Application and Progress of Genomics in Deciphering the Genetic Regulation Mechanisms of Plant Secondary Metabolites
Abstract
:1. Introduction
2. Biosynthetic Pathways of PSMs
2.1. Major Classes of PSMs
2.2. Overview of PSMs Biosynthetic Pathways
2.2.1. Terpenoid Biosynthesis
2.2.2. Alkaloid Biosynthesis
2.2.3. Phenolic Biosynthesis
2.2.4. Phenylpropanoid Biosynthesis
3. Genome Assembly and Discovery of Key Genes
3.1. Genome Drafts
3.2. Chromosome-Level Assembly
4. Application of Genomics in the Regulation of Plant Secondary Metabolism
4.1. Structural Genomics
4.1.1. Chromosome Conformation Capture (3C)
4.1.2. Fluorescence in Situ Hybridization (FISH)
4.2. Comparative Genomics
4.2.1. Genome-Wide Association Studies (GWAS)
4.2.2. Bulked Segregant Analysis (BSA)
4.2.3. Pan-Genomics
4.3. Functional Genomics
4.3.1. DNA Microarray
4.3.2. RNA Sequencing (RNA-Seq)
4.3.3. Serial Analysis of Gene Expression (SAGE)
5. Functional Validation of Alleles
5.1. Yeast Genetic Transformation
5.2. Escherichia Coli Genetic Transformation
5.3. Alternative Techniques for Genotype Modification
6. Conclusions
6.1. Impact of Genomic Advancements on Plant Secondary Metabolism Research
6.2. Challenges and Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nuetzmann, H.; Osbourn, A. Gene clustering in plant specialized metabolism. Curr. Opin. Biotech. 2014, 26, 91–99. [Google Scholar] [CrossRef]
- Isah, T. Stress and defense responses in plant secondary metabolites production. Biol. Res. 2019, 52, 39. [Google Scholar] [CrossRef]
- Mithoefer, A.; Boland, W. Plant Defense Against Herbivores: Chemical Aspects. Annu. Rev. Plant Biol. 2012, 63, 431–450. [Google Scholar] [CrossRef]
- Thorup-Kristensen, K.; Halberg, N.; Nicolaisen, M.; Olesen, J.E.; Crews, T.E.; Hinsinger, P.; Kirkegaard, J.; Pierret, A.; Dresbøll, D.B. Digging Deeper for Agricultural Resources, the Value of Deep Rooting. Trends Plant Sci. 2020, 25, 406–417. [Google Scholar] [CrossRef] [PubMed]
- Tao, H.; Zuo, L.; Xu, H.; Li, C.; Qiao, G.; Guo, M.; Lin, X. Alkaloids as Anticancer Agents: A Review of Chinese Patents in Recent 5 Years. Recent. Pat. Anti-Canc 2020, 15, 2–13. [Google Scholar] [CrossRef]
- Jayakodi, M.; Choi, B.-S.; Lee, S.-C.; Kim, N.-H.; Park, J.Y.; Jang, W.; Lakshmanan, M.; Mohan, S.V.G.; Lee, D.-Y.; Yang, T.-J. Ginseng Genome Database: An open-access platform for genomics of Panax ginseng. Bmc Plant Biol. 2018, 18, 62. [Google Scholar] [CrossRef]
- Grafakou, M.-E.; Barda, C.; Tomou, E.-M.; Skaltsa, H. The genus Genista L.: A rich source of bioactive flavonoids. Phytochemistry 2021, 181, 112574. [Google Scholar] [CrossRef] [PubMed]
- Kessler, A.; Kalske, A. Plant Secondary Metabolite Diversity and Species Interactions. Annu. Rev. Ecol. Evol. Syst. 2018, 49, 115–138. [Google Scholar] [CrossRef]
- Zheng, Y.; Xue, C.; Chen, H.; Jia, A.; Zhao, L.; Zhang, J.; Zhang, L.; Wang, Q. Reconstitution and expression of mcy gene cluster in the model cyanobacterium Synechococcus 7942 reveals a roll of MC-LR in cell division. New Phytol. 2023, 238, 1101–1114. [Google Scholar] [CrossRef]
- Xu, Z.; Pu, X.; Gao, R.; Demurtas, O.C.; Fleck, S.J.; Richter, M.; He, C.; Ji, A.; Sun, W.; Kong, J.; et al. Tandem gene duplications drive divergent evolution of caffeine and crocin biosynthetic pathways in plants. Bmc Biol. 2020, 18, 63. [Google Scholar] [CrossRef]
- Nisar, N.; Li, L.; Lu, S.; Khin, N.C.; Pogson, B.J. Carotenoid Metabolism in Plants. Mol. Plant 2015, 8, 68–82. [Google Scholar] [CrossRef]
- Butelli, E.; Titta, L.; Giorgio, M.; Mock, H.-P.; Matros, A.; Peterek, S.; Schijlen, E.G.W.M.; Hall, R.D.; Bovy, A.G.; Luo, J.; et al. Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat. Biotechnol. 2008, 26, 1301–1308. [Google Scholar] [CrossRef]
- Li, H.; Zhu, L.; Fan, R.; Li, Z.; Liu, Y.; Shaheen, A.; Nie, F.; Li, C.; Liu, X.; Li, Y.; et al. A platform for whole-genome speed introgression from Aegilops tauschii to wheat for breeding future crops. Nat. Protoc. 2024, 19, 281–312. [Google Scholar] [CrossRef]
