Innovative Extraction Techniques Using Deep Eutectic Solvents and Analytical Methods for the Isolation and Characterization of Natural Bioactive Compounds from Plant Material
Abstract
:1. Introduction
2. Analytical Procedures for Determination of Bioactive Compounds from the Plant Material
3. Short Historical Overview of Development and Use of DES/NADES
3.1. Ultrasound-Assisted DES/NADES Extractions of Bioactive Compounds
3.2. Microwave-Assisted DES/NADES Extractions of Bioactive Compounds
3.3. New Trends in Extractions of Bioactive Compounds
3.4. Recovering of the Bioactive Compounds from the DES/NADES Extracts
4. Conclusions with Future Perspectives
- Sugar-based NADES have the highest viscosity, which makes them difficult to handle and consequently limits their use in the commercial extraction processes [82].
- In the case of the flavonoid class, the results presented in the majority of the papers have identified choline chloride:polyalchol-based DES/NADES as the most promising solvents (Table 1 and Table 2). However, a complete generalization in this case is not possible. Namely, the flavonoids are additionally divided into several subclasses [167], and the optimization of DES/NADES extraction protocols should be based on the individual subclass.
- Choline chloride:urea is one of the first synthetized and investigated DES, but this solvent has not found significant application in the extraction of bioactive compounds. One of the few studies in which this solvent has proven to be the best was published by Pal et al. [54]. Indeed, they have confirmed that choline chloride:urea DES is the optimal medium for the isolation of four main flavonoids (quercetin, kaempferol and myricetin) found in the onion skin. However, it should be noted that only three HBD (urea, sucrose and sorbitol) were tested in the present study. This may explain the difference between these results and the others, which were found polyalcohol-based DES to be the most acceptable for isolating the three target flavonoids [110,111,143].
- In general, the extractability of DES/NADES was in most cases higher compared to conventionally used extraction methods. However, some deviations between the results can be explained by various external factors, such as different origin of the samples analyzed, different growing locations, climatic conditions, time of harvest, storage conditions, etc.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ferrazzano, G.F.; Amato, I.; Ingenito, A.; Zarrelli, A.; Pinto, G.; Pollio, A. Plant polyphenols and their anti-cariogenic properties: A review. Molecules 2011, 16, 1486–1507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahebi, M.; Hanafi, M.M.; van Wijnen, A.J.; Akmar, A.S.N.; Azizi, P.; Idris, A.S.; Taheri, S.; Foroughi, M. Profiling secondary metabolites of plant defence mechanisms and oil palm in response to Ganoderma boninense attack. Int. Biodeterior. Biodegradation 2017, 122, 151–164. [Google Scholar] [CrossRef]
- Ignat, I.; Volf, I.; Popa, V.I. A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem. 2011, 126, 1821–1835. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.H.; Verpoorte, R. Green solvents for the extraction of bioactive compounds from natural products using ionic liquids and deep eutectic solvents. Curr. Opin. Food Sci. 2019, 26, 87–93. [Google Scholar] [CrossRef]
- Gałuszka, A.; Migaszewski, Z.; Namieśnik, J. The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices. TrAC Trends Anal. Chem. 2013, 50, 78–84. [Google Scholar] [CrossRef]
- European Environment Agency. Towards a Green Economy in Europe. EU Environmental Policy Targets and Objectives 2010-2050; European Environment Agency: Copenhagen, Denmark, 2013. [Google Scholar]
- Meksi, N.; Moussa, A. A review of progress in the ecological application of ionic liquids in textile processes. J. Clean. Prod. 2017, 161, 105–126. [Google Scholar] [CrossRef]
- Thuy Pham, T.P.; Cho, C.W.; Yun, Y.S. Environmental fate and toxicity of ionic liquids: A review. Water Res. 2010, 44, 352–372. [Google Scholar] [CrossRef] [PubMed]
- Cvjetko Bubalo, M.; Radošević, K.; Radojčić Redovniković, I.; Halambek, J.; Gaurina Srček, V. A brief overview of the potential environmental hazards of ionic liquids. Ecotoxicol. Environ. Saf. 2014, 99, 1–12. [Google Scholar] [CrossRef]
- Zainal-Abidin, M.H.; Hayyan, M.; Ngoh, G.C.; Wong, W.F.; Looi, C.Y. Emerging frontiers of deep eutectic solvents in drug discovery and drug delivery systems. J. Control. Release 2019, 316, 168–195. [Google Scholar] [CrossRef]
