditions. Ind. Crops Prod. 2019, 142, 111867. [Google Scholar] [CrossRef]
- Hunter, A.S.; Kelley, O.J. The Growth and rubber content of guayule as affected by variations in soil moisture stresses. Agron. J. 1946, 38, 118–134. [Google Scholar] [CrossRef]
- Ray, D.T.; Coffelt, T.A.; Dierig, D.A. Breeding guayule for commercial production. Ind. Crops Prod. 2005, 22, 15–25. [Google Scholar] [CrossRef]
- Rollins, R.C. The guayule rubber plant and its relatives. In Contributions from the Gray Herbarium of Harvard University; Harvard University Herbaria: Cambridge, MA, USA, 1950; Volume 171, pp. 3–72. [Google Scholar]
- Powers, L.; Rollins, R.C. Reproduction and pollination studies on guayule, Parthenium argentatum Gray and P. incanum H.B.K. J. Am. Soc. Agron. 1945, 37, 96–112. [Google Scholar] [CrossRef]
- Rollins, R.C. Evidence for genetic variation among apomictically produced plants of several F1 progenies of Guayule (Parthenium argentatum) and Mariola (P. incanum). Am. J. Bot. 1945, 32, 554–560. [Google Scholar] [CrossRef]
- Rollins, R.C. Interspecific Hybridization in Parthenium I. Crosses between Guayule (P. argentatum) and Mariola (P. incanum). Am. J. Bot. 1945, 32, 395–404. [Google Scholar] [CrossRef]
- Ilut, D.C.; Sanchez, P.L.; Coffelt, T.A.; Dyer, J.M.; Jenks, M.A.; Gore, M.A. A century of guayule: Comprehensive genetic characterization of the US national guayule (Parthenium argentatum A. Gray) germplasm collection. Ind. Crops Prod. 2017, 109, 300–309. [Google Scholar] [CrossRef]
- Placido, D.F.; Heinitz, C.; McMahan, C.M.; Bañuelos, G.S. Guayule is an industrial crop that can be grown for its natural rubber production and phytoremediation capability in the Western San Joaquin Valley, California. Curr. Plant Biol. 2021, 28, 100223. [Google Scholar] [CrossRef]
- Dierig, D.A.; Thompson, A.E.; Ray, D.T. Relationship of Morphological Variables to Rubber Production in Guayule. Euphytica 1989, 44, 259–264. [Google Scholar] [CrossRef]
- Dierig, D.A.; Ray, D.T.; Coffelt, T.A.; Nakayama, F.S.; Leake, G.S.; Lorenz, G. Heritability of height, width, resin, rubber, and latex in guayule (Parthenium argentatum). Ind. Crops Prod. 2001, 13, 229–238. [Google Scholar] [CrossRef]
- Coffelt, T.A.; Ray, D.T.; Nakayama, F.S.; Dierig, D.A. Genotypic and environmental effects on guayule (Parthenium argentatum) latex and growth. Ind. Crops Prod. 2005, 22, 95–99. [Google Scholar] [CrossRef]
- Cruz, V.M.V.; Dierig, D.A.; Lynch, A.; Hunnicutt, K.; Sullivan, T.R.; Wang, G.; Zhu, J. Assessment of phenotypic diversity in the USDA, National Plant Germplasm System (NPGS) guayule germplasm collection. Ind. Crops Prod. 2022, 175, 114303. [Google Scholar] [CrossRef]
- González-Navarro, E.J.; García-Martínez, M.M.; Esteban, L.S.; Mediavilla, I.; Carrión, M.E.; Carmona, M.; Zalacain, A. Profile and accumulation of essential oils from guayule (Parthenium argentatum A. Gray) accessions and hybrids. Ind. Crops Prod. 2024, 213, 118469. [Google Scholar] [CrossRef]
- Jara, F.M.; Carrión, M.E.; Latorre, G.; García-Martínez, M.M.; López-Córcoles, H.; Zalacain, A.; Carmona, M. Irrigation and fertilization modulate guayulin content in guayule (Parthenium argentatum A. Gray) and its hybrids. Ind. Crops Prod. 2022, 184, 115041. [Google Scholar] [CrossRef]
- Jara, F.M.; García-Martínez, M.d.l.M.; López-Córcoles, H.; Carrión, M.E.; Zalacain, A.; Carmona, M. Evaluating Guayule (Parthenium argentatum A. Gray) Germplasm Grown in Spain: Rubber and Resin along Three Production Cycles. Plants 2024, 13, 1092. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Haleem, H.; Foster, M.; Ray, D.; Coffelt, T. Phenotypic variations, heritability and correlations in dry biomass, rubber and resin production among guayule improved germplasm lines. Ind. Crops Prod. 2018, 112, 691–697. [Google Scholar] [CrossRef]
- Pauly, M.; Keegstra, K. Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J. 2008, 54, 559–568. [Google Scholar] [CrossRef]
- Cheng, F.; Dehghanizadeh, M.; Audu, M.A.; Jarvis, J.M.; Holguin, F.O.; Brewer, C.E. Characterization and evaluation of guayule processing residues as potential feedstock for biofuel and chemical production. Ind. Crops Prod. 2020, 150, 112311. [Google Scholar] [CrossRef]
- Yang, J.; Yi, J.N.; Ma, S.H.; Wang, Y.F.; Song, J.X.; Li, S.; Feng, Y.Y.; Sun, H.Y.; Gao, C.; Yang, R.C.; et al. Integrated physiological, metabolomic, and transcriptomic analyses elucidate the regulation mechanisms of lignin synthesis under osmotic stress in alfalfa leaf (Medicago sativa L.). BMC Genom. 2024, 25, 174. [Google Scholar] [CrossRef]
- Gu, H.; Wang, Y.; Xie, H.; Qiu, C.; Zhang, S.; Xiao, J.; Li, H.; Chen, L.; Li, X.; Ding, Z. Drought stress triggers proteomic changes involving lignin, flavonoids and fatty acids in tea plants. Sci. Rep. 2020, 10, 15504. [Google Scholar] [CrossRef]
- Hu, Y.; Li, W.C.; Xu, Y.Q.; Li, G.J.; Liao, Y.; Fu, F.L. Differential expression of candidate genes for lignin biosynthesis under drought stress in maize leaves. J. Appl. Genet. 2009, 50, 213–223. [Google Scholar] [CrossRef]
- Li, D.; Yang, J.; Pak, S.; Zeng, M.; Sun, J.; Yu, S.; He, Y.; Li, C. PuC3H35 confers drought tolerance by enhancing lignin and proanthocyanidin biosynthesis in the roots of Populus ussuriensis. New Phytol. 2022, 233, 390–408. [Google Scholar] [CrossRef]
- Hammond, B.L.; Polhamus, L.G. Research on Guayule (Parthenium argentatum): 1942–1959; Technical Bulletin No. 1327; Agricultural Research Service, US Department of Agriculture: Washington, DC, USA, 1965.