- Aghcheh, R.K.; Kubicek, C.P. Epigenetics as an emerging tool for improvement of fungal strains used in biotechnology. Appl. Microbiol. Biot. 2015, 99, 6167–6181. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, T.; Wang, X.; Wu, W.; Xing, J.; Li, Z.; Qiao, X.; Zhang, C.; Wang, X.; Wang, G.; et al. A maize epimerase modulates cell wall synthesis and glycosylation during stomatal morphogenesis. Nat. Commun. 2023, 14, 4384. [Google Scholar] [CrossRef]
- Tohge, T.; Alseekh, S.; Fernie, A.R. On the regulation and function of secondary metabolism during fruit development and ripening. J. Exp. Bot. 2014, 65, 4599–4611. [Google Scholar] [CrossRef] [PubMed]
- Verpoorte, R.; Memelink, J. Engineering secondary metabolite production in plants. Curr. Opin. Biotech. 2002, 13, 181–187. [Google Scholar] [CrossRef]
- Dudareva, N.; Klempien, A.; Muhlemann, J.K.; Kaplan, I. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol. 2013, 198, 16–32. [Google Scholar] [CrossRef]
- Dixon, R.A.; Strack, D. Phytochemistry meets genome analysis. Phytochemistry 2003, 62, 815–816. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Du, H.; Li, P.; Shen, Y.; Peng, H.; Liu, S.; Zhou, G.-A.; Zhang, H.; Liu, Z.; Shi, M.; et al. Pan-Genome of Wild and Cultivated Soybeans. Cell 2020, 182, 162. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Yu, J.; Yu, L.; Xiao, L.; Xiao, Y.; Chen, J.; Gao, S.; Chen, X.; Li, Q.; Zhang, H.; et al. The ERF transcription factor LTF1 activates DIR1 to control stereoselective synthesis of antiviral lignans and stress defense in Isatis indigotica roots. Acta Pharm. Sin. B 2024, 14, 405–420. [Google Scholar] [CrossRef]
- Fu, K.; Dai, S.; Ma, C.; Zhang, Y.; Zhang, S.; Wang, C.; Gong, L.; Zhou, H.; Li, Y. Lignans are the main active components of Schisandrae Chinensis Fructus for liver disease treatment: A review. Food Sci. Hum. Well 2024, 13, 2425–2444. [Google Scholar] [CrossRef]
- Liu, Z.; Duran, H.G.S.; Harnvanichvech, Y.; Stephenson, M.J.; Schranz, M.E.; Nelson, D.; Medema, M.H.; Osbourn, A. Drivers of metabolic diversification: How dynamic genomic neighbourhoods generate new biosynthetic pathways in the Brassicaceae. New Phytol. 2020, 227, 1109–1123. [Google Scholar] [CrossRef]
- Vranova, E.; Coman, D.; Gruissem, W. Network Analysis of the MVA and MEP Pathways for Isoprenoid Synthesis. Annu. Rev. Plant Biol. 2013, 64, 665–700. [Google Scholar] [CrossRef]
- Kui, L.; Chen, H.; Zhang, W.; He, S.; Xiong, Z.; Zhang, Y.; Yan, L.; Zhong, C.; He, F.; Chen, J.; et al. Building a Genetic Manipulation Tool Box for Orchid Biology: Identification of Constitutive Promoters and Application of CRISPR/Cas9 in the Orchid, Dendrobium officinale. Front. Plant Sci. 2017, 8, 2036. [Google Scholar] [CrossRef]
- Alami, M.M.; Ouyang, Z.; Zhang, Y.; Shu, S.; Yang, G.; Mei, Z.; Wang, X. The Current Developments in Medicinal Plant Genomics Enabled the Diversification of Secondary Metabolites’ Biosynthesis. Int. J. Mol. Sci. 2022, 23, 15923. [Google Scholar] [CrossRef]
- Huang, D.; Ming, R.; Xu, S.; Yao, S.; Li, L.; Huang, R.; Tan, Y. Genome-Wide Identification of R2R3-MYB Transcription Factors: Discovery of a “Dual-Function” Regulator of Gypenoside and Flavonol Biosynthesis in Gynostemma pentaphyllum. Front. Plant Sci. 2022, 12, 796248. [Google Scholar] [CrossRef]
- Matías-Hernández, L.; Jiang, W.; Yang, K.; Tang, K.; Brodelius, P.E.; Pelaz, S. AaMYB1 and its orthologue AtMYB61 affect terpene metabolism and trichome development in Artemisia annua and Arabidopsis thaliana. Plant J. 2017, 90, 520–534. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, B.; Shu, S.; Li, Z.; Song, C.; Liu, D.; Niu, Y.; Liu, J.; Zhang, J.; Liu, H.; et al. Analysis of the Coptis chinensis genome reveals the diversification of protoberberine-type alkaloids. Nat. Commun. 2021, 12, 3279. [Google Scholar] [CrossRef]
- Nett, R.S.; Dho, Y.; Tsai, C.; Passow, D.; Grundman, J.M.; Low, Y.-Y.; Sattely, E.S. Plant carbonic anhydrase-like enzymes in neuroactive alkaloid biosynthesis. Nature 2023, 624, 182. [Google Scholar] [CrossRef]
- Guo, L.; Winzer, T.; Yang, X.; Li, Y.; Ning, Z.; He, Z.; Teodor, R.; Lu, Y.; Bowser, T.A.; Graham, I.A.; et al. The opium poppy genome and morphinan production. Science 2018, 362, 343. [Google Scholar] [CrossRef]
