Siparuna gesnerioides and Siparuna guianensis Essential Oils in Aedes aegypti Control: Phytoanalysis, Molecular Insights for Larvicidal Activity and Selectivity to Non-Target Organisms
Abstract
:1. Introduction
2. Results
2.1. Yield and Chemical Composition of Essential Oils
2.2. Toxicity of Siparuna Essential Oils Against Aedes aegypti Larvae
2.3. Molecular Interactions Between Essential Oil Major Constituents and Aedes aegypti Acetylcholinesterases
2.4. Selectivity of Siparuna Essential Oils to Belostoma anurum Nymphs
3. Discussion
4. Materials and Methods
4.1. Collection of Plant Material and Extraction of Essential Oil
4.2. Chemical Composition of the Essential Oil
4.3. Aedes aegypti and Belostoma Anurum Rearing Conditions
4.4. Larvicidal Activity of Essential Oils Against Aedes Aegypti Larvae
4.5. Molecular Interactions Between the Essential Oil Major Constituents (Germacrene D and Γ-Elemene) and Acetylcholinesterases (AChEs) of Aedes Aegypti
4.6. Essential Oil Toxicity on Nymphs of Belostoma anurum
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jones, R.; Kulkarni, M.A.; Davidson, T.M.V.; Talbot, B.; Sander, B.; González, C. Arbovirus vectors of epidemiological concern in the Americas: A scoping review of entomological studies on Zika, dengue and chikungunya virus vectors. PLoS ONE 2020, 15, e0220753. [Google Scholar] [CrossRef] [PubMed]
- Pless, E.; Gloria-Soria, A.; Evans, B.R.; Kramer, V.; Bolling, B.G.; Tabachnick, W.J. Multiple introductions of the dengue vector, Aedes aegypti, into California. PLoS Negl. Trop. Dis. 2017, 11, e0005718. [Google Scholar] [CrossRef] [PubMed]
- Dickson, L.B.; Campbell, C.L.; Juneja, P.; Jiggins, F.M.; Sylla, M.; Black, W.C. Exon-enriched libraries reveal large genic differences between Aedes aegypti from Senegal, West Africa, and populations outside Africa. G3 Genes Genomes Genet. 2017, 7, 571–582. [Google Scholar] [CrossRef] [PubMed]
- Roiz, D.; Wilson, A.L.; Scott, T.W.; Fonseca, D.M.; Jourdain, F.; Müller, P.; Velayudhan, R.; Corbel, V. Integrated Aedes management for the control of Aedes-borne diseases. PLoS Negl. Trop. Dis. 2018, 12, 45–68. [Google Scholar] [CrossRef]
- World Health Organization. Larval Source Management: A Supplementary Malaria Vector Control Measure: An Operational Manual. 2013. Available online: https://apps.who.int/iris/bitstream/handle/10665/85379/9789241505604_eng.pdf (accessed on 22 April 2025).