- Tomé, L.I.N.; Baião, V.; da Silva, W.; Brett, C.M.A. Deep eutectic solvents for the production and application of new materials. Appl. Mater. Today 2018, 10, 30–50. [Google Scholar] [CrossRef]
- Majid, M.F.; Mohd Zaid, H.F.; Kait, C.F.; Jumbri, K.; Yuan, L.C.; Rajasuriyan, S. Futuristic advance and perpective of deep eutectic solvent for extractive desulfurization of fuel oil: A review. J. Mol. Liq. 2020, 306, 112870. [Google Scholar] [CrossRef]
- Cai, T.; Qiu, H. Application of deep eutectic solvents in chromatography: A review. TrAC Trends Anal. Chem. 2019, 120, 115623. [Google Scholar] [CrossRef]
- Mota-Morales, J.D.; Sánchez-Leija, R.J.; Carranza, A.; Pojman, J.A.; del Monte, F.; Luna-Bárcenas, G. Free-radical polymerizations of and in deep eutectic solvents: Green synthesis of functional materials. Prog. Polym. Sci. 2018, 78, 139–153. [Google Scholar] [CrossRef]
- Perna, F.M.; Vitale, P.; Capriati, V. Deep eutectic solvents and their applications as green solvents. Curr. Opin. Green Sustain. Chem. 2020, 21, 27–33. [Google Scholar] [CrossRef]
- Cunha, S.C.; Fernandes, J.O. Extraction techniques with deep eutectic solvents. TrAC Trends Anal. Chem. 2018, 105, 225–239. [Google Scholar] [CrossRef]
- Kalra, P.Y. Handbook of Reference Methods for Plant Analysis; Kalra, P.Y., Ed.; Taylor & Francis Group: Boca Raton, FL, USA, 1998; Volume 38, ISBN 9781574441246. [Google Scholar]
- Ernst, W.H.O. Sampling of plant material for chemical analysis. Sci. Total Environ. 1995, 176, 15–24. [Google Scholar] [CrossRef]
- Zygmunt, B.; Namieśnik, J. Preparation of samples of plant material for chromatographic analysis. J. Chromatogr. Sci. 2003, 41, 109–116. [Google Scholar] [CrossRef]
- Liu, Z. Preparation of Botanical Samples for Biomedical Research. Endocrine‚ Metab. Immune Disord. Targets 2008, 8, 112–121. [Google Scholar] [CrossRef] [Green Version]
- Kellogg, J.J.; Paine, M.F.; McCune, J.S.; Oberlies, N.H.; Cech, N.B. Selection and characterization of botanical natural products for research studies: A NaPDI center recommended approach. Nat. Prod. Rep. 2019, 36, 1196–1221. [Google Scholar] [CrossRef] [Green Version]
- Dai, J.; Mumper, R.J. Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef]
- Moreira, M.M.; Barrose, M.F.; Boeykenes, A.; Withouck, H.; Morais, S.; Delerue-Matos, C. Valorization of apple tree wood residues by polyphenols extraction: Comparison between conventional and microwave-assisted extraction. Ind. Crops Prod. 2017, 104, 210–220. [Google Scholar] [CrossRef] [Green Version]
- Gültekin-Özgüven, M.; Davarcı, F.; Paslı, A.A.; Demir, N.; Özçelik, B. Determination of phenolic compounds by ultra high liquid chromatography-tandem mass spectrometry: Applications in nuts. LWT Food Sci. Technol. 2015, 64, 42–49. [Google Scholar] [CrossRef]
- Kečkeš, S.; Gašić, U.; Ćirković Veličković, T.; Milojković-Opsenica, D.; Natić, M.; Tešić, Ž. The determination of phenolic profiles of Serbian unifloral honeys using ultra-high-performance liquid chromatography/high resolution accurate mass spectrometry. Food Chem. 2013, 138, 32–40. [Google Scholar] [CrossRef]
- Bensa, M.; Glavnik, V.; Vovk, I. Leaves of invasive plants—japanese, bohemian and giant knotweed—The promising new source of flavan-3-ols and proanthocyanidins. Plants 2020, 9, 118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zainal-Abidin, M.H.; Hayyan, M.; Hayyan, A.; Jayakumar, N.S. New horizons in the extraction of bioactive compounds using deep eutectic solvents: A review. Anal. Chim. Acta 2017, 979, 1–23. [Google Scholar] [CrossRef]
- Belwal, T.; Chemat, F.; Venskutonis, P.R.; Cravotto, G.; Jaiswal, D.K.; Bhatt, I.D.; Devkota, H.P.; Luo, Z. Recent advances in scaling-up of non-conventional extraction techniques: Learning from successes and failures. TrAC Trends Anal. Chem. 2020, 127, 115895. [Google Scholar] [CrossRef]
- Ge, L.; Li, S.P.; Lisak, G. Advanced sensing technologies of phenolic compounds for pharmaceutical and biomedical analysis. J. Pharm. Biomed. Anal. 2020, 179, 112913. [Google Scholar] [CrossRef]
- Fierascu, R.C.; Ortan, A.; Fierascu, I.C.; Fierascu, I. In vitro and in vivo evaluation of antioxidant properties of wild-growing plants. A short review. Curr. Opin. Food Sci. 2018, 24, 1–8. [Google Scholar] [CrossRef]
- Christophoridou, S.; Dais, P. Detection and quantification of phenolic compounds in olive oil by high resolution 1H nuclear magnetic resonance spectroscopy. Anal. Chim. Acta 2009, 633, 283–292. [Google Scholar] [CrossRef]