- Zhao, X.; Li, Y.; Huang, Y.; Shen, J.; Xu, H.; Li, K. Integrative analysis of the metabolome and transcriptome reveals the mechanism of polyphenol biosynthesis in Taraxacum mongolicum. Front. Plant Sci. 2024, 15, 1418585. [Google Scholar] [CrossRef]
- Krause, S.T.; Liao, P.; Crocoll, C.; Boachon, B.; Förster, C.; Leidecker, F.; Wiese, N.; Zhao, D.; Wood, J.C.; Buell, C.R.; et al. The biosynthesis of thymol, carvacrol, and thymohydroquinone in Lamiaceae proceeds via cytochrome P450s and a short-chain dehydrogenase. Proc. Natl. Acad. Sci. USA 2021, 118, e2110092118. [Google Scholar] [CrossRef]
- Brooks, S.M.; Marsan, C.; Reed, K.B.; Yuan, S.-F.; Nguyen, D.-D.; Trivedi, A.; Altin-Yavuzarslan, G.; Ballinger, N.; Nelson, A.; Alper, H.S. A tripartite microbial co-culture system for de novo biosynthesis of diverse plant phenylpropanoids. Nat. Commun. 2023, 14, 4448. [Google Scholar] [CrossRef]
- Han, X.; Li, C.; Sun, S.; Ji, J.; Nie, B.; Maker, G.; Ren, Y.; Wang, L. The chromosome-level genome of female ginseng (Angelica sinensis) provides insights into molecular mechanisms and evolution of coumarin biosynthesis. Plant J. 2022, 112, 1224–1237. [Google Scholar] [CrossRef]
- Li, W.; Liu, J.; Zhang, H.; Liu, Z.; Wang, Y.; Xing, L.; He, Q.; Du, H. Plant pan-genomics: Recent advances, new challenges, and roads ahead. J. Genet. Genomics 2022, 49, 833–846. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, Z. Unlocking plant metabolic diversity: A (pan)- genomic view. Plant Commun. 2022, 3, 100300. [Google Scholar] [CrossRef]
- Cingolani, P.; Platts, A.; Wang, L.L.; Coon, M.; Nguyen, T.; Wang, L.; Land, S.J.; Lu, X.; Ruden, D.M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w 1118; iso -2; iso -3. Fly 2012, 6, 80–92. [Google Scholar] [CrossRef]
- Sanchez-Osuna, M.; Barbe, J.; Erill, I. Comparative genomics of the DNA damage—Inducible network in the Patescibacteria. Environ. Microbiol. 2017, 19, 3465–3474. [Google Scholar] [CrossRef]
- Pedron, R.; Esposito, A.; Bianconi, I.; Pasolli, E.; Tett, A.; Asnicar, F.; Cristofolini, M.; Segata, N.; Jousson, O. Genomic and metagenomic insights into the microbial community of a thermal spring. Microbiome 2019, 7, 8. [Google Scholar] [CrossRef] [PubMed]
- Sonets, I.V.; Dovidchenko, N.V.; Ulianov, S.V.; Yarina, M.S.; Koshechkin, S.I.; Razin, S.V.; Krasnopolskaya, L.M.; Tyakht, A.V. Unraveling the Polysaccharide Biosynthesis Potential of Ganoderma lucidum: A Chromosome-Level Assembly Using Hi-C Sequencing. J. Fungi 2023, 9, 1020. [Google Scholar] [CrossRef]
- Zhou, Y.; Ye, H.; Liu, E.; Tian, J.; Song, L.; Ren, Z.; Wang, M.; Sun, Z.; Tang, L.; Ren, Z.; et al. The complexity of structural variations in Brassica rapa revealed by assembly of two complete T2T genomes. Sci. Bull. 2024, 69, 2346–2351. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Chen, S.; Lin, G.; Chen, J.; Li, H.; Xiao, Y.; Chen, X.; Chen, J.; Wu, Y.; Xiao, H.; et al. The chromosome-level Melaleuca alternifolia genome provides insights into the molecular mechanisms underlying terpenoids biosynthesis. Ind. Crop Prod. 2022, 189, 115849. [Google Scholar] [CrossRef]
- Ma, Q.; He, S.; Wang, X.; Rengel, Z.; Chen, L.; Wang, X.; Pei, S.; Xin, X.; Zhang, X. Isolation and characterization of phosphate-solubilizing bacterium Pantoea rhizosphaerae sp. nov. from Acer truncatum rhizosphere soil and its effect on Acer truncatum growth. Front. Plant Sci. 2023, 14, 1218445. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Wang, Y.; Li, S.; Wen, J.; Zhu, L.; Yan, K.; Du, Y.; Ren, J.; Li, S.; Chen, Z.; et al. Assembly and comparative analysis of the first complete mitochondrial genome of Acer truncatum Bunge: A woody oil-tree species producing nervonic acid. Bmc Plant Biol. 2022, 22, 29. [Google Scholar] [CrossRef]
- Patel, A.A.; Shukla, Y.M.; Kumar, S.; Sakure, A.A.; Parekh, M.J.; Zala, H.N. Transcriptome analysis for molecular landscaping of genes controlling diterpene andrographolide biosynthesis in Andrographis paniculata (Burm. f.) Nees. 3 Biotech 2020, 10, 512. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Villena, J.J.; Zhou, H.; Gilman, I.S.; Tausta, S.L.; Cheung, C.Y.M.; Edwards, E.J. Spatial resolution of an integrated C4 +CAM photosynthetic metabolism. Sci. Adv. 2022, 8, eabn2349. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, H.; Ri, H.C.; An, Z.; Wang, X.; Zhou, J.-N.; Zheng, D.; Wu, H.; Wang, P.; Yang, J.; et al. Deletion and tandem duplications of biosynthetic genes drive the diversity of triterpenoids in Aralia elata. Nat. Commun. 2022, 13, 2224. [Google Scholar] [CrossRef]