- Reiter, P. Control of Urban Zika Vectors: Should We Return to the Successful PAHO/WHO Strategy? PLoS Negl. Trop. Dis. 2016, 10, e0004769. [Google Scholar] [CrossRef]
- Haddi, K.; Tomé, H.V.; Du, Y.; Valbon, W.R.; Nomura, Y.; Martins, G.F.; Dong, K.; Oliveira, E.E. Detection of a new pyrethroid resistance mutation (V410L) in the sodium channel of Aedes aegypti: A potential challenge for mosquito control. Sci. Rep. 2017, 7, srep46549. [Google Scholar] [CrossRef]
- Valbon, W.; Araújo, S.H.C.; Nery, R.S.; Barbosa, J.F.; Newland, P.L.; Oliveira, E.E. Sublethal exposure to pyriproxyfen does not impair the abilities of the backswimmer Buenoa amnigenus to prey upon Aedes aegypti larvae. Ecotoxicology 2022, 31, 998–1008. [Google Scholar] [CrossRef]
- Valbon, W.R.; Hatano, E.; Oliveira, N.R.X.; Ataíde, Á.D.; Corrêa, M.J.M.; Gomes, S.F.; Martins, G.F.; Haddi , K.; Alvarenga, E.S.; Oliveira , E.E. Detrimental effects of pyriproxyfen on the detoxification and abilities of Belostoma anurum to prey upon Aedes aegypti larvae. Environ. Pollut. 2021, 284, 117130. [Google Scholar] [CrossRef]
- Devillers, J. Fate and ecotoxicological effects of pyriproxyfen in aquatic ecosystems. Environ. Sci. Pollut. Res. 2020, 27, 16052–16068. [Google Scholar] [CrossRef]
- Moura, J.A.S.; Souza-Santos, L.P. Environmental risk assessment (ERA) of pyriproxyfen in non-target aquatic organisms. Aquat. Toxicol. 2020, 222, 105448. [Google Scholar] [CrossRef]
- Costa, L.T.M.; Smagghe, G.; Viteri Jumbo, L.O.; Santos, G.R.; Aguiar, R.W.S.; Oliveira, E.E. Selective actions of plant-based biorational insecticides: Molecular mechanisms and reduced risks to non-target organisms. Curr. Opin. Environ. Sci. Health 2025, 44, 100601. [Google Scholar] [CrossRef]
- Botina, L.L.; Martins, G.F. Biological mosquiticidal agents: Potential and effects on non-target organisms. Curr. Opin. Environ. Sci. Health 2024, 41, 100567. [Google Scholar] [CrossRef]
- Aungtikun, J.; Soonwera, M. Improved adulticidal activity against Aedes aegypti (L.) and Aedes albopictus (Skuse) from synergy between Cinnamomum spp. essential oils. Sci. Rep. 2021, 11, 4685. [Google Scholar] [CrossRef]
- França, L.P.; Amaral, A.C.F.; Ramos, A.d.S.; Ferreira, J.L.P.; Maria, A.C.B.; Oliveira, K.M.T.; Araujo, E.S.; Branches, A.D.S.; Silva, J.N.; Silva, N.G.; et al. Piper capitarianum essential oil: A promising insecticidal agent for the management of Aedes aegypti and Aedes albopictus. Environ. Sci. Pollut. Res. 2021, 28, 9760–9776. [Google Scholar] [CrossRef]
- Diniz, J.A.; Marchesini, P.; Zeringóta, V.; Matos, R.d.S.; Novato, T.P.L.; Melo, D.; Vale, L.; Lopes, W.D.Z.; Gomes, G.A.; Monteiro, C. Chemical composition of essential oils of different Siparuna guianensis chemotypes and their acaricidal activity against Rhipicephalus microplus (Acari: Ixodidae): Influence of α-bisabolol. Int. J. Acarol. 2022, 48, 36–42. [Google Scholar] [CrossRef]
- Aguiar, R.W.S.; Dos Santos, S.F.; Da Silva Morgado, F.; Ascencio, S.D.; De Mendonça Lopes, M.; Viana, K.F.; Didonet, J.; Ribeiro, B.M. Insecticidal and repellent activity of Siparuna guianensis Aubl. (Negramina) against Aedes aegypti and Culex quinquefasciatus. PLoS ONE 2015, 10, e0116765. [Google Scholar] [CrossRef]