- Santos, C.M.M.; Silva, A.M.S. Nuclear magnetic resonance spectroscopy for structural characterization of bioactive compounds. In Comprehensive Analytical Chemistry; Rocha-Santos, T., Duarte, A.C., Eds.; Elsevier B.V.: Amsterdam, The Netherlands, 2014; Volume 65, pp. 149–191. ISBN 9780444633590. [Google Scholar]
- Ciura, K.; Dziomba, S.; Nowakowska, J.; Markuszewski, M.J. Thin layer chromatography in drug discovery process. J. Chromatogr. A 2017, 1520, 9–22. [Google Scholar] [CrossRef]
- Ristivojević, P.; Trifković, J.; Vovk, I.; Milojković-Opsenica, D. Comparative study of different approaches for multivariate image analysis in HPTLC fingerprinting of natural products such as plant resin. Talanta 2017, 162, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Glavnik, V.; Vovk, I.; Albreht, A. High performance thin-layer chromatography–mass spectrometry of Japanese knotweed flavan-3-ols and proanthocyanidins on silica gel plates. J. Chromatogr. A 2017, 1482, 97–108. [Google Scholar] [CrossRef] [PubMed]
- Kranjc, E.; Albreht, A.; Vovk, I.; Glavnik, V. High performance thin-layer chromatography–mass spectrometry enables reliable analysis of physalins in different plant parts of Physalis alkekengi L. J. Chromatogr. A 2017, 1526, 137–150. [Google Scholar] [CrossRef]
- Brusotti, G.; Cesari, I.; Dentamaro, A.; Caccialanza, G.; Massolini, G. Isolation and characterization of bioactive compounds from plant resources: The role of analysis in the ethnopharmacological approach. J. Pharm. Biomed. Anal. 2014, 87, 218–228. [Google Scholar] [CrossRef]
- Abu Reidah, I.M. Characterization of Phenolic Compounds in Highly-Consumed Vegetable Matrices by Using Advanced Analytical Techniques. Ph.D. Thesis, University of Granada, Granada, Spain, 2013. [Google Scholar]
- Pati, S.; Crupi, P.; Benucci, I.; Antonacci, D.; Di Luccia, A.; Esti, M. HPLC-DAD–MS/MS characterization of phenolic compounds in white wine stored without added sulfit. Food Res. Int. 2014, 66, 207–215. [Google Scholar] [CrossRef]
- Sun, D.; Dong, L.; Guo, P.; Shi, X.; Gao, J.; Ren, Y.; Jiang, X.; Li, W.; Wang, C.; Wang, Q. Simultaneous detection of flavonoids and phenolic acids in Herba Lysimachiae and Herba Desmodii Styracifolii using liquid chromatography tandem mass spectrometry. Food Chem. 2013, 138, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Ivanović, M.; Islamčević Razboršek, M.; Kolar, M. Simultaneous GC-MS Determination of Free and Bound Phenolic Acids in Slovenian Red Wines and Chemometric Characterization. Acta Chim. Slov. 2016, 63, 661–669. [Google Scholar] [CrossRef]
- Islamčević Razbošek, M. Stability studies on trans -rosmarinic acid and GC – MS analysis of its degradation product. J. Pharm. Biomed. Anal. 2011, 55, 1010–1016. [Google Scholar]
- Marriott, P.J.; Shellie, R.; Cornwell, C. Gas chromatographic technologies for the analysis of essential oils. J. Chromatogr. A 2001, 936, 1–22. [Google Scholar] [CrossRef]
- Bernhoft, A. Bioactive compounds in plants – benefits and risks for man and animals. In Proceedings of the Proceedings from a Symposium, Oslo, Norway, 13–14 November 2008; Bernhoft, A., Ed.; The Norwegian Academy of Science and Letters: Oslo, Norway, 2008; pp. 1–255. [Google Scholar]
- Cvjetko Bubalo, M.; Vidović, S.; Radojčić Redovniković, I.; Jokić, S. New perspective in extraction of plant biologically active compounds by green solvents. Food Bioprod. Process. 2018, 109, 52–73. [Google Scholar] [CrossRef]
- Patra, J.K.; Das, G.; Lee, S.; Kang, S.S.; Shin, H.S. Selected commercial plants: A review of extraction and isolation of bioactive compounds and their pharmacological market value. Trends Food Sci. Technol. 2018, 82, 89–109. [Google Scholar] [CrossRef]
- Mansur, A.R.; Song, N.E.; Jang, H.W.; Lim, T.G.; Yoo, M.; Nam, T.G. Optimizing the ultrasound-assisted deep eutectic solvent extraction of flavonoids in common buckwheat sprouts. Food Chem. 2019, 293, 438–445. [Google Scholar] [CrossRef]
- Shang, X.; Dou, Y.; Zhang, Y.; Tan, J.N.; Liu, X.; Zhang, Z. Tailor-made natural deep eutectic solvents for green extraction of isoflavones from chickpea (Cicer arietinum L.) sprouts. Ind. Crops Prod. 2019, 140, 111724. [Google Scholar] [CrossRef]
- Barba, F.J.; Mariutti, L.R.B.; Bragagnolo, N.; Mercadante, A.Z.; Barbosa-Cánovas, G.V.; Orlien, V. Bioaccessibility of bioactive compounds from fruits and vegetables after thermal and nonthermal processing. Trends Food Sci. Technol. 2017, 67, 195–206. [Google Scholar] [CrossRef]