- Sun, X.; Zhu, S.; Li, N.; Cheng, Y.; Zhao, J.; Qiao, X.; Lu, L.; Liu, S.; Wang, Y.; Liu, C.; et al. A Chromosome-Level Genome Assembly of Garlic (Allium sativum) Provides Insights into Genome Evolution and Allicin Biosynthesis. Mol. Plant 2020, 13, 1328–1339. [Google Scholar] [CrossRef]
- Ma, Q.; Sun, T.; Li, S.; Wen, J.; Zhu, L.; Yin, T.; Yan, K.; Xu, X.; Li, S.; Mao, J.; et al. The Acer truncatum genome provides insights into nervonic acid biosynthesis. Plant J. 2020, 104, 662–678. [Google Scholar] [CrossRef]
- Song, X.; Wang, J.; Li, N.; Yu, J.; Meng, F.; Wei, C.; Liu, C.; Chen, W.; Nie, F.; Zhang, Z.; et al. Deciphering the high-quality genome sequence of coriander that causes controversial feelings. Plant Biotechnol. J. 2020, 18, 1444–1456. [Google Scholar] [CrossRef]
- Xia, E.-H.; Zhang, H.-B.; Sheng, J.; Li, K.; Zhang, Q.-J.; Kim, C.; Zhang, Y.; Liu, Y.; Zhu, T.; Li, W.; et al. The Tea Tree Genome Provides Insights into Tea Flavor and Independent Evolution of Caffeine Biosynthesis. Mol. Plant 2017, 10, 866–877. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.-H.; Wang, X.-F.; Lu, T.; Li, M.-R.; Jiang, P.; Zhao, J.; Liu, S.-T.; Fu, X.-Q.; Wendel, J.F.; Van de Peer, Y.; et al. Reshuffling of the ancestral core-eudicot genome shaped chromatin topology and epigenetic modification in Panax. Nat. Commun. 2022, 13, 1902. [Google Scholar] [CrossRef]
- Jiang, Z.; Tu, L.; Yang, W.; Zhang, Y.; Hu, T.; Ma, B.; Lu, Y.; Cui, X.; Gao, J.; Wu, X.; et al. The chromosome-level reference genome assembly for Panax notoginseng and insights into ginsenoside biosynthesis. Plant Commun. 2021, 2, 100113. [Google Scholar] [CrossRef]
- Cheng, J.; Wang, X.; Liu, X.; Zhu, X.; Li, Z.; Chu, H.; Wang, Q.; Lou, Q.; Cai, B.; Yang, Y.; et al. Chromosome-level genome of Himalayan yew provides insights into the origin and evolution of the paclitaxel biosynthetic pathway. Mol. Plant 2021, 14, 1199–1209. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, Y.; Li, B.; Petijová, L.; Hu, S.; Zhang, Q.; Niu, J.; Wang, D.; Wang, S.; Dong, Y.; et al. Whole-genome sequence data of Hypericum perforatum and functional characterization of melatonin biosynthesis by N-acetylserotonin O-methyltransferase. J. Pineal Res. 2021, 70, e12709. [Google Scholar] [CrossRef]
- Kang, S.-H.; Pandey, R.P.; Lee, C.-M.; Sim, J.-S.; Jeong, J.-T.; Choi, B.-S.; Jung, M.; Ginzburg, D.; Zhao, K.; Won, S.Y.; et al. Genome-enabled discovery of anthraquinone biosynthesis in Senna tora. Nat. Commun. 2020, 11, 5875. [Google Scholar] [CrossRef]
- Pei, T.; Yan, M.; Kong, Y.; Fan, H.; Liu, J.; Cui, M.; Fang, Y.; Ge, B.; Yang, J.; Zhao, Q. The genome of Tripterygium wilfordii and characterization of the celastrol biosynthesis pathway. Gigabyte 2021, 2021, gigabyte14. [Google Scholar] [CrossRef] [PubMed]
- de Bruijn, S.E.; Panneman, D.M.; Weisschuh, N.; Cadena, E.L.; Boonen, E.G.M.; Holtes, L.K.; Astuti, G.D.N.; Cremers, F.P.M.; Leijsten, N.; Corominas, J.; et al. Identification of novel 3D-genome altering and complex structural variants underlying retinitis pigmentosa type 17 through a multistep and high-throughput approach. Front. Genet. 2024, 15, 1469686. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Yin, X.-S.; Lu, J.; Cen, C.; Wang, Y. Phosphorylation-dependent positive feedback on the oxytocin receptor through the kinase PKD1 contributes to long-term social memory. Sci. Signal 2022, 15, eabd0033. [Google Scholar] [CrossRef]
- Liao, X.; Xie, D.; Bao, T.; Hou, M.; Li, C.; Nie, B.; Sun, S.; Peng, D.; Hu, H.; Wang, H.; et al. Inversions encounter relaxed genetic constraints and balance birth and death of TPS genes in Curcuma. Nat. Commun. 2024, 15, 9349. [Google Scholar] [CrossRef] [PubMed]
- Ni, L.; Liu, Y.; Ma, X.; Liu, T.; Yang, X.; Wang, Z.; Liang, Q.; Liu, S.; Zhang, M.; Wang, Z.; et al. Pan-3D genome analysis reveals structural and functional differentiation of soybean genomes. Genome Biol. 2023, 24, 12. [Google Scholar] [CrossRef]