- Jannuzzi, H.; Mattos, J.K.D.A.; Silva, D.B.D.; Gracindo, L.A.M.; Vieira, R.F. Avaliação agronômica e química de dezessete acessos de erva-cidreira [Lippia alba (Mill.) NE Brown] -quimiotipo citral, cultivados no Distrito Federal. Rev. Bras. Plantas Med. 2011, 13, 258–264. [Google Scholar] [CrossRef]
- Ferraz, V.; Poletto, K.Q.; Júnior, A.F.C.; Alves, A. Antimicrobial activity and medicinal biomass of Siparuna guianensis in Brazilian Cerrado forest, a global hotspot. J. Med. Plant Res. 2015, 9, 968–980. [Google Scholar]
- Vásquez, J.; Alarcón, J.C.; Jiménez, S.L.; Jaramillo, G.I.; Gómez-Betancur, I.C.; Rey-Suárez, J.P.; Jaramillo, K.M.; Muñoz, D.C.; Marín, D.M.; Romero, J.O. Main plants used in traditional medicine for the treatment of snake bites n the regions of the department of Antioquia, Colombia. J. Ethnopharmacol. 2015, 170, 158–166. [Google Scholar] [CrossRef]
- Félix-Silva, J.; Antônio Silva-Junior, A.; Zucolotto, S.M.; De M Fernandes-Pedrosa, F. Medicinal plants for the treatment of local tissue damage induced by snake venoms: An overview from traditional use to pharmacological evidence. Evid. -Based Complement. Altern. Med. 2017, 2017, 5748256. [Google Scholar] [CrossRef]
- Fernandes, D.A.; Gomes, B.A.; Mendonça, S.C.; Pinheiro, C.d.C.; Sanchez, E.O.F.; Leitão, S.G.; Fully, A.L.; Leitao, G. Alkaloids from Siparuna (Siparunaceae) are Predicted as the Inhibitors of Proteolysis and Plasma Coagulation Caused by Bothrops Jararaca Snake Venom. 2024, SSRN 4755935. Available online: https://papers.ssrn.com/abstract=4755935 (accessed on 22 April 2025).
- Leitão, G.G.; Simas, N.K.; Soares, S.S.V.; De Brito, A.P.P.; Claros, B.M.G.; Brito, T.B.M.; Monache, F.D. Chemistry and pharmacology of Monimiaceae: A special focus on Siparuna and Mollinedia. J. Ethnopharmacol. 1999, 65, 87–102. [Google Scholar] [CrossRef] [PubMed]
- Renner, S.; Novon, G.H. New species of Siparuna (Siparunaceae) IV. A new subcanopy tree from white-sand areas in Brazil and Venezuela. Novon 2005, 15, 202–206. [Google Scholar]
- Ferreira, T.P.; Oliveira, E.E.; Tschoeke, P.H.; Pinheiro, R.G.; Maia, A.M.S.; Aguiar, R.W.S. Potential use of Negramina (Siparuna guianensis Aubl.) essential oil to control wax moths and its selectivity in relation to honey bees. Ind. Crops Prod. 2017, 109, 151–157. [Google Scholar] [CrossRef]
- Lourenço, A.M.; Haddi, K.; Ribeiro, B.M.; Corrêia, R.F.T.; Tomé, H.V.V.; Santos-Amaya, O.; Pereira, E.J.G.; Guedes, R.N.C.; Santos, G.R.; Oliveira, E.E.; et al. Essential oil of Siparuna guianensis as an alternative tool for improved lepidopteran control and resistance management practices. Sci. Rep. 2018, 8, 7215. [Google Scholar] [CrossRef] [PubMed]
- Toledo, P.F.S.; Ferreira, T.P.; Bastos, I.M.A.S.; Rezende, S.M.; Viteri Jumbo, L.O.; Didonet, J.; Andrade, B.S.; Melo, T.S.; Smagghe, G.; Oliveira, E.E.; et al. Essential oil from Negramina (Siparuna guianensis) plants controls aphids without impairing survival and predatory abilities of non-target ladybeetles. Environ. Pollut. 2019, 255, 113153. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, R.M.D.A.; D’Haveloose, N.P.; Cruz, R.A.S.; Araújo, R.S.; Carvalho, J.C.T.; Rocha, L.; Fernandes, L.P.; Da Costa, T.S.; Souto, R.N.P. Nano-emulsification Enhances the Larvicidal Potential of the Essential Oil of Siparuna guianensis (Laurales: Siparunaceae) Against Aedes (Stegomyia) aegypti (Diptera: Culicidae). J. Med. Entomol. 2020, 57, 788–796. [Google Scholar] [CrossRef]