- Skrajda-Brdak, M.; Dąbrowski, G.; Konopka, I. Edible flowers, a source of valuable phytonutrients and their pro-healthy effects – A review. Trends Food Sci. Technol. 2020, 103, 179–199. [Google Scholar] [CrossRef]
- Gorji, N.; Moeini, R.; Memariani, Z. Almond, hazelnut and walnut, three nuts for neuroprotection in Alzheimer’s disease: A neuropharmacological review of their bioactive constituents. Pharmacol. Res. 2018, 129, 115–127. [Google Scholar] [CrossRef]
- Chanioti, S.; Tzia, C. Extraction of phenolic compounds from olive pomace by using natural deep eutectic solvents and innovative extraction techniques. Innov. Food Sci. Emerg. Technol. 2018, 48, 228–239. [Google Scholar] [CrossRef]
- Fernández, M.d.l.Á.; Espino, M.; Gomez, F.J.V.; Silva, M.F. Novel approaches mediated by tailor-made green solvents for the extraction of phenolic compounds from agro-food industrial by-products. Food Chem. 2018, 239, 671–678. [Google Scholar]
- Pal, C.B.T.; Jadeja, G.C. Deep eutectic solvent-based extraction of polyphenolic antioxidants from onion (Allium cepa L.) peel. J. Sci. Food Agric. 2019, 99, 1969–1979. [Google Scholar] [CrossRef]
- Pal, C.B.T.; Jadeja, G.C. Microwave-assisted extraction for recovery of polyphenolic antioxidants from ripe mango (Mangifera indica L.) peel using lactic acid/sodium acetate deep eutectic mixtures. Food Sci. Technol. Int. 2020, 26, 78–92. [Google Scholar] [CrossRef]
- Vázquez-González, M.; Fernández-Prior, Á.; Bermúdez Oria, A.; Rodríguez-Juan, E.M.; Pérez-Rubio, A.G.; Fernández-Bolaños, J.; Rodríguez-Gutiérrez, G. Utilization of strawberry and raspberry waste for the extraction of bioactive compounds by deep eutectic solvents. Lwt 2020, 130, 109645. [Google Scholar] [CrossRef]
- Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel Solvent Properties of Choline Chloride /Urea Mixtures. Chem. Commun. 2003, 0, 70–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, Y.H.; van Spronsen, J.; Dai, Y.; Verberne, M.; Hollmann, F.; Arends, I.W.C.E.; Witkamp, G.J.; Verpoorte, R. Are natural deep eutectic solvents the missing link in understanding cellular metabolism and physiology? Plant Physiol. 2011, 156, 1701–1705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Espino, M.; de los Ángeles Fernández, M.; Gomez, F.J.V.; Silva, M.F. Natural designer solvents for greening analytical chemistry. TrAC Trends Anal. Chem. 2016, 76, 126–136. [Google Scholar] [CrossRef]
- Dai, Y.; van Spronsen, J.; Witkamp, G.J.; Verpoorte, R.; Choi, Y.H. Natural deep eutectic solvents as new potential media for green technology. Anal. Chim. Acta 2013, 766, 61–68. [Google Scholar] [CrossRef]
- Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep Eutectic Solvents (DESs) and Their Applications. Chem. Rev. 2014, 114, 11060–11082. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez, M.C.; Ferrer, M.L.; Mateo, C.R.; Monte, F. Del Freeze-drying of aqueous solutions of deep eutectic solvents: A suitable approach to deep eutectic suspensions of self-assembled structures. Langmuir 2009, 25, 5509–5515. [Google Scholar] [CrossRef]
- Bajkacz, S.; Adamek, J. Development of a Method Based on Natural Deep Eutectic Solvents for Extraction of Flavonoids from Food Samples. Food Anal. Methods 2018, 11, 1330–1344. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, Y.H.; Li, Y.; Pan, Z.; Chen, Z.; Lu, J.; Yuan, J.; Zhu, Z.; Zhang, J. Ultrasonication-assisted synthesis of alcohol-based deep eutectic solvents for extraction of active compounds from ginger. Ultrason. Sonochem. 2020, 63, 104915. [Google Scholar] [CrossRef]
- Gomez, F.J.V.; Espino, M.; Fernández, M.A.; Silva, M.F. A Greener Approach to Prepare Natural Deep Eutectic Solvents. ChemistrySelect 2018, 3, 6122–6125. [Google Scholar] [CrossRef]
- Ali, M.C.; Chen, J.; Zhang, H.; Li, Z.; Zhao, L.; Qiu, H. Effective extraction of flavonoids from Lycium barbarum L. fruits by deep eutectic solvents-based ultrasound-assisted extraction. Talanta 2019, 203, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Bosiljkov, T.; Dujmić, F.; Cvjetko Bubalo, M.; Hribar, J.; Vidrih, R.; Brnčić, M.; Zlatic, E.; Radojčić Redovniković, I.; Jokić, S. Natural deep eutectic solvents and ultrasound-assisted extraction: Green approaches for extraction of wine lees anthocyanins. Food Bioprod. Process. 2017, 102, 195–203. [Google Scholar] [CrossRef]