- Lieberman-Aiden, E.; Van Berkum, N.L.; Williams, L.; Imakaev, M.; Ragoczy, T.; Telling, A.; Amit, I.; Lajoie, B.R.; Sabo, P.J.; Dorschner, M.O.; et al. Comprehensive Mapping of Long-Range Interactions Reveals Folding Principles of the Human Genome. Science 2009, 326, 289–293. [Google Scholar] [CrossRef]
- Nagano, T.; Lubling, Y.; Stevens, T.J.; Schoenfelder, S.; Yaffe, E.; Dean, W.; Laue, E.D.; Tanay, A.; Fraser, P. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 2013, 502, 59. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Dong, L.; Zhang, Y.; Lin, D.; Xu, W.; Ke, C.; Han, L.; Deng, L.; Li, G.; Jackson, D.; et al. 3D genome architecture coordinates trans and cis regulation of differentially expressed ear and tassel genes in maize. Genome Biol. 2020, 21, 143. [Google Scholar] [CrossRef]
- Zhang, R.; Tu, Y.; Ye, D.; Gu, Z.; Chen, Z.; Sun, Y. A Germline—Specific Regulator of Mitochondrial Fusion is Required for Maintenance and Differentiation of Germline Stem and Progenitor Cells. Adv. Sci. 2022, 9, e2203631. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, C.; Li, W.-H.; Zhang, T.-E.; Fan, G.-Z.; Guo, B.-F.; Yao, W.-Y.; Gong, D.-H.; Peng, Q.-L.; Ding, W.-J. Comprehensive Analysis of Transcriptomics and Metabolomics between the Heads and Tails of Angelica Sinensis: Genes Related to Phenylpro-panoid Biosynthesis Pathway. Comb. Chem. High. T Scr. 2021, 24, 1417–1427. [Google Scholar] [CrossRef]
- Yubuki, N.; Leander, B.S. Evolution of microtubule organizing centers across the tree of eukaryotes. Plant J. 2013, 75, 230–244. [Google Scholar] [CrossRef] [PubMed]
- Mortimer, J.C.; Scheller, H.V. Synthesis and Function of Complex Sphingolipid Glycosylation. Trends Plant Sci. 2020, 25, 522–524. [Google Scholar] [CrossRef]
- Song, Z.; Zhao, F.; Chu, L.; Lin, H.; Xiao, Y.; Fang, Z.; Wang, X.; Dong, J.; Lyu, X.; Yu, D.; et al. The GmSTF1 2-GmBBX4 negative feedback loop acts downstream of blue—Light photoreceptors to regulate isoflavonoid biosynthesis in soybean. Plant Commun. 2024, 5, 100730. [Google Scholar] [CrossRef]
- Gao, R.; Lou, Q.; Hao, L.; Qi, G.; Tian, Y.; Pu, X.; He, C.; Wang, Y.; Xu, W.; Xu, Z.; et al. Comparative genomics reveal the convergent evolution of CYP82D and CYP706X members related to flavone biosynthesis in Lamiaceae and Asteraceae. Plant J. 2022, 109, 1305–1318. [Google Scholar] [CrossRef] [PubMed]
- Suhre, K.; Shin, S.Y.; Petersen, A.K.; Mohney, R.P.; Meredith, D.; Wagele, B.; Altmaier, E.; Gram, C.; Deloukas, P.; Erdmann, J.; et al. Human metabolic individuality in biomedical and pharmaceutical research. Nature 2011, 477, 54–60. [Google Scholar] [CrossRef]
- Verslues, P.E.; Lasky, J.R.; Juenger, T.E.; Liu, T.-W.; Kumar, M.N. Genome-Wide Association Mapping Combined with Reverse Genetics Identifies New Effectors of Low Water Potential-Induced Proline Accumulation in Arabidopsis. Plant Physiol. 2014, 164, 144–159. [Google Scholar] [CrossRef]
- Wen, W.; Li, D.; Li, X.; Gao, Y.; Li, W.; Li, H.; Liu, J.; Liu, H.; Chen, W.; Luo, J.; et al. Metabolome-based genome-wide association study of maize kernel leads to novel biochemical insights. Nat. Commun. 2014, 5, 5438. [Google Scholar] [CrossRef]
- Chen, W.; Gao, Y.; Xie, W.; Gong, L.; Lu, K.; Wang, W.; Li, Y.; Liu, X.; Zhang, H.; Dong, H.; et al. Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism. Nat. Genet. 2014, 46, 714–721. [Google Scholar] [CrossRef]
- Riedelsheimer, C.; Lisec, J.; Czedik-Eysenberg, A.; Sulpice, R.; Flis, A.; Grieder, C.; Altmann, T.; Stitt, M.; Willmitzer, L.; Melchinger, A.E. Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize. P. Natl. Acad. Sci. USA 2012, 109, 8872–8877. [Google Scholar] [CrossRef] [PubMed]
- Schauer, N.; Semel, Y.; Roessner, U.; Gur, A.; Balbo, I.; Carrari, F.; Pleban, T.; Perez-Melis, A.; Bruedigam, C.; Kopka, J.; et al. Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nat. Biotechnol. 2006, 24, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.-Q.; Ma, J.-Q.; Yao, M.-Z.; Ma, C.-L.; Chen, L. Functional natural allelic variants of flavonoid 3′,5′-hydroxylase gene governing catechin traits in tea plant and its relatives. Planta 2017, 245, 523–538. [Google Scholar] [CrossRef]