- Ferreira, T.P.; Haddi, K.; Corrêa, R.F.T.; Zapata, V.L.B.; Piau, T.B.; Souza, L.F.N.; Santos, S.-M.G.; Oliveira, E.E.; Jumbo, L.O.V.; Ribeiro, B.M.; et al. Prolonged mosquitocidal activity of Siparuna guianensis essential oil encapsulated in chitosan nanoparticles. PLoS Negl. Trop. Dis. 2019, 13, e0007624. [Google Scholar] [CrossRef]
- Haddi, K.; Turchen, L.M.; Viteri Jumbo, L.O.; Guedes, R.N.C.; Pereira, E.J.G.; Aguiar, R.W.S.; Oliveira, E. Rethinking biorational insecticides for pest management: Unintended effects and consequences. Pest. Manag. Sci. 2020, 76, 2286–2293. [Google Scholar] [CrossRef]
- Isman, M.B. Botanical insecticides in the twenty-first century-fulfilling their promise? Annu. Rev. Entomol. 2020, 65, 233–249. [Google Scholar] [CrossRef]
- Guedes, R.N.C.; Turchen, L.M.; Wang, R.; Agathokleous, E. Bioinsecticides and non-target pest species. Curr. Opin. Environ. Sci. Health 2024, 41, 100570. [Google Scholar] [CrossRef]
- Valbon, W.R.; Haddi, K.; Gutiérrez, Y.; Cruz, F.M.; Azevedo, K.E.X.; Perez Campos, J.S.; Salaro, A.L.; Oliveira, E. Life History Traits and Predatory Performance of Belostoma anurum (Hemiptera: Belostomatidae), a Biological Control Agent of Disease Vector Mosquitoes. Neotrop. Entomol. 2019, 48, 899–908. [Google Scholar] [CrossRef] [PubMed]
- Shaalan, E.; Canyon, D. Aquatic insect predators and mosquito control. Trop. Biomed. 2009, 26, 223–261. [Google Scholar]
- Borges, J.C.M.; Haddi, K.; Valbon, W.R.; Costa, L.T.M.; Ascêncio, S.D.; Santos, G.R.; Soares, I.M.; Barbosa, R.S.; Viana, K.F.; Silva, E.A.; et al. Methanolic Extracts of Chiococca alba in Aedes aegypti Biorational Management: Larvicidal and Repellent Potential, and Selectivity against Non-Target Organisms. Plants 2022, 11, 3298. [Google Scholar] [CrossRef] [PubMed]
- Valbon, W.R.; Cruz, F.M.; Ramos, G.S.; Tomé, H.V.V.; Oliveira, E.E. Sublethal exposure to deltamethrin reduces the abilities of giant water bugs to prey upon Aedes aegypti larvae. Chemosphere 2018, 191, 350–356. [Google Scholar] [CrossRef] [PubMed]
- Robertson, J.L.; Jones, M.M.; Olguin, E.; Alberts, B. Bioassays with Arthropods, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2017; pp. 1–194. [Google Scholar] [CrossRef]
- Moura, W.S.; Oliveira, E.E.; Haddi, K.; Corrêa, R.F.T.; Piau, T.B.; Moura, D.S.; Santos, S.F.; Grisolia, C.K.; Ribeiro, B.M.; Aguiar, R.W.S. Cassava starch-based essential oil microparticles preparations: Functionalities in mosquito control and selectivity against non-target organisms. Ind. Crops Prod. 2021, 162, 113289. [Google Scholar] [CrossRef]
- Luz, T.R.S.A.; de Mesquita, L.S.S.; Amaral, F.M.M.; do Coutinho, D.F. Essential oils and their chemical constituents against Aedes aegypti L. (Diptera: Culicidae) larvae. Acta Trop. 2020, 212, 105705. [Google Scholar] [CrossRef]
- García, J.; Gilardoni, G.; Cumbicus, N.; Morocho, V. Chemical Analysis of the Essential Oil from Siparuna echinata (Kunth) A. DC. (Siparunaceae) of Ecuador and Isolation of the Rare Terpenoid Sipaucin, A. Plants 2020, 9, 187. [Google Scholar] [CrossRef]