- Ivanović, M.; Alañón, M.E.; Arráez-Román, D.; Segura-Carretero, A. Enhanced and green extraction of bioactive compounds from Lippia citriodora by tailor-made natural deep eutectic solvents. Food Res. Int. 2018, 111, 67–76. [Google Scholar] [CrossRef]
- Torregrosa-Crespo, J.; Marset, X.; Guillena, G.; Ramón, D.J.; María Martínez-Espinosa, R. New guidelines for testing “Deep eutectic solvents” toxicity and their effects on the environment and living beings. Sci. Total Environ. 2020, 704, 135382. [Google Scholar] [CrossRef]
- Dai, Y.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y.H. Natural Deep Eutectic Solvents as a New Extraction Media for Phenolic Metabolites in Carthamus tinctorius L. Anal. Chem. 2013, 85, 6272–6278. [Google Scholar] [CrossRef] [PubMed]
- Bi, W.; Tian, M.; Row, K.H. Evaluation of alcohol-based deep eutectic solvent in extraction and determination of flavonoids with response surface methodology optimization. J. Chromatogr. A 2013, 1285, 22–30. [Google Scholar] [CrossRef]
- Dai, Y.; Verpoorte, R.; Choi, Y.H. Natural deep eutectic solvents providing enhanced stability of natural colorants from safflower (Carthamus tinctorius). Food Chem. 2014, 159, 116–121. [Google Scholar] [CrossRef]
- El Achkar, T.; Fourmentin, S.; Greige-Gerges, H. Deep eutectic solvents: An overview on their interactions with water and biochemical compounds. J. Mol. Liq. 2019, 288, 111028. [Google Scholar] [CrossRef]
- Gajardo-Parra, N.F.; Lubben, M.J.; Winnert, J.M.; Leiva, Á.; Brennecke, J.F.; Canales, R.I. Physicochemical properties of choline chloride-based deep eutectic solvents and excess properties of their pseudo-binary mixtures with 1-butanol. J. Chem. Thermodyn. 2019, 133, 272–284. [Google Scholar] [CrossRef]
- Benabid, S.; Benguerba, Y.; AlNashef, I.M.; Haddaoui, N. Theoretical study of physicochemical properties of selected ammonium salt-based deep eutectic solvents. J. Mol. Liq. 2019, 285, 38–46. [Google Scholar] [CrossRef]
- Leron, R.B.; Wong, D.S.H.; Li, M.H. Densities of a deep eutectic solvent based on choline chloride and glycerol and its aqueous mixtures at elevated pressures. Fluid Phase Equilib. 2012, 335, 32–38. [Google Scholar] [CrossRef]
- Ruesgas-Ramón, M.; Figueroa-Espinoza, M.C.; Durand, E. Application of Deep Eutectic Solvents (DES) for Phenolic Compounds Extraction: Overview, Challenges, and Opportunities. J. Agric. Food Chem. 2017, 65, 3591–3601. [Google Scholar] [CrossRef] [PubMed]
- Vilková, M.; Płotka-Wasylka, J.; Andruch, V. The role of water in deep eutectic solvent-base extraction. J. Mol. Liq. 2020, 304, 112747. [Google Scholar] [CrossRef]
- Duan, L.; Zhang, W.H.; Zhang, Z.H.; Liu, E.H.; Guo, L. Evaluation of natural deep eutectic solvents for the extraction of bioactive flavone C-glycosides from Flos Trollii. Microchem. J. 2019, 145, 180–186. [Google Scholar] [CrossRef]
- Alañón, M.E.; Ivanović, M.; Gómez-Caravaca, A.M.; Arráez-Román, D.; Segura-Carretero, A. Choline chloride derivative-based deep eutectic liquids as novel green alternative solvents for extraction of phenolic compounds from olive leaf. Arab. J. Chem. 2020, 13, 1685–1701. [Google Scholar] [CrossRef]
- Jakovljević, M.; Vladić, J.; Vidović, S.; Pastor, K.; Jokić, S.; Molnar, M.; Jerković, I. Application of deep eutectic solvents for the extraction of rutin and rosmarinic acid from Satureja montana L. And evaluation of the extracts antiradical activity. Plants 2020, 9, 153. [Google Scholar] [CrossRef] [Green Version]
- Hayyan, A.; Mjalli, F.S.; Alnashef, I.M.; Al-Wahaibi, T.; Al-Wahaibi, Y.M.; Hashim, M.A. Fruit sugar-based deep eutectic solvents and their physical properties. Thermochim. Acta 2012, 541, 70–75. [Google Scholar] [CrossRef]
- Skulcova, A.; Russ, A.; Jablonsky, M.; Sima, J. The pH Behavior of Seventeen Deep Eutectic Solvents. BioResourece 2018, 13, 5042–5051. [Google Scholar]
- Křížek, T.; Bursová, M.; Horsley, R.; Kuchař, M.; Tůma, P.; Čabala, R.; Hložek, T. Menthol-based hydrophobic deep eutectic solvents: Towards greener and efficient extraction of phytocannabinoids. J. Clean. Prod. 2018, 193, 391–396. [Google Scholar] [CrossRef]
- Wang, L.T.; Yang, Q.; Cui, Q.; Fan, X.H.; Dong, M.Z.; Gao, M.Z.; Lv, M.J.; An, J.Y.; Meng, D.; Zhao, X.H.; et al. Recyclable menthol-based deep eutectic solvent micellar system for extracting phytochemicals from Ginkgo biloba leaves. J. Clean. Prod. 2020, 244, 118648. [Google Scholar] [CrossRef]
- Jin, Y.; Jung, D.; Li, K.; Park, K.; Lee, J. Mixing of menthol-based hydrophobic deep eutectic solvents as a novel method to tune their properties. J. Mol. Liq. 2020, 301, 112416. [Google Scholar] [CrossRef]