- Fekih, R.; Takagi, H.; Tamiru, M.; Abe, A.; Natsume, S.; Yaegashi, H.; Sharma, S.; Sharma, S.; Kanzaki, H.; Matsumura, H.; et al. MutMap plus: Genetic Mapping and Mutant Identification without Crossing in Rice. PLoS ONE 2013, 8, e68529. [Google Scholar] [CrossRef]
- Keurentjes, J.J.B.; Fu, J.; de Vos, C.H.R.; Lommen, A.; Hall, R.D.; Bino, R.J.; van der Plas, L.H.W.; Jansen, R.C.; Vreugdenhil, D.; Koornneef, M. The genetics of plant metabolism. Nat. Genet. 2006, 38, 842–849. [Google Scholar] [CrossRef]
- James, G.V.; Patel, V.; Nordström, K.J.; Klasen, J.R.; Salomé, P.A.; Weigel, D.; Schneeberger, K. User guide for mapping-by-sequencing in Arabidopsis. Genome Biol. 2013, 14, R61. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Cheema, J.; Vigouroux, M.; Hill, L.; Reed, J.; Paajanen, P.; Yant, L.; Osbourn, A. Formation and diversification of a paradigm biosynthetic gene cluster in plants. Nat. Commun. 2020, 11, 5354. [Google Scholar] [CrossRef]
- Zhan, C.; Lei, L.; Liu, Z.; Zhou, S.; Yang, C.; Zhu, X.; Guo, H.; Zhang, F.; Peng, M.; Li, Y.; et al. Selection of a subspecies-specific diterpene gene cluster implicated in rice disease resistance. Nat. Plants 2020, 6, 1447–1454. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Zhang, Q.; Jiang, C.; Zheng, Y.; Zuo, Y.; Qin, J.; Liao, Z.; Deng, H. Development of Atropa belladonna L. Plants with High-Yield Hyoscyamine and without Its Derivatives Using the CRISPR/Cas9 System. Int. J. Mol. Sci. 2021, 22, 1731. [Google Scholar] [CrossRef]
- Li, J.; Scarano, A.; Gonzalez, N.M.; D’orso, F.; Yue, Y.; Nemeth, K.; Saalbach, G.; Hill, L.; Martins, C.d.O.; Moran, R.; et al. Biofortified tomatoes provide a new route to vitamin D sufficiency. Nat. Plants 2022, 8, 611. [Google Scholar] [CrossRef] [PubMed]
- Murat, F.; Armero, A.; Pont, C.; Klopp, C.; Salse, J. Reconstructing the genome of the most recent common ancestor of flowering plants. Nat. Genet. 2017, 49, 490. [Google Scholar] [CrossRef]
- Yang, Y.-Y.; Li, S.-N.; Xu, L.; Xing, Y.-P.; Zhao, R.; Bao, G.-H.; Zhang, T.-T.; Zhang, D.-C.; Song, Y.-Y.; Ao, W.-L.; et al. The complete mitochondrial genome of Glycyrrhiza uralensis Fisch. (Fabales, Leguminosae). Mitochondrial DNA B 2021, 6, 475–477. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Gao, S.; Guo, L.; Wang, B.; Jia, Y.; Zhou, J.; Che, Y.; Jia, P.; Lin, J.; Xu, T.; et al. Three chromosome-scale Papaver genomes reveal punctuated patchwork evolution of the morphinan and noscapine biosynthesis pathway. Nat. Commun. 2021, 12, 6030. [Google Scholar] [CrossRef]
- Xu, Z.; Gao, R.; Pu, X.; Xu, R.; Wang, J.; Zheng, S.; Zeng, Y.; Chen, J.; He, C.; Song, J. Comparative Genome Analysis of Scutellaria baicalensis and Scutellaria barbata Reveals the Evolution of Active Flavonoid Biosynthesis. Genom. Proteom. Bioinf 2020, 18, 230–240. [Google Scholar] [CrossRef]
- Guo, H.-M.; Sun, S.-C.; Zhang, F.-M.; Miao, X.-X. Identification of genes potentially related to herbivore resistance in OPR3 overexpression rice by microarray analysis. Physiol. Mol. Plant P. 2015, 92, 166–174. [Google Scholar] [CrossRef]
- Menke, F.L.; Parchmann, S.; Mueller, M.J.; Kijne, J.W.; Memelink, J. Involvement of the octadecanoid pathway and protein phosphorylation in fungal elicitor-induced expression of terpenoid indole alkaloid biosynthetic genes in Catharanthus roseus. Plant Physiol. 1999, 119, 1289–1296. [Google Scholar] [CrossRef] [PubMed]
- Makki, R.M.; Saeedi, A.A.; Khan, T.K.; Ali, H.M.; Ramadan, A.M. Single nucleotide polymorphism analysis in plastomes of eight Catharanthus roseus cultivars. Biotechnol. Biotec Eq 2019, 33, 419–428. [Google Scholar] [CrossRef]
- Riccini, A.; Picarella, M.E.; De Angelis, F.; Mazzucato, A. Bulk RNA-Seq analysis to dissect the regulation of stigma position in tomato. Plant Mol. Biol. 2021, 105, 263–285. [Google Scholar] [CrossRef]
- Zhu, T.; Zhang, M.; Su, H.; Li, M.; Wang, Y.; Jin, L.; Li, M. Integrated Metabolomic and Transcriptomic Analysis Reveals Differential Mechanism of Flavonoid Biosynthesis in Two Cultivars of Angelica sinensis. Molecules 2022, 27, 306. [Google Scholar] [CrossRef]
- Choudhri, P.; Rani, M.; Sangwan, R.S.; Kumar, R.; Kumar, A.; Chhokar, V. De novo sequencing, assembly and characterisation of Aloe vera transcriptome and analysis of expression profiles of genes related to saponin and anthraquinone metabolism. Bmc Genomics 2018, 19, 427. [Google Scholar] [CrossRef]
- Balusamy, S.R.D.; Kim, Y.-J.; Rahimi, S.; Senthil, K.S.; Lee, O.R.; Lee, S.; Yang, D.-C. Transcript Pattern of Cytochrome P450, Antioxidant and Ginsenoside Biosynthetic Pathway Genes Under Heavy Metal Stress in Panax ginseng Meyer. B Environ. Contam. Tox 2013, 90, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Tran, H.T.; Ramaraj, T.; Furtado, A.; Lee, L.S.; Henry, R.J. Use of a draft genome of coffee (Coffea arabica ) to identify SNPs associated with caffeine content. Plant Biotechnol. J. 2018, 16, 1756–1766. [Google Scholar] [CrossRef]
- Meng, L.; Diao, M.; Wang, Q.; Peng, L.; Li, J.; Xie, N. Efficient biosynthesis of resveratrol via combining phenylalanine and tyrosine pathways in Saccharomyces cerevisiae. Microb. Cell Fact. 2023, 22, 46. [Google Scholar] [CrossRef]
- Choi, H.S.; Bin Koo, H.; Jeon, S.W.; Han, J.Y.; Kim, J.S.; Jun, K.M.; Choi, Y.E. Modification of ginsenoside saponin composition via the CRISPR / Cas9-mediated knockout of protopanaxadiol 6-hydroxylase gene in Panax ginseng. J. Ginseng Res. 2022, 46, 505–514. [Google Scholar] [CrossRef]
- Huang, T.; Armstrong, B.; Schindele, P.; Puchta, H. Efficient gene targeting in Nicotiana tabacum using CRISPR / SaCas9 and temperature tolerant LbCas12a. Plant Biotechnol. J. 2021, 19, 1314–1324. [Google Scholar] [CrossRef]
- Walkowiak, S.; Gao, L.; Monat, C.; Haberer, G.; Kassa, M.T.; Brinton, J.; Ramirez-Gonzalez, R.H.; Kolodziej, M.C.; Delorean, E.; Thambugala, D.; et al. Multiple wheat genomes reveal global variation in modern breeding. Nature 2020, 588, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Doudna, J.A.; Charpentier, E. The new frontier of genome engineering with CRISPR-Cas9. Science 2014, 346, 1077. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Jing, N.; Li, F.; Wang, K.; Tang, J.; Zhao, Q.; Zhang, Y.; Noushahi, H.A.; Xu, R.; Wang, X.; et al. An omics-based characterization of Wolfiporia cocos reveals three CYP450 members involved in the biosynthetic pathway of pachymic acid. Commun. Biol. 2024, 7, 666. [Google Scholar] [CrossRef]
- Li, Q.; Fang, X.; Zhao, Y.; Cao, R.; Dong, J.; Ma, P. The SmMYB36-SmERF6 / SmERF115 module regulates the biosynthesis of tanshinones and phenolic acids in salvia miltiorrhiza hairy roots. Hortic. Res-England 2023, 10, uhac238. [Google Scholar] [CrossRef]
- Zhong, F.; Huang, L.; Qi, L.; Ma, Y.; Yan, Z. Full-length transcriptome analysis of Coptis deltoidea and identification of putative genes involved in benzylisoquinoline alkaloids biosynthesis based on combined sequencing platforms. Plant Mol. Biol. 2020, 102, 477–499. [Google Scholar] [CrossRef]
- Feng, S.; Zhu, Y.; Yu, C.; Jiao, K.; Jiang, M.; Lu, J.; Shen, C.; Ying, Q.; Wang, H. Development of Species-Specific SCAR Markers, Based on a SCoT Analysis, to Authenticate Physalis (Solanaceae) Species. Front. Genet. 2018, 9, 192. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, Y.; Liu, X.; Hong, X.; Xu, Y.; Zhu, P.; Shen, Y.; Wu, H.; Ji, Y.; Wen, X.; et al. Suppression of endogenous gene silencing by bidirectional cytoplasmic RNA decay in Arabidopsis. Science 2015, 348, 120–123. [Google Scholar] [CrossRef]
- Qin, G.; Xu, C.; Ming, R.; Tang, H.; Guyot, R.; Kramer, E.M.; Hu, Y.; Yi, X.; Qi, Y.; Xu, X.; et al. The pomegranate (Punica granatum L.) genome and the genomics of punicalagin biosynthesis. Plant J. 2017, 91, 1108–1128. [Google Scholar] [CrossRef] [PubMed]
- Ling, H.-Q.; Ma, B.; Shi, X.; Liu, H.; Dong, L.; Sun, H.; Cao, Y.; Gao, Q.; Zheng, S.; Li, Y.; et al. Genome sequence of the progenitor of wheat A subgenome Triticum urartu. Nature 2018, 557, 424. [Google Scholar] [CrossRef]
- Zhu, F.; Wen, W.; Cheng, Y.; Alseekh, S.; Fernie, A.R. Integrating multiomics data accelerates elucidation of plant primary and secondary metabolic pathways. Abiotech 2023, 4, 47–56. [Google Scholar] [CrossRef]
Plants | Assembly Patterns | Gene Assembly | Identified Genes | Biosynthetic Pathways | Reference |
---|---|---|---|---|---|