- Noriega, P.; Guerrini, A.; Sacchetti, G.; Grandini, A.; Ankuash, E.; Manfredini, S. Chemical Composition and Biological Activity of Five Essential Oils from the Ecuadorian Amazon Rain Forest. Molecules 2019, 24, 1637. [Google Scholar] [CrossRef]
- Morocho, V.; Hidalgo-Tapia, M.; Delgado-Loyola, I.; Cartuche, L.; Cumbicus, N.; Valarezo, E. Chemical Composition and Biological Activity of Essential Oil from Leaves and Fruits of Limoncillo (Siparuna muricata (Ruiz & Pav.) A. DC.). Antibiotics 2023, 12, 82. [Google Scholar] [CrossRef]
- Ferreira, T.P.; Kuckelhaus, G.P.; Tschoeke, P.H.; Cangussu, A.S.; Cibene, J.; Borges, M.; de Souza Moura, W.; de Souza Aguiar, R.W. Influence of seasonality on the yield and composition of the essential oil of Siparuna guianensis Aublet. Afr. J. Biotechnol. 2017, 16, 1611–1618. [Google Scholar]
- Andrade, M.A.; Cardoso, M.D.G.; De Andrade, J.; Silva, L.F.; Teixeira, M.L.; Resende, J.M.V.; Figueiredo, A.C.D.S.; Barroso, J.G. Chemical Composition and Antioxidant Activity of Essential Oils from Cinnamodendron dinisii Schwacke and Siparuna guianensis Aublet. Antioxidants 2013, 2, 384–397. [Google Scholar] [CrossRef] [PubMed]
- Bloomquist, J.R.; Boina, D.R.; Chow, E.; Carlier, P.R.; Reina, M.; Gonzalez-Coloma, A. Mode of action of the plant-derived silphinenes on insect and mammalian GABAA receptor/chloride channel complex. Pestic. Biochem. Physiol. 2008, 91, 17–23. [Google Scholar] [CrossRef]
- Blenau, W.; Rademacher, E.; Baumann, A. Plant essential oils and formamidines as insecticides/acaricides: What are the molecular targets? Apidologie 2012, 43, 334–347. [Google Scholar] [CrossRef]
- Enan, E.E. Molecular and pharmacological analysis of an octopamine receptor from american cockroach and fruit fly in response to plant essential oils. Arch. Insect Biochem. Physiol. 2005, 59, 161–171. [Google Scholar] [CrossRef]
- Enan, E.E. Molecular response of Drosophila melanogaster tyramine receptor cascade to plant essential oils. Insect Biochem. Mol. Biol. 2005, 35, 309–321. [Google Scholar] [CrossRef]
- Tong, F.; Coats, J.R. Quantitative structure–activity relationships of monoterpenoid binding activities to the housefly GABA receptor. Pest. Manag. Sci. 2012, 68, 1122–1129. [Google Scholar] [CrossRef] [PubMed]
- Kostyukovsky, M.; Rafaeli, A.; Gileadi, C.; Demchenko, N.; Shaaya, E. Activation of octopaminergic receptors by essential oil constituents isolated from aromatic plants: Possible mode of action against insect pests. Pest. Manag. Sci. 2002, 58, 1101–1106. [Google Scholar] [CrossRef]
- Jumbo, L.O.V.; Corrêa, M.J.M.; Gomes, J.M.; Armijos, M.J.G.; Valarezo, E.; Mantilla-Afanador, J.G.; Machado, F.P.; Rocha, L.; Aguiar, R.W.; Oliveira, E.E. Potential of Bursera graveolens essential oil for controlling bean weevil infestations: Toxicity, repellence, and action targets. Ind. Crops Prod. 2022, 178, 114611. [Google Scholar] [CrossRef]
- Toledo, P.F.S.; Viteri Jumbo, L.O.; Rezende, S.M.; Haddi, K.; Silva, B.A.; Mello, T.S.; Della Lucia, T.M.; Aguiar, R.W.; Smagghe, G.; Oliveira, E.E. Disentangling the ecotoxicological selectivity of clove essential oil against aphids and non-target ladybeetles. Sci. Total Environ. 2020, 718, 137328. [Google Scholar] [CrossRef]
- Toledo, P.F.S.; da Cruz Araujo, S.H.; Mantilla Afanador, J.G.; Silva, A.C.F.; Machado, F.P.; Rocha, L.M.; Oliveira, E.E. Potential of Ocotea indecora Essential Oil for Controlling Drosophila suzukii: Molecular Predictions for Toxicity and Selectivity to Beneficial Arthropods. Neotrop. Entomol. 2024, 53, 189–199. [Google Scholar] [CrossRef]
- Miyazawa, M.; Nakahashi, H.; Usami, A.; Matsuda, N. Chemical composition, aroma evaluation, and inhibitory activity towards acetylcholinesterase of essential oils from Gynura bicolor DC. J. Nat. Med. 2016, 70, 282–289. [Google Scholar] [CrossRef]
- López, M.D.; Pascual-Villalobos, M.J. Mode of inhibition of acetylcholinesterase by monoterpenoids and implications for pest control. Ind. Crops Prod. 2010, 31, 284–288. [Google Scholar] [CrossRef]
- Bruce, T.J.A.; Wadhams, L.J.; Woodcock, C.M. Insect host location: A volatile situation. Trends Plant Sci. 2005, 10, 269–274. [Google Scholar] [CrossRef]
- Stranden, M.; Borg-Karlson, A.K.; Mustaparta, H. Receptor Neuron Discrimination of the Germacrene D Enantiomers in the Moth Helicoverpa armigera. Chem. Senses 2002, 27, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Stranden, M.; Røstelien, T.; Liblikas, I.; Almaas, T.J.; Borg-Karlson, A.K.; Mustaparta, H. Receptor neurones in three heliothine moths responding to floral and inducible plant volatiles. Chemoecology 2003, 13, 143–154. [Google Scholar] [CrossRef]
- Martins, R.M.G.; Xavier-Júnior, F.H.; Barros, M.R.; Menezes, T.M.; de Assis, C.R.D.; de Melo, A.C.G.R.; Veras, B.O.; Ferraz, V.P.; Filho, A.A.; Yogui, G.T.; et al. Impact on cholinesterase-inhibition and in silico investigations of sesquiterpenoids from Amazonian Siparuna guianensis Aubl. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 252, 119511. [Google Scholar] [CrossRef]
- Govindarajan, M.; Benelli, G. α-Humulene and β-elemene from Syzygium zeylanicum (Myrtaceae) essential oil: Highly effective and eco-friendly larvicides against Anopheles subpictus, Aedes albopictus, and Culex tritaeniorhynchus (Diptera: Culicidae). Parasitol. Res. 2016, 115, 2771–2778. [Google Scholar] [CrossRef]
- Govindarajan, M.; Rajeswary, M.; Senthilmurugan, S.; Vijayan, P.; Alharbi, N.S.; Kadaikunnan, S.; Khaled, J.M.; Benelli, G. Curzerene, trans-β-elemenone, and γ-elemene as effective larvicides against Anopheles subpictus, Aedes albopictus, and Culex tritaeniorhynchus: Toxicity on non-target aquatic predators. Environ. Sci. Pollut. Res. 2018, 25, 10272–10282. [Google Scholar] [CrossRef]
- Benelli, G.; Govindarajan, M.; AlSalhi, M.S.; Devanesan, S.; Maggi, F. High toxicity of camphene and γ-elemene from Wedelia prostrata essential oil against larvae of Spodoptera litura (Lepidoptera: Noctuidae). Environ. Sci. Pollut. Res. 2018, 25, 10383–10391. [Google Scholar] [CrossRef]
- Lacruz, A.; Barrera-Cortés, J.; Lina-García, L.; Ramos-Valdivia, A.C.; Santillán, R. Nanoemulsified Formulation of Cedrela odorata Essential Oil and Its Larvicidal Effect against Spodoptera frugiperda (J.E. Smith). Molecules 2022, 27, 2975. [Google Scholar] [CrossRef]
- Enan, E. Compositions and Methods for Controlling Insects—Google Patents. US20080075796A1, 27 March 2008. Available online: https://patents.google.com/patent/US20080075796A1/en (accessed on 22 April 2025).