- Cao, J.; Chen, L.; Li, M.; Cao, F.; Zhao, L.; Su, E. Two-phase systems developed with hydrophilic and hydrophobic deep eutectic solvents for simultaneously extracting various bioactive compounds with different polarities. Green Chem. 2018, 20, 1879–1886. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Sicaire, A.G.; Meullemiestre, A.; Fabiano-Tixier, A.S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef] [PubMed]
- Dzah, C.S.; Duan, Y.; Zhang, H.; Wen, C.; Zhang, J.; Chen, G.; Ma, H. The effects of ultrasound assisted extraction on yield, antioxidant, anticancer and antimicrobial activity of polyphenol extracts: A review. Food Biosci. 2020, 35, 100547. [Google Scholar] [CrossRef]
- Fu, X.; Belwal, T.; Cravotto, G.; Luo, Z. Sono-physical and sono-chemical effects of ultrasound: Primary applications in extraction and freezing operations and influence on food components. Ultrason. Sonochem. 2020, 60, 104726. [Google Scholar] [CrossRef] [PubMed]
- Picó, Y. Ultrasound-assisted extraction for food and environmental samples. TrAC Trends Anal. Chem. 2013, 43, 84–99. [Google Scholar] [CrossRef]
- Vinatoru, M.; Mason, T.J.; Calinescu, I. Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials. TrAC Trends Anal. Chem. 2017, 97, 159–178. [Google Scholar] [CrossRef]
- Garcia-Salas, P.; Morales-Soto, A.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Phenolic-compound-extraction systems for fruit and vegetable samples. Molecules 2010, 15, 8813–8826. [Google Scholar] [CrossRef]
- Irakli, M.; Chatzopoulou, P.; Ekateriniadou, L. Optimization of ultrasound-assisted extraction of phenolic compounds: Oleuropein, phenolic acids, phenolic alcohols and flavonoids from olive leaves and evaluation of its antioxidant activities. Ind. Crops Prod. 2018, 124, 382–388. [Google Scholar] [CrossRef]
- Morelli, L.L.L.; Prado, M.A. Extraction optimization for antioxidant phenolic compounds in red grape jam using ultrasound with a response surface methodology. Ultrason. Sonochem. 2012, 19, 1144–1149. [Google Scholar] [CrossRef]
- Pandey, A.; Belwal, T.; Sekar, K.C.; Bhatt, I.D.; Rawal, R.S. Optimization of ultrasonic-assisted extraction (UAE) of phenolics and antioxidant compounds from rhizomes of Rheum moorcroftianum using response surface methodology (RSM). Ind. Crops Prod. 2018, 119, 218–225. [Google Scholar] [CrossRef]
- Setyaningsih, W.; Saputro, I.E.; Carrera, C.A.; Palma, M. Optimisation of an ultrasound-assisted extraction method for the simultaneous determination of phenolics in rice grains. Food Chem. 2019, 288, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zeng, Z.; Hu, N.; Bai, B.; Wang, H.; Suo, Y. Simultaneous optimization of the ultrasound-assisted extraction for phenolic compounds content and antioxidant activity of Lycium ruthenicum Murr. fruit using response surface methodology. Food Chem. 2018, 242, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Medina-Torres, N.; Ayora-Talavera, T.; Espinosa-Andrews, H.; Sánchez-Contreras, A.; Pacheco, N. Ultrasound assisted extraction for the recovery of phenolic compounds from vegetable sources. Agronomy 2017, 7, 47. [Google Scholar] [CrossRef]
- Ojha, K.S.; Aznar, R.; O’Donnell, C.; Tiwari, B.K. Ultrasound technology for the extraction of biologically active molecules from plant, animal and marine sources. TrAC Trends Anal. Chem. 2020, 122, 115563. [Google Scholar] [CrossRef]
- Cvjetko Bubalo, M.; Ćurko, N.; Tomašević, M.; Kovačević Ganić, K.; Radojcic Redovnikovic, I. Green extraction of grape skin phenolics by using deep eutectic solvents. Food Chem. 2016, 200, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Ongkowijoyo, P.; Luna-Vital, D.A.; Gonzalez de Mejia, E. Extraction techniques and analysis of anthocyanins from food sources by mass spectrometry: An update. Food Chem. 2018, 250, 113–126. [Google Scholar] [CrossRef]
- Cai, C.; Li, F.; Liu, L.; Tan, Z. Deep eutectic solvents used as the green media for the efficient extraction of caffeine from Chinese dark tea. Sep. Purif. Technol. 2019, 227, 115723. [Google Scholar] [CrossRef]
- He, X.; Yang, J.; Huang, Y.; Zhang, Y.; Wan, H.; Li, C. Green and effcient ultrasonic-assisted extraction of bioactive components from Salvia miltiorrhiza by natural deep eutectic solvents. Molecules 2020, 25, 140. [Google Scholar] [CrossRef] [Green Version]
- Ruesgas-Ramón, M.; Suárez-Quiroz, M.L.; González-Ríos, O.; Baréa, B.; Cazals, G.; Figueroa-Espinoza, M.C.; Durand, E. Biomolecules extraction from coffee and cocoa by- and co-products using deep eutectic solvents. J. Sci. Food Agric. 2020, 100, 81–91. [Google Scholar] [CrossRef]