Aralia elata | PacBio, Illumina, and Hi-C | 1.05 Gb | AeCYP72As, AeCSLMs, and AeUGT73s | Oleanane-type triterpenoids | [48] |
Allium sativum | PacBio, Illumina, and 10x Genomics | 16.24 Gb | AsGSH1b, AsGSH2, AsPCS1, AsFMO1, and AsGGT2 | Allicin | [49] |
Acer truncatum | PacBio, Illumina, 10X Genomics, and Hi-C | 633.28 Mb | KCS11 and KCS19 | Nervonic acid | [50] |
Coriandrum sativum | PacBio, Hi-C, and 10X Genomics | 2.12 Gb | CsTPS04 and CsTPS11 | Mannitol, furfural, and linalool | [51] |
Camellia sinensis | Illumina and Platanus | 3.02 Gb | CsTCS1 and CsTCS2 | Caffeine and theanine | [52] |
Panax ginseng | Illumina, PacBio, 10X Genomic, and Hi-C | 3.41 Gb | CYP716A47 and CYP716A53v2 | Dammarane-type saponins | [53] |
Panax notoginseng | PacBio, Illumina, and Hi-C | 2.66 Gb | PnUGT1-5 | Ginsenoside | [54] |
Gardenia jasminoides | ONT and Hi-C | 534.1 Mb | CaTCS1, GjUGT75C1, and UGT75 | Caffeine and crocin | [10] |
Himalayan yew | PacBio, Illumina, and Hi-C | 10.9 Gb | CYP725A and TRF004A | Paclitaxel | [55] |
Hypericum perforatum | PacBio, Illumina, and 10X Genomics | 393.4 Mb | HpASMT1 and HpASMT2 | Melatonin | [56] |
Senna tora | PacBio, Illumina, and Hi-C | 526 Mb | StPKS1 and StPKS2 | Anthraquinone | [57] |
Tripterygiumwilfordii | ONT, Illumina, and Hi-C | 340.12 Mb | TwCYP712K1 and TwCYP712K2 | Celastrol | [58] |
Type | Technique | Application in PSMs Research | Strengths | Limitations | Reference |
---|---|---|---|---|---|
Structural Genomics | 3C | Identifies long-range chromatin interactions regulating PSM gene clusters | Reveals 3D genome architecture; Links spatial organization to metabolic regulation. | Requires high-quality chromatin data; Limited to static snapshots. | [63,64] |
FISH | Localizes PSM biosynthetic genes on chromosomes | Visualizes gene physical positions; Detects structural variations. | Low resolution; Probe design limitations. | [66,67] | |
Comparative Genomics | GWAS | Discovers loci associated with PSM diversity | Exploits natural genetic variation; High-throughput for complex traits. | Requires large population sizes; Functional validation needed. | [70,71] |
BSA | Rapidly maps genes controlling PSM traits | Cost-effective for bulk samples; Integrates with RNA-seq for precision. | Limited to traits with extreme phenotypes; Misses polygenic effects. | [77,78] | |
Pan-genome | Reveals presence-absence variations in PSM genes | Captures species-wide genetic diversity; Identifies novel biosynthetic pathways. | Requires multiple high-quality genomes; Data integration challenges. | [23,83] | |
Functional Genomics | DNA microarray | Profiles PSM gene expression under stress | High-throughput for known genes; Cost-effective for large-scale studies. | Limited to pre-designed probes; Low dynamic range for rare transcripts. | [10,88] |
RNA-Seq | Identifies dynamic expression of PSM pathways | Detects novel transcripts; Quantitative and strand-specific. | High sequencing depth required; Bioinformatics complexity. | [92,93] | |
SAGE | Identifies dynamic expression of PSM pathways | Unbiased for unknown genes; Useful for rare transcript detection. | Labor-intensive library preparation; The efficiency is relatively low. | [94,95] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Xu, H.; Li, Z.; Wang, Y.; Qiao, S.; Zhang, H. Application and Progress of Genomics in Deciphering the Genetic Regulation Mechanisms of Plant Secondary Metabolites. Plants 2025, 14, 1316. https://doi.org/10.3390/plants14091316
Liu C, Xu H, Li Z, Wang Y, Qiao S, Zhang H. Application and Progress of Genomics in Deciphering the Genetic Regulation Mechanisms of Plant Secondary Metabolites. Plants. 2025; 14(9):1316. https://doi.org/10.3390/plants14091316
Chicago/Turabian StyleLiu, Chong, Hang Xu, Zheng Li, Yukun Wang, Siwei Qiao, and Hao Zhang. 2025. "Application and Progress of Genomics in Deciphering the Genetic Regulation Mechanisms of Plant Secondary Metabolites" Plants 14, no. 9: 1316. https://doi.org/10.3390/plants14091316
APA StyleLiu, C., Xu, H., Li, Z., Wang, Y., Qiao, S., & Zhang, H. (2025). Application and Progress of Genomics in Deciphering the Genetic Regulation Mechanisms of Plant Secondary Metabolites. Plants, 14(9), 1316. https://doi.org/10.3390/plants14091316