- Liu, F.; Wang, Q.; Xu, P.; Andreazza, F.; Valbon, W.R.; Bandason, E.; Chen, M.; Yan, R.; Feng, B.; Smith, L.B.; et al. A dual-target molecular mechanism of pyrethrum repellency against mosquitoes. Nat. Commun. 2021, 12, 2553. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Xu, P.; Sanchez, S.; Duran, P.; Andreazza, F.; Isaacs, R.; Dong, K. Behavioral and physiological responses of Drosophila melanogaster and D. suzukii to volatiles from plant essential oils. Pest. Manag. Sci. 2021, 77, 3698–3705. [Google Scholar] [CrossRef] [PubMed]
- Mendes, L.A.; Silva, R.R.A.; Soares, E.E.d.O.; Corrêa, M.J.M.; Marques, C.S.; Ferreira, M.F.d.S. Optimization of inclusion complex’s preparation of Psidium cattleyanum S. essential oil and 2-hydroxypropyl-β-cyclodextrin by central composite design for application as larvicide in Aedes aegypti L. Ind. Crops Prod. 2023, 194, 116333. [Google Scholar] [CrossRef]
- El-Sayed, N.A.E.; Farag, A.E.S.; Ezzat, M.A.F.; Akincioglu, H.; Gülçin, İ.; Abou-Seri, S.M. Design, synthesis, in vitro and in vivo evaluation of novel pyrrolizine-based compounds with potential activity as cholinesterase inhibitors and anti-Alzheimer’s agents. Bioorg. Chem. 2019, 93, 103312. [Google Scholar] [CrossRef] [PubMed]
- Mallard, I.; Bourgeois, D.; Fourmentin, S. A friendly environmental approach for the controlled release of Eucalyptus essential oil. Colloids Surf. A Physicochem. Eng. Asp. 2018, 549, 130–137. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry. 2017. Available online: http://www.juniperus.org/uploads/2/2/6/3/22639912/bk4frontisbnpreface-contents5thedonline2017.pdf (accessed on 22 April 2025).
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, 296–303. [Google Scholar] [CrossRef]
- Ramachandran, G.N.; Sasisekharan, V. Conformation of Polypeptides and Proteins. Adv. Protein Chem. 1968, 23, 283–437. [Google Scholar] [CrossRef]
- Haas, J.; Barbato, A.; Behringer, D.; Studer, G.; Roth, S.; Bertoni, M. Continuous Automated Model EvaluatiOn (CAMEO) complementing the critical assessment of structure prediction in CASP12. Proteins Struct. Funct. Bioinform. 2018, 86, 387–398. [Google Scholar] [CrossRef]
- Benkert, P.; Biasini, M.; Schwede, T. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 2011, 27, 343–350. [Google Scholar] [CrossRef]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S. Update: Improved access to chemical data. Nucleic Acids Res. 2019, 47, 1102–1109. [Google Scholar] [CrossRef]
- Sanner, M.F. Python: A programming language for software integration and development. J. Mol. Graph. Model. 1999, 17, 57–61. [Google Scholar] [PubMed]
- Morris, G.M.; Ruth, H.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [PubMed]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Biovia, D.S.; Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Richmond, T.J. Dassault systèmes BIOVIA, discovery studio visualizer, 17.2, San Diego: Dassault Systèmes, 2016. J. Chem. Phys. 2000, 10, 21–9991. [Google Scholar]