- Saha, S.K.; Dey, S.; Chakraborty, R. Effect of choline chloride-oxalic acid based deep eutectic solvent on the ultrasonic assisted extraction of polyphenols from Aegle marmelos. J. Mol. Liq. 2019, 287, 110956. [Google Scholar] [CrossRef]
- Zhou, P.; Wang, X.; Liu, P.; Huang, J.; Wang, C.; Pan, M.; Kuang, Z. Enhanced phenolic compounds extraction from Morus alba L. leaves by deep eutectic solvents combined with ultrasonic-assisted extraction. Ind. Crops Prod. 2018, 120, 147–154. [Google Scholar] [CrossRef]
- Fanali, C.; Posta, S.D.; Dugo, L.; Russo, M.; Gentili, A.; Mondello, L.; De Gara, L. Application of deep eutectic solvents for the extraction of phenolic compounds from extra-virgin olive oil. Electrophoresis 2020, 1–21. [Google Scholar] [CrossRef]
- Fraige, K.; Arrua, R.D.; Sutton, A.T.; Funari, C.S.; Cavalheiro, A.J.; Hilder, E.F.; Bolzani, V. da S. Using natural deep eutectic solvents for the extraction of metabolites in Byrsonima intermedia leaves. J. Sep. Sci. 2019, 42, 591–597. [Google Scholar] [CrossRef]
- Meng, Z.; Zhao, J.; Duan, H.; Guan, Y.; Zhao, L. Green and efficient extraction of four bioactive flavonoids from Pollen Typhae by ultrasound-assisted deep eutectic solvents extraction. J. Pharm. Biomed. Anal. 2018, 161, 246–253. [Google Scholar] [CrossRef]
- Wang, X.H.; Wang, J.P. Effective extraction with deep eutectic solvents and enrichment by macroporous adsorption resin of flavonoids from Carthamus tinctorius L. J. Pharm. Biomed. Anal. 2019, 176, 112804. [Google Scholar] [CrossRef] [PubMed]
- Jeong, K.M.; Jin, Y.; Yoo, D.E.; Han, S.Y.; Kim, E.M.; Lee, J. One-step sample preparation for convenient examination of volatile monoterpenes and phenolic compounds in peppermint leaves using deep eutectic solvents. Food Chem. 2018, 251, 69–76. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, M. Optimization of deep eutectic solvent-based ultrasound-assisted extraction of polysaccharides from Dioscorea opposita Thunb. Int. J. Biol. Macromol. 2017, 95, 675–681. [Google Scholar] [CrossRef]
- Mohan, K.; Muralisankar, T.; Uthayakumar, V.; Chandirasekar, R.; Revathi, N.; Ramu Ganesan, A.; Velmurugan, K.; Sathishkumar, P.; Jayakumar, R.; Seedevi, P. Trends in the extraction, purification, characterisation and biological activities of polysaccharides from tropical and sub-tropical fruits—A comprehensive review. Carbohydr. Polym. 2020, 238, 116185. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Cai, C.; Liu, J.; Wang, Y.; Chen, Y.; Wang, L.; Tan, Z. Extraction and preliminary purification of polysaccharides from Camellia oleifera Abel. seed cake using a thermoseparating aqueous two-phase system based on EOPO copolymer and deep eutectic solvents. Food Chem. 2020, 313, 126164. [Google Scholar] [CrossRef]
- Takla, S.S.; Shawky, E.; Hammoda, H.M.; Darwish, F.A. Green techniques in comparison to conventional ones in the extraction of Amaryllidaceae alkaloids: Best solvents selection and parameters optimization. J. Chromatogr. A 2018, 1567, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.M.; Wang, L.J.; Gao, Z.; Zhuang, B.; Yin, Q.; Liu, E.H. Green and efficient extraction of different types of bioactive alkaloids using deep eutectic solvents. Microchem. J. 2019, 145, 345–353. [Google Scholar] [CrossRef]
- Sang, J.; Li, B.; Huang, Y.Y.; Ma, Q.; Liu, K.; Li, C.Q. Deep eutectic solvent-based extraction coupled with green two-dimensional HPLC-DAD-ESI-MS/MS for the determination of anthocyanins from: Lycium ruthenicum Murr. fruit. Anal. Methods 2018, 10, 1247–1257. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, M.; Tan, T.; Yan, A.; Guo, L.; Jiang, K.; Tan, C.; Wan, Y. Deep eutectic solvents used as extraction solvent for the determination of flavonoids from Camellia oleifera flowers by high-performance liquid chromatography. Phytochem. Anal. 2018, 29, 639–648. [Google Scholar] [CrossRef] [PubMed]
- Espino, M.; Fernández, M. de los Á.; Gomez, F.J.V.; Boiteux, J.; Silva, M.F. Green analytical chemistry metrics: Towards a sustainable phenolics extraction from medicinal plants. Microchem. J. 2018, 141, 438–443. [Google Scholar] [CrossRef]
- Koutsoukos, S.; Tsiaka, T.; Tzani, A.; Zoumpoulakis, P.; Detsi, A. Choline chloride and tartaric acid, a Natural Deep Eutectic Solvent for the efficient extraction of phenolic and carotenoid compounds. J. Clean. Prod. 2019, 241, 118384. [Google Scholar] [CrossRef]