- Naqvi, H.H.; Hashemi, A.; Davey, J.R.; Waines, J.G. Morphological, chemical, and cytogenetic characters of F1 hybrids between Parthenium argentatum (Guayule) and P. fruticosum var.fruticosum (Asteraceae) and their potential in rubber improvement. Econ. Bot. 1987, 41, 66–77. [Google Scholar] [CrossRef]
- Youngner, V.B.; Naqvi, H.H.; West, J.; Hashemi, A. Parthenium species of potential use in the improvement of guayule, Parthenium argentatum. J. Arid. Environ. 1986, 11, 97–102. [Google Scholar] [CrossRef]
- Tysdal, H.; Estilai, A.; Siddiqui, I.; Knowles, P. Registration of Four Guayule Germplasms1 (Reg. No. GP1 to GP4). Crop Sci. 1983, 23, 189. [Google Scholar] [CrossRef]
- Estilai, A. Registration of CAL-5 guayule germplasm. Crop Sci. 1985, 25, 369–370. [Google Scholar] [CrossRef]
- Holland, J.B.; Nyquist, W.E.; Cervantes-Martínez, C.T. Estimating and interpreting heritability for plant breeding: An update. Plant Breed. Rev. 2003, 22, 9–112. [Google Scholar] [CrossRef]
- Li, K.; Wang, H.; Hu, X.; Liu, Z.; Wu, Y.; Huang, C. Genome-Wide Association Study Reveals the Genetic Basis of Stalk Cell Wall Components in Maize. PLoS ONE 2016, 11, e0158906. [Google Scholar] [CrossRef]
- Yusuf, A.O.; Möllers, C. Inheritance of cellulose, hemicellulose and lignin content in relation to seed oil and protein content in oilseed rape. Euphytica 2023, 220, 5. [Google Scholar] [CrossRef]
- Panahabadi, R.; Ahmadikhah, A.; McKee, L.S.; Ingvarsson, P.K.; Farrokhi, N. Genome-wide association study for lignocellulosic compounds and fermentable sugar in rice straw. Plant Genome 2022, 15, e20174. [Google Scholar] [CrossRef]
- Bouslama, M.; Schapaugh, W., Jr. Stress tolerance in soybeans. I. Evaluation of three screening techniques for heat and drought tolerance 1. Crop Sci. 1984, 24, 933–937. [Google Scholar] [CrossRef]
- Federer, W.T.; Crossa, J.I. 4 Screening Experimental Designs for Quantitative Trait Loci, Association Mapping, Genotype-by Environment Interaction, and Other Investigations. Front. Physiol. 2012, 3, 156. [Google Scholar] [CrossRef]
- Federer, W.T.; Raghavarao, D.J.B. On augmented designs. Biometrics 1975, 31, 29–35. [Google Scholar] [CrossRef]
- Federer, W.T.; Reynolds, M.; Crossa, J. Combining Results from Augmented Designs over Sites. Agron. J. 2001, 93, 389–395. [Google Scholar] [CrossRef]
- Vogel, K.P.; Pedersen, J.F.; Masterson, S.D.; Toy, J.J. Evaluation of a Filter Bag System for NDF, ADF, and IVDMD Forage Analysis. Crop Sci. 1999, 39, 276–279. [Google Scholar] [CrossRef]
- Hindrichsen, I.K.; Kreuzer, M.; Madsen, J.; Knudsen, K.E.B. Fiber and Lignin Analysis in Concentrate, Forage, and Feces: Detergent Versus Enzymatic-Chemical Method. J. Dairy Sci. 2006, 89, 2168–2176. [Google Scholar] [CrossRef] [PubMed]
- Abideen, Z.; Koyro, H.W.; Hussain, T.; Rasheed, A.; Alwahibi, M.S.; Elshikh, M.S.; Hussain, M.I.; Zulfiqar, F.; Mansoor, S.; Abbas, Z. Biomass production and predicted ethanol yield are linked with optimum photosynthesis in Phragmites karka under salinity and drought conditions. Plants 2022, 11, 1657. [Google Scholar] [CrossRef]
- Nyquist, W.E.; Baker, R. Estimation of heritability and prediction of selection response in plant populations. Crit. Rev. Plant Sci. 1991, 10, 235–322. [Google Scholar] [CrossRef]
- Fernandez, G.C. Effective selection criteria for assessing plant stress tolerance. In Proceedings of the International Symposium on Adaptation of Food Crops to Temperature and Water Stress, Taiwan, 13–18 August 1992. [Google Scholar]
- Gavuzzi, P.; Rizza, F.; Palumbo, M.; Campanile, R.; Ricciardi, G.; Borghi, B. Evaluation of field and laboratory predictors of drought and heat tolerance in winter cereals. Can. J. Plant Sci. 1997, 77, 523–531. [Google Scholar] [CrossRef]
- Rosielle, A.; Hamblin, J. Theoretical aspects of selection for yield in stress and non-stress environment 1. Crop Sci. 1981, 21, 943–946. [Google Scholar] [CrossRef]
- Fischer, R.; Wood, J. Drought resistance in spring wheat cultivars. III.* Yield associations with morpho-physiological traits. Aust. J. Agric. Res. 1979, 30, 1001–1020. [Google Scholar] [CrossRef]
- Bidinger, F.; Mahalakshmi, V.; Rao, G.D.P. Assessment of drought resistance in pearl millet [Pennisetum americanum (L.) Leeke]. I. Factors affecting yields under stress. Aust. J. Agric. Res. 1987, 38, 37–48. [Google Scholar] [CrossRef]
Lignin | Hemicellulose | Cellulose | Lignin Yield | Hemicellulose Yield | Cellulose Yield | Ethanol Yield | |
---|---|---|---|---|---|---|---|
Environments (E) | 0.00 | 0.00 | 1.75 | 1,725,314 | 2,089,594 | 5,163,086 | 5,099,719 |
Genotypes (G) | 1.69 | 0.46 | 15.52 | 7,989,112 | 3,879,290 | 545,155 | 1,625,688 |
GXE | 0.00 | 0.11 | 0.94 | 0 | 0 | 0 | 0 |
Genotype | Lignin | Hemicellulose | Cellulose | Lignin Yield | Hemicellulose Yield | Cellulose Yield | Ethanol Yield |
---|---|---|---|---|---|---|---|
% | % | % | kg ha−1 | kg ha−1 | kg ha−1 | L ha−1 | |
Mariola | |||||||
PARL 792 | 16.57 | 15.84 | 28.66 | 3131 | 3026 | 5418 | 5191 |
PARL 798 | 17.09 | 15.2 | 29.87 | 2627 | 2385 | 4618 | 4288 |
PARL 799 | 15.84 | 16.78 | 33.46 | 4008 | 4305 | 8194 | 7363 |
PARL 800 | 16.23 | 17.32 | 33.25 | 3730 | 3862 | 7212 | 6595 |
PARL 815 | 16.3 | 16.33 | 32.29 | 3806 | 3910 | 7459 | 6758 |
PARL 818 | 14.43 | 17.28 | 33.85 | 3643 | 4282 | 8082 | 7143 |
Guayule hybrid | |||||||
PI 478,657 | 17.12 | 15.4 | 21.34 | 3268 | 3024 | 4644 | 4901 |
PI 599,675 | 14.86 | 14.89 | 21.39 | 6874 | 7288 | 10,248 | 10,982 |
PI 599,676 | 14.87 | 14.11 | 22.36 | 4867 | 4785 | 7731 | 7841 |
PI 478,666 | 12.58 | 15.54 | 22.58 | 2987 | 3767 | 5667 | 5595 |
PI 478,667 | 12.3 | 13.57 | 24.15 | 3185 | 3651 | 6464 | 5999 |
W6 551 | 13.83 | 16.77 | 25.64 | 5506 | 6637 | 10,437 | 10,113 |
W6 2271 | 15.5 | 14.03 | 20.32 | 5897 | 5538 | 8069 | 8822 |
W6 2189 | 17.46 | 17.21 | 24.57 | 4085 | 3985 | 6218 | 6371 |
Guayule | |||||||
W6 2272 | 15.63 | 15.29 | 20.68 | 4063 | 4040 | 5640 | 6201 |
W6 2196 | 15 | 13.81 | 18.85 | 2779 | 2656 | 4012 | 4290 |
W6 2244 | 15.97 | 16.05 | 20.78 | 2508 | 2454 | 3946 | 4025 |
W6 2245 | 16.24 | 15.1 | 19.82 | 2021 | 1852 | 3240 | 3197 |
W6 2248 | 15.94 | 16.89 | 24.69 | 3631 | 3874 | 6065 | 6079 |
W6 2260 | 17.25 | 16.03 | 22.02 | 3348 | 3154 | 5004 | 5163 |
PARL 805 | 16.4 | 15.46 | 20.46 | 3045 | 2881 | 4215 | 4573 |
PARL 816 | 16.51 | 15.03 | 20.7 | 2504 | 2310 | 3845 | 3907 |
PARL 820 | 14.87 | 13.93 | 19.83 | 2847 | 2704 | 4409 | 4515 |
PI 478,639 | 18.01 | 15.98 | 23.38 | 2928 | 2696 | 4484 | 4528 |
PI 478,640 | 16.92 | 16 | 22.08 | 2593 | 2466 | 3776 | 3989 |
PI 478,642 | 18.48 | 15.5 | 19.36 | 2511 | 2212 | 3597 | 3726 |
PI 478,643 | 17.35 | 16.41 | 23.24 | 5450 | 5407 | 7827 | 8379 |
PI 478,644 | 14.97 | 14.41 | 19.16 | 2760 | 2658 | 4076 | 4273 |
PI 478,649 | 16.89 | 15.67 | 18.67 | 2950 | 2818 | 4235 | 4509 |
PI 478,653 | 17.96 | 14.83 | 18.37 | 2874 | 2492 | 3741 | 4088 |
PI 478,654 | 21.31 | 16.23 | 21.99 | 3212 | 2670 | 4379 | 4590 |
PI 478,655 | 16.71 | 16.11 | 21.43 | 3462 | 3360 | 4985 | 5290 |
PI 478,656 | 16.93 | 15.44 | 19.38 | 2650 | 2440 | 3861 | 4027 |
PI 478,659 | 15.29 | 14.92 | 20.84 | 2608 | 2480 | 4066 | 4120 |
PI 478,665 | 13.27 | 15.94 | 23.75 | 2480 | 3031 | 4638 | 4573 |
W6 7157 | 15.63 | 15.29 | 20.68 | 4063 | 4040 | 5640 | 6201 |
PI 599,674 | 15.78 | 14.62 | 20.1 | 3406 | 3221 | 5076 | 5281 |
PI 599,677 | 15.79 | 15.23 | 19.73 | 2934 | 2708 | 3538 | 4157 |
PI 599,678 | 17.16 | 16.97 | 19.35 | 2206 | 2210 | 2513 | 3121 |
PI 599,679 | 15.88 | 15.57 | 20.37 | 3116 | 3078 | 4155 | 4663 |
PARL 912 | 18.97 | 15.34 | 19.87 | 2697 | 2307 | 3838 | 3968 |
PARL 917 | 18.16 | 16.68 | 22.7 | 3936 | 3728 | 5665 | 5997 |
PARL 920 | 16.16 | 14.97 | 20.89 | 2406 | 2235 | 3659 | 3084 |
PARL 922 | 16.68 | 15.83 | 21.42 | 4106 | 3929 | 5932 | 6285 |
PARL 924 | 15.39 | 16.38 | 23.25 | 2840 | 2873 | 4634 | 4643 |
PARL 927 | 15.15 | 14.96 | 19.74 | 2516 | 2441 | 3933 | 4005 |
PARL 929 | 15.4 | 14.87 | 18.3 | 2694 | 2592 | 3848 | 4112 |
PARL 930 | 18 | 15.59 | 23.99 | 3082 | 2782 | 4550 | 4670 |
PARL 931 | 17.96 | 16.13 | 22.88 | 4937 | 4744 | 7178 | 7560 |
PARL 932 | 17.55 | 15.89 | 22.19 | 2898 | 2685 | 4232 | 4408 |
PARL 933 | 15.62 | 13.69 | 17.86 | 2866 | 2653 | 4016 | 4299 |
Lignin % | Hemicellulose % | Cellulose % | ||||||
IRRI | Dry | IRRI | Dry | IRRI | Dry | |||
Mariola | 15.84 | 16.28 | 17.55 | 15.22 | 33.99 | 29.27 | ||
Guayule hybrid | 15.06 | 14.43 | 16.75 | 13.47 | 25.87 | 19.14 | ||
Guayule | 16.34 | 16.70 | 16.34 | 14.46 | 22.22 | 18.73 | ||
Lignin yield kg ha−1 | Hemicellulose yield kg ha−1 | Cellulose yield kg ha−1 | Ethanol yield L ha−1 | |||||
IRRI | Dry | IRRI | Dry | IRRI | Dry | IRRI | Dry | |
Mariola | 5176.6 | 1607.1 | 5636 | 1384 | 9960 | 3177 | 9254 | 2757 |
Guayule hybrid | 6876.9 | 1928.7 | 7592 | 1717 | 11,415 | 2615 | 11,318 | 2854 |
Guayule | 4351.6 | 1390.5 | 4461 | 1020 | 6412 | 1608 | 6833 | 1823 |
YSI | YI | STI | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ADL | Hem | Cell | ETO | ADL | Hem | Cell | ETO | ADL | Hem | Cell | ETO | |
Mariola | ||||||||||||
PARL 792 | 0.21 | 0.13 | 0.22 | 0.20 | 0.73 | 0.60 | 0.98 | 0.81 | 0.24 | 0.15 | 0.29 | 0.24 |
PARL 798 | 0.33 | 0.21 | 0.35 | 0.31 | 0.82 | 0.68 | 1.14 | 0.91 | 0.20 | 0.12 | 0.24 | 0.19 |
PARL 799 | 0.35 | 0.28 | 0.35 | 0.33 | 1.39 | 1.61 | 2.19 | 1.76 | 0.53 | 0.49 | 0.89 | 0.66 |
PARL 800 | 0.50 | 0.46 | 0.55 | 0.51 | 1.51 | 1.90 | 2.32 | 1.91 | 0.44 | 0.41 | 0.64 | 0.51 |
PARL 815 | 0.12 | 0.05 | 0.11 | 0.10 | 0.52 | 0.32 | 0.74 | 0.56 | 0.22 | 0.10 | 0.32 | 0.22 |
PARL 818 | 0.42 | 0.37 | 0.41 | 0.40 | 1.45 | 1.98 | 2.40 | 1.96 | 0.48 | 0.56 | 0.92 | 0.68 |
Guayule hybrid | ||||||||||||
PI 478,657 | 0.35 | 0.22 | 0.25 | 0.27 | 1.09 | 0.89 | 0.88 | 0.95 | 0.33 | 0.19 | 0.20 | 0.24 |
PI 599,675 | 0.21 | 0.16 | 0.19 | 0.19 | 1.50 | 1.61 | 1.58 | 1.57 | 1.04 | 0.88 | 0.85 | 0.94 |
PI 599,676 | 0.34 | 0.28 | 0.30 | 0.31 | 1.48 | 1.58 | 1.55 | 1.55 | 0.61 | 0.48 | 0.53 | 0.56 |
PI 478,666 | 0.10 | 0.03 | 0.08 | 0.08 | 0.40 | 0.18 | 0.51 | 0.42 | 0.15 | 0.06 | 0.20 | 0.16 |
PI 478,667 | 0.33 | 0.30 | 0.26 | 0.39 | 1.02 | 1.54 | 1.24 | 1.25 | 0.30 | 0.42 | 0.39 | 0.28 |
W6 551 | 0.33 | 0.29 | 0.26 | 0.29 | 1.70 | 2.45 | 2.07 | 2.04 | 0.85 | 1.09 | 1.08 | 1.03 |
W6 2271 | 0.42 | 0.40 | 0.35 | 0.39 | 2.24 | 2.61 | 2.06 | 2.27 | 1.16 | 0.90 | 0.79 | 0.95 |
W6 2189 | 0.19 | 0.15 | 0.16 | 0.17 | 0.85 | 0.87 | 0.85 | 0.86 | 0.36 | 0.27 | 0.29 | 0.31 |
Guayule | ||||||||||||
W6 2272 | 0.48 | 0.48 | 0.45 | 0.47 | 1.75 | 2.25 | 1.80 | 1.90 | 0.61 | 0.55 | 0.47 | 0.55 |
W6 2196 | 0.12 | 0.02 | 0.08 | 0.08 | 0.39 | 0.08 | 0.31 | 0.30 | 0.12 | 0.02 | 0.08 | 0.08 |
W6 2244 | 0.33 | 0.20 | 0.24 | 0.26 | 0.72 | 0.60 | 0.64 | 0.66 | 0.15 | 0.10 | 0.11 | 0.12 |
W6 2245 | 0.19 | 0.03 | 0.12 | 0.11 | 0.37 | 0.07 | 0.27 | 0.25 | 0.07 | 0.01 | 0.04 | 0.04 |
W6 2248 | 0.35 | 0.26 | 0.26 | 0.29 | 1.21 | 1.33 | 1.21 | 1.25 | 0.40 | 0.36 | 0.37 | 0.39 |
W6 2260 | 0.41 | 0.28 | 0.26 | 0.31 | 1.12 | 1.01 | 0.84 | 0.98 | 0.29 | 0.20 | 0.18 | 0.22 |
PARL 805 | 0.36 | 0.27 | 0.24 | 0.28 | 1.08 | 1.03 | 0.81 | 0.95 | 0.31 | 0.21 | 0.18 | 0.23 |
PARL 816 | 0.36 | 0.24 | 0.31 | 0.31 | 0.78 | 0.68 | 0.78 | 0.76 | 0.17 | 0.10 | 0.13 | 0.14 |