N° | Compound | Terpenic Classification a | Siparuna guianensis | Siparuna gesnerioides | ||
---|---|---|---|---|---|---|
tretention | Arel (%) | tretention | Arel (%) | |||
1 | α-copaene | HS | 28.632 | 4.7 | 28.636 | 6.7 |
2 | β-bourbonene | HS | 29.002 | 5.5 | - | - |
3 | β-caryophyllene | HS | 30.484 | 4.6 | 30.479 | 6.6 |
4 | germacrene D | HS | 33.212 | 31.9 | 33.263 | 43.8 |
5 | γ-elemene | HS | 33.924 | 45.8 | - | - |
6 | Δ-cadinene | HS | 35.046 | 7.5 | 35.068 | 11.4 |
7 | β-pinene | HM | - | - | 10.318 | 3 |
8 | α-bergamotene | HS | - | - | 31.306 | 10.7 |
9 | α-humulene | HS | - | - | 31.927 | 3.7 |
10 | aromadendrene | HS | - | - | 33.383 | 6.1 |
11 | α-amorphene | HS | - | - | 34.586 | 2.8 |
Total Identified | 100.0 | 94.8 |
Plant Species | Slope ± SE | LC25 (95% CI) | LC50 (95% CI) | LC80 (95% CI) | Toxicity Ratio (TR50) * |
---|---|---|---|---|---|
Siparuna guianensis | 5.42 ± 0.56 | 0.063 (0.060–0.067) | 0.078 (0.074–0.083) | 0.101 (0.094–0.112) | - |
Siparuna gesnerioides | 5.55 ± 0.43 | 0.053 (0.049–0.056) | 0.070 (0.066–0.074) | 0.099 (0.091–0.109) | 1.09 (0.95–1.21) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montaño-Campaz, M.L.; Oliveira, E.E.; Toro-Restrepo, B.; Bacca, T.; Feuillet-Hurtado, C.; Afanador, J.G.M.; Moreira, R.P.L.; Mendes, L.A.; Aguiar, R.W.S.; Dias, L.G. Siparuna gesnerioides and Siparuna guianensis Essential Oils in Aedes aegypti Control: Phytoanalysis, Molecular Insights for Larvicidal Activity and Selectivity to Non-Target Organisms. Plants 2025, 14, 1322. https://doi.org/10.3390/plants14091322
Montaño-Campaz ML, Oliveira EE, Toro-Restrepo B, Bacca T, Feuillet-Hurtado C, Afanador JGM, Moreira RPL, Mendes LA, Aguiar RWS, Dias LG. Siparuna gesnerioides and Siparuna guianensis Essential Oils in Aedes aegypti Control: Phytoanalysis, Molecular Insights for Larvicidal Activity and Selectivity to Non-Target Organisms. Plants. 2025; 14(9):1322. https://doi.org/10.3390/plants14091322
Chicago/Turabian StyleMontaño-Campaz, Milton L., Eugenio E. Oliveira, Beatriz Toro-Restrepo, Tito Bacca, Carolina Feuillet-Hurtado, Javier G. Mantilla Afanador, Renata Pereira Lopes Moreira, Luiza Alves Mendes, Raimundo Wagner S. Aguiar, and Lucimar G. Dias. 2025. "Siparuna gesnerioides and Siparuna guianensis Essential Oils in Aedes aegypti Control: Phytoanalysis, Molecular Insights for Larvicidal Activity and Selectivity to Non-Target Organisms" Plants 14, no. 9: 1322. https://doi.org/10.3390/plants14091322
APA StyleMontaño-Campaz, M. L., Oliveira, E. E., Toro-Restrepo, B., Bacca, T., Feuillet-Hurtado, C., Afanador, J. G. M., Moreira, R. P. L., Mendes, L. A., Aguiar, R. W. S., & Dias, L. G. (2025). Siparuna gesnerioides and Siparuna guianensis Essential Oils in Aedes aegypti Control: Phytoanalysis, Molecular Insights for Larvicidal Activity and Selectivity to Non-Target Organisms. Plants, 14(9), 1322. https://doi.org/10.3390/plants14091322