- Xu, M.; Ran, L.; Chen, N.; Fan, X.; Ren, D.; Yi, L. Polarity-dependent extraction of flavonoids from citrus peel waste using a tailor-made deep eutectic solvent. Food Chem. 2019, 297, 124970. [Google Scholar] [CrossRef]
- Wang, Y.; Peng, B.; Zhao, J.; Wang, M.; Zhao, L. Efficient extraction and determination of prenylflavonol glycosides in Epimedium pubescens Maxim. using deep eutectic solvents. Phytochem. Anal. 2019, 1–9. [Google Scholar] [CrossRef]
- Wan, Y.; Wang, M.; Zhang, K.; Fu, Q.; Wang, L.; Gao, M.; Xia, Z.; Gao, D. Extraction and determination of bioactive flavonoids from Abelmoschus manihot (Linn.) Medicus flowers using deep eutectic solvents coupled with high-performance liquid chromatography. J. Sep. Sci. 2019, 42, 2044–2052. [Google Scholar] [CrossRef]
- Bentley, J.; Olsen, E.K.; Moore, J.P.; Farrant, J.M. The phenolic profile extracted from the desiccation-tolerant medicinal shrub Myrothamnus flabellifolia using Natural Deep Eutectic Solvents varies according to the solvation conditions. Phytochemistry 2020, 173, 112323. [Google Scholar] [CrossRef]
- Barbieri, J.B.; Goltz, C.; Batistão Cavalheiro, F.; Theodoro Toci, A.; Igarashi-Mafra, L.; Mafra, M.R. Deep eutectic solvents applied in the extraction and stabilization of rosemary (Rosmarinus officinalis L.) phenolic compounds. Ind. Crops Prod. 2020, 144, 112049. [Google Scholar] [CrossRef]
- Kaltsa, O.; Lakka, A.; Grigorakis, S.; Karageorgou, I.; Batra, G.; Bozinou, E.; Lalas, S.; Makris, D.P. A Green Extraction Process for Polyphenols from Elderberry (Sambucus nigra) Flowers Using Deep Eutectic Solvent and Ultrasound-Assisted Pretreatment. Molecules 2020, 25, 921. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Hu, Y.; Wang, H.; Tong, M.; Gong, Y. Green and enhanced extraction of coumarins from Cortex Fraxini by ultrasound-assisted deep eutectic solvents extraction. J. Sep. Sci. 2020, 43, 3441–3448. [Google Scholar] [CrossRef]
- Fanali, C.; Della Posta, S.; Dugo, L.; Gentili, A.; Mondello, L.; De Gara, L. Choline-chloride and betaine-based deep eutectic solvents for green extraction of nutraceutical compounds from spent coffee ground. J. Pharm. Biomed. Anal. 2020, 189, 113421. [Google Scholar] [CrossRef] [PubMed]
- Razboršek, M.I.; Ivanović, M.; Krajnc, P.; Kolar, M. Choline Chloride Based Natural Deep Eutectic Solvents as Extraction Media for Extracting Phenolic Compounds from Chokeberry (Aronia melanocarpe). Molecules 2020, 25, 1619. [Google Scholar] [CrossRef] [Green Version]
- Şahin, S.; Pekel, A.G.; Toprakçı, İ. Sonication-assisted extraction of Hibiscus sabdariffa for the polyphenols recovery: application of a specially designed deep eutectic solvent. Biomass Convers. Biorefinery 2020. [Google Scholar] [CrossRef]
- Wu, L.; Li, L.; Chen, S.; Wang, L.; Lin, X. Deep eutectic solvent-based ultrasonic-assisted extraction of phenolic compounds from Moringa oleifera L. leaves: Optimization, comparison and antioxidant activity. Sep. Purif. Technol. 2020, 247, 117014. [Google Scholar] [CrossRef]
- Torres-Vega, J.; Gómez-Alonso, S.; Pastene-Navarrete, E.; Pérez-Navarro, J. Green extraction of alkaloids and polyphenols from peumus boldus leaves with natural deep eutectic solvents and profiling by HPLC-PDA-IT-MS/MS and HPLC-QTOF-MS/MS. Plants 2020, 9, 242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ameer, K.; Shahbaz, H.M.; Kwon, J.H. Green Extraction Methods for Polyphenols from Plant Matrices and Their Byproducts: A Review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 295–315. [Google Scholar] [CrossRef] [Green Version]
- Panja, P. Green extraction methods of food polyphenols from vegetable materials. Curr. Opin. Food Sci. 2018, 23, 173–182. [Google Scholar] [CrossRef]
- Nie, J.; Yu, G.; Song, Z.; Wang, X.; Li, Z.; She, Y.; Lee, M. Microwave-assisted deep eutectic solvent extraction coupled with headspace solid-phase microextraction followed by GC-MS for the analysis of volatile compounds from tobacco. Anal. Methods 2017, 9, 856–863. [Google Scholar] [CrossRef]
- Ghanemi, K.; Navidi, M.A.; Fallah-Mehrjardi, M.; Dadolahi-Sohrab, A. Ultra-fast microwave-assisted digestion in choline chloride-oxalic acid deep eutectic solvent for determining Cu, Fe, Ni and Zn in marine biological samples. Anal. Methods 2014, 6, 1774–1781. [Google Scholar] [CrossRef]
- González-Rivera, J.; Husanu, E.; Mero, A.; Ferrari, C.; Duce, C.; Tinè, M.R.; D’Andrea, F.; Pomelli, C.S.; Guazzelli, L. Insights into microwave heating response and thