Microencapsulation by Spray Drying of Bioactive Compounds: A Comparison Between Pulp or Acidified Extract of Jussara Fruit (Euterpe edulis Martius)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the Pulp and Acidified Extract
2.2. Microcapsule Characterization
2.3. Color Stability
3. Materials and Methods
3.1. Processing of Fruit
3.2. Acidified Extract with Citric Acid
3.3. Processing of Microcapsules
3.4. Analysis of Bioactive Compounds
3.4.1. Determination of Total Anthocyanins
3.4.2. Phenolic Compounds
3.4.3. Total Antioxidant Activity by the DPPH Method
3.5. Encapsulation Efficiency (%)
3.6. Retention (%)
3.7. Color Stability
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Crozatti, T.T.d.S.; Mangolim, C.S.; Larentis, P.V.; de Mello, J.C.P.; Matioli, G. Extraction, microencapsulation, and application of anthocyanins from juçara palm fruit (Euterpe edulis Mart.): Enhancement of natural pigment. J. Food Sci. Technol. 2023, 60, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, A.G.d.S.; Machado, M.T.d.C.; da Silva, V.M.; Sartoratto, A.; Rodrigues, R.A.F.; Hubinger, M.D. Physical properties and morphology of spray dried microparticles containing anthocyanins of jussara (Euterpe edulis Martius) extract. Powder Technol. 2016, 294, 421–428. [Google Scholar] [CrossRef]
- Xue, J.; Su, F.; Meng, Y.; Guo, Y. Enhanced stability of red-fleshed apple anthocyanins by copigmentation and encapsulation. J. Sci. Food Agric. 2019, 99, 3381–3390. [Google Scholar] [CrossRef]
- Santana, A.A.; Cano-Higuita, D.M.; de Oliveira, R.A.; Telis, V.R. Influence of different combinations of wall materials on the microencapsulation of jussara pulp (Euterpe edulis) by spray drying. Food Chem. 2016, 212, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Pereira, D.C.d.S.; Beres, C.; Gomes, F.d.S.; Tonon, R.V.; Cabral, L.M.C. Spray drying of juçara pulp aiming to obtain a “pure” powdered pulp without using carrier agents. Dry. Technol. 2019, 38, 1175–1185. [Google Scholar] [CrossRef]
- Mazuco, R.A.; Cardoso, P.M.M.; Bindaco, É.S.; Scherer, R.; Castilho, R.O.; Faraco, A.A.G.; Ruas, F.G.; Oliveira, J.P.; Guimarães, M.C.C.; De Andrade, T.U.; et al. Maltodextrin and Gum Arabic-Based Microencapsulation Methods for Anthocyanin Preservation in Juçara Palm (Euterpe edulis Martius) Fruit Pulp. Plant Foods Hum. Nutr. 2018, 73, 209–215. [Google Scholar] [CrossRef]
- Paim, D.R.; Costa, S.D.; Walter, E.H.; Tonon, R.V. Microencapsulation of probiotic jussara (Euterpe edulis M.) juice by spray drying. LWT 2016, 74, 21–25. [Google Scholar] [CrossRef]
- Bicudo, M.O.P.; Jó, J.; de Oliveira, G.A.; Chaimsohn, F.P.; Sierakowski, M.R.; de Freitas, R.A.; Ribani, R.H. Microencapsulation of Juçara (Euterpe edulis M.) Pulp by Spray Drying Using Different Carriers and Drying Temperatures. Dry. Technol. 2014, 33, 153–161. [Google Scholar] [CrossRef]
- Bernardes, A.L.; Moreira, J.A.; Tostes, M.d.G.V.; Costa, N.M.B.; Silva, P.I.; Costa, A.G.V. In vitro bioaccessibility of microencapsulated phenolic compounds of jussara (Euterpe edulis Martius) fruit and application in gelatine model-system. LWT 2019, 102, 173–180. [Google Scholar] [CrossRef]
- Carvalho, A.G.d.S.; Machado, M.T.d.C.; Barros, H.D.d.F.Q.; Cazarin, C.B.B.; Junior, M.R.M.; Hubinger, M.D. Anthocyanins from jussara (Euterpe edulis Martius) extract carried by calcium alginate beads pre-prepared using ionic gelation. Powder Technol. 2019, 345, 283–291. [Google Scholar] [CrossRef]
- Vieira, G.S.; Moreira, F.K.; Matsumoto, R.L.; Michelon, M.; Filho, F.M.; Hubinger, M.D. Influence of nanofiltration membrane features on enrichment of jussara ethanolic extract (Euterpe edulis) in anthocyanins. J. Food Eng. 2018, 226, 31–41. [Google Scholar] [CrossRef]
- Favaro, L.; Balcão, V.; Rocha, L.; Silva, E.; Oliveira, J., Jr.; Vila, M.; Tubino, M.; Favaro, L.I.L.; Balcão, V.M.; Rocha, L.K.H.; et al. Physicochemical Characterization of a Crude Anthocyanin Extract from the Fruits of Jussara (Euterpe edulis Martius): Potential for Food and Pharmaceutical Applications. J. Braz. Chem. Soc. 2018, 29, 2072–2088. [Google Scholar] [CrossRef]
- Machado, M.H.; Almeida, A.d.R.; Maciel, M.V.d.O.B.; Vitorino, V.B.; Bazzo, G.C.; da Rosa, C.G.; Sganzerla, W.G.; Mendes, C.; Barreto, P.L.M. Microencapsulation by spray drying of red cabbage anthocyanin-rich extract for the production of a natural food colorant. Biocatal. Agric. Biotechnol. 2022, 39, 102287. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci. 2021, 22, 3380–3410. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Li, X.; Ren, G.; Bu, Q.; Ruan, Y.; Feng, Y.; Li, B. Stability of Purple Corn Anthocyanin Encapsulated by Maltodextrin, and Its Combinations with Gum Arabic and Whey Protein Isolate. Foods 2023, 12, 2393. [Google Scholar] [CrossRef]
- Sadilova, E.; Carle, R.; Stintzing, F.C. Thermal degradation of anthocyanins and its impact on color and in vitro antioxidant capacity. Mol. Nutr. Food Res. 2007, 51, 1461–1471. [Google Scholar] [CrossRef]
- de Souza, V.B.; Thomazini, M.; Balieiro, J.C.d.C.; Fávaro-Trindade, C.S. Effect of spray drying on the physicochemical properties and color stability of the powdered pigment obtained from vinification byproducts of the Bordo grape (Vitis labrusca). Food Bioprod. Process. 2015, 93, 39–50. [Google Scholar] [CrossRef]
- Bender, A.; de Souza, A.L.K.; Dalbó, M.A.; Mayer, N.A. Qualidade físico-química de ameixas ‘Letícia’ produzidas sobre porta-externos clonais e em plantas autoenraizadas, no meio-oeste de Santa Catarina. Rev. Ciênc. Agrovet. 2021, 20, 188–198. [Google Scholar] [CrossRef]
- Lima, E.M.F.; Madalão, M.C.M.; Benincá, D.B.; Saraiva, S.H.; Silva, P.I. Effect of encapsulating agent and drying air temperature on the characteristics of microcapsules of antho-cyanins and polyphenols from juçara (Euterpe edulis Martius). Int. Food Res. J. 2019, 2, 607–617. [Google Scholar]
- Giusti, M.M.; Worlstad, R.E. Characterization and Measurement of Anthocyanins by UV-Visible Spectroscopy. Food Anal. Chem. 2001, 1, F1. 2.1–F1. 2.13. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
Treatments | Parameters | ||
---|---|---|---|
AT (mg/100 g) | CFT (mg/100 g) | DPPH (%) | |
Pulp | 90.10 a ± 2.39 | 626.50 a ± 2.15 | 83.59 a ± 0.63 |
Extract | 39.08 b ± 2.08 | 355.33 b ± 1.33 | 74.06 b ± 1.10 |
Parameters | MP | ME |
---|---|---|
AT (mg/100 g) | 77.15 a ± 2.17 | 31.23 b ± 1.02 |
CFT (mg/100 g) | 492.48 a ± 2.47 | 263.07 b ± 2.04 |
DPPH (%) | 85.82 a ± 064 | 59.29 b ± 1.50 |
EE (%) | 71.96 a ± 6.84 | 68.35 a ± 4.80 |
RTA (%) | 85.71 a ± 4.47 | 80.14 a ± 6.01 |
Treatments | |||
---|---|---|---|
Parameters | MP | ME | |
L* | L*0 | 55.06 a ± 0.1 | 61.11 b ± 0.12 |
L*f | 54.41 b ± 0.23 | 64.27 a ± 0.02 | |
a* | a*0 | 16.12 b ± 0.11 | 24.32 b ± 0.04 |
a*f | 21.93 a ± 0.23 | 34.63 a ± 0.09 | |
b* | b*0 | 1.20 a ± 0.02 | 7.27 a ± 0.09 |
b*f | −0.77 b ± 0.02 | 5.69 b ± 0.02 | |
C* | C*0 | 16.26 b ± 0.05 | 25.37 b ± 0.09 |
C*f | 21.94 a ± 0.23 | 35.09 a ± 0.09 | |
H | h0 | 4.27 b ± 0.05 | 16.66 a ± 0.06 |
hf | 357.99 a ± 0.06 | 9.32 b ± 0.04 | |
ΔE* | ΔE* | 6.25 ± 0.08 | 10.89 ± 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, I.C.F.d.; Costa, S.C.d.; Madrona, G.S.; Bergamasco, R.d.C. Microencapsulation by Spray Drying of Bioactive Compounds: A Comparison Between Pulp or Acidified Extract of Jussara Fruit (Euterpe edulis Martius). Plants 2025, 14, 1295. https://doi.org/10.3390/plants14091295
Silva ICFd, Costa SCd, Madrona GS, Bergamasco RdC. Microencapsulation by Spray Drying of Bioactive Compounds: A Comparison Between Pulp or Acidified Extract of Jussara Fruit (Euterpe edulis Martius). Plants. 2025; 14(9):1295. https://doi.org/10.3390/plants14091295
Chicago/Turabian StyleSilva, Isabela Carolina Ferreira da, Silvio Claudio da Costa, Grasiele Scaramal Madrona, and Rita de Cássia Bergamasco. 2025. "Microencapsulation by Spray Drying of Bioactive Compounds: A Comparison Between Pulp or Acidified Extract of Jussara Fruit (Euterpe edulis Martius)" Plants 14, no. 9: 1295. https://doi.org/10.3390/plants14091295
APA StyleSilva, I. C. F. d., Costa, S. C. d., Madrona, G. S., & Bergamasco, R. d. C. (2025). Microencapsulation by Spray Drying of Bioactive Compounds: A Comparison Between Pulp or Acidified Extract of Jussara Fruit (Euterpe edulis Martius). Plants, 14(9), 1295. https://doi.org/10.3390/plants14091295