PARL 820 | 0.23 | 0.14 | 0.21 | 0.20 | 0.63 | 0.50 | 0.65 | 0.63 | 0.16 | 0.09 | 0.13 | 0.14 |
PI 478,639 | 0.31 | 0.14 | 0.19 | 0.21 | 0.83 | 0.51 | 0.61 | 0.65 | 0.22 | 0.10 | 0.13 | 0.15 |
PI 478,640 | 0.25 | 0.15 | 0.21 | 0.22 | 0.69 | 0.56 | 0.66 | 0.66 | 0.19 | 0.11 | 0.14 | 0.14 |
PI 478,642 | 0.23 | 0.09 | 0.13 | 0.15 | 0.55 | 0.26 | 0.34 | 0.39 | 0.13 | 0.04 | 0.06 | 0.07 |
PI 478,643 | 0.37 | 0.26 | 0.24 | 0.28 | 1.96 | 1.88 | 1.53 | 1.74 | 1.00 | 0.72 | 0.64 | 0.77 |
PI 478,644 | 0.27 | 0.17 | 0.21 | 0.22 | 0.75 | 0.62 | 0.67 | 0.70 | 0.20 | 0.12 | 0.14 | 0.16 |
PI 478,649 | 0.25 | 0.11 | 0.14 | 0.16 | 0.69 | 0.43 | 0.43 | 0.52 | 0.18 | 0.09 | 0.09 | 0.12 |
PI 478,653 | 0.34 | 0.23 | 0.24 | 0.27 | 0.94 | 0.76 | 0.67 | 0.79 | 0.25 | 0.13 | 0.13 | 0.16 |
PI 478,654 | 0.27 | 0.13 | 0.19 | 0.20 | 0.78 | 0.45 | 0.55 | 0.60 | 0.21 | 0.08 | 0.11 | 0.13 |
PI 478,655 | 0.29 | 0.22 | 0.23 | 0.25 | 1.00 | 0.99 | 0.91 | 0.96 | 0.33 | 0.24 | 0.23 | 0.27 |
PI 478,656 | 0.30 | 0.16 | 0.19 | 0.21 | 0.73 | 0.51 | 0.50 | 0.58 | 0.17 | 0.09 | 0.09 | 0.11 |
PI 478,659 | 0.31 | 0.21 | 0.27 | 0.27 | 0.74 | 0.68 | 0.74 | 0.73 | 0.17 | 0.11 | 0.14 | 0.14 |
PI 478,665 | 0.53 | 0.47 | 0.40 | 0.45 | 1.14 | 1.67 | 1.36 | 1.37 | 0.24 | 0.31 | 0.30 | 0.29 |
W6 7157 | 0.48 | 0.48 | 0.45 | 0.47 | 1.75 | 2.25 | 1.80 | 1.90 | 0.61 | 0.55 | 0.47 | 0.55 |
PI 599,674 | 0.42 | 0.35 | 0.36 | 0.37 | 1.14 | 1.18 | 1.07 | 1.12 | 0.29 | 0.22 | 0.21 | 0.24 |
PI 599,677 | 0.48 | 0.54 | 0.55 | 0.53 | 1.25 | 1.62 | 1.30 | 1.37 | 0.32 | 0.26 | 0.20 | 0.26 |
PI 599,678 | 0.51 | 0.50 | 0.49 | 0.50 | 0.99 | 1.26 | 0.85 | 1.00 | 0.19 | 0.17 | 0.10 | 0.14 |
PI 599,679 | 0.47 | 0.46 | 0.41 | 0.45 | 1.32 | 1.65 | 1.22 | 1.36 | 0.35 | 0.31 | 0.24 | 0.30 |
PARL 912 | 0.19 | 0.06 | 0.16 | 0.14 | 0.47 | 0.20 | 0.39 | 0.37 | 0.11 | 0.03 | 0.06 | 0.07 |
PARL 917 | 0.38 | 0.30 | 0.30 | 0.33 | 1.32 | 1.34 | 1.16 | 1.25 | 0.44 | 0.31 | 0.29 | 0.35 |
PARL 920 | 0.16 | 0.06 | 0.15 | 0.09 | 0.43 | 0.21 | 0.43 | 0.27 | 0.11 | 0.04 | 0.08 | 0.06 |
PARL 922 | 0.32 | 0.29 | 0.30 | 0.31 | 1.15 | 1.30 | 1.15 | 1.19 | 0.40 | 0.31 | 0.29 | 0.33 |
PARL 924 | 0.25 | 0.17 | 0.22 | 0.21 | 0.67 | 0.65 | 0.73 | 0.70 | 0.18 | 0.13 | 0.16 | 0.16 |
PARL 927 | 0.26 | 0.11 | 0.17 | 0.18 | 0.62 | 0.38 | 0.47 | 0.50 | 0.14 | 0.07 | 0.09 | 0.10 |
PARL 929 | 0.37 | 0.23 | 0.24 | 0.28 | 0.92 | 0.78 | 0.69 | 0.79 | 0.22 | 0.14 | 0.13 | 0.16 |
PARL 930 | 0.24 | 0.13 | 0.19 | 0.19 | 0.76 | 0.50 | 0.68 | 0.66 | 0.23 | 0.10 | 0.16 | 0.16 |
PARL 931 | 0.21 | 0.12 | 0.16 | 0.16 | 1.01 | 0.78 | 0.84 | 0.88 | 0.47 | 0.27 | 0.30 | 0.34 |
PARL 932 | 0.29 | 0.19 | 0.27 | 0.25 | 0.83 | 0.71 | 0.84 | 0.81 | 0.23 | 0.14 | 0.17 | 0.18 |
PARL 933 | 0.30 | 0.14 | 0.19 | 0.21 | 0.84 | 0.54 | 0.59 | 0.67 | 0.23 | 0.11 | 0.12 | 0.16 |
Resin | Rubber | ADL | Hem | Cell | DWT | Res YD | RubberYD | ADL YD | Hem YD | Cell YD | |
---|---|---|---|---|---|---|---|---|---|---|---|
Rubber % | 0.581 | ||||||||||
<0.0001 | |||||||||||
Lignin % (ADL) | 0.254 | 0.412 | |||||||||
0.003 | <0.0001 | ||||||||||
Hemicellulose % (Hem) | −0.244 | −0.064 | 0.365 | ||||||||
0.004 | 0.462 | <0.0001 | |||||||||
Cellulose % (Cell) | −0.555 | −0.759 | −0.157 | 0.492 | |||||||
<0.0001 | <0.0001 | 0.069 | <0.0001 | ||||||||
Dry weight (kg·ha−1) (DWT) | 0.054 | −0.238 | −0.267 | 0.055 | 0.373 | ||||||
0.541 | 0.006 | 0.002 | 0.526 | <0.0001 | |||||||
Resin yield (kg·ha−1) (Res_YD) | 0.375 | −0.017 | −0.145 | −0.058 | 0.143 | 0.928 | |||||
<0.0001 | 0.843 | 0.097 | 0.506 | 0.100 | <0.0001 | ||||||
Rubber yield (kg·ha−1) (Rubr_YD) | 0.494 | 0.429 | 0.032 | −0.066 | −0.198 | 0.708 | 0.854 | ||||
<0.0001 | <0.0001 | 0.712 | 0.449 | 0.022 | <0.0001 | <0.0001 | |||||
Lignin yield (kg·ha−1) (ADL_YD) | 0.131 | −0.162 | −0.087 | 0.109 | 0.346 | 0.977 | 0.948 | 0.762 | |||
0.132 | 0.063 | 0.317 | 0.208 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | ||||
Hemicellulose yield (kg·ha−1) (Hem_YD) | 0.010 | −0.253 | −0.231 | 0.168 | 0.429 | 0.992 | 0.902 | 0.685 | 0.974 | ||
0.907 | 0.003 | 0.007 | 0.052 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |||
Cellulose yield (kg·ha−1) (Cell_YD) | −0.116 | −0.401 | −0.281 | 0.177 | 0.575 | 0.966 | 0.825 | 0.538 | 0.931 | 0.975 | |
0.183 | <0.0001 | 0.001 | 0.041 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | ||
Ethanol yield (kg·ha−1) | −0.068 | −0.346 | −0.264 | 0.175 | 0.522 | 0.981 | 0.860 | 0.598 | 0.954 | 0.991 | 0.996 |
0.438 | <0.0001 | 0.002 | 0.043 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdel-Haleem, H.; Masterson, S.; Sedivy, A.; Mitchell, R. Phenotypic Diversity in Cell Wall Lignocellulosic Constituents and Ethanol Yield of USDA Guayule and Mariola Germplasm. Plants 2025, 14, 1239. https://doi.org/10.3390/plants14081239
Abdel-Haleem H, Masterson S, Sedivy A, Mitchell R. Phenotypic Diversity in Cell Wall Lignocellulosic Constituents and Ethanol Yield of USDA Guayule and Mariola Germplasm. Plants. 2025; 14(8):1239. https://doi.org/10.3390/plants14081239
Chicago/Turabian StyleAbdel-Haleem, Hussein, Steve Masterson, Aaron Sedivy, and Rob Mitchell. 2025. "Phenotypic Diversity in Cell Wall Lignocellulosic Constituents and Ethanol Yield of USDA Guayule and Mariola Germplasm" Plants 14, no. 8: 1239. https://doi.org/10.3390/plants14081239
APA StyleAbdel-Haleem, H., Masterson, S., Sedivy, A., & Mitchell, R. (2025). Phenotypic Diversity in Cell Wall Lignocellulosic Constituents and Ethanol Yield of USDA Guayule and Mariola Germplasm. Plants, 14(8), 1239. https://doi.org/10.3390/plants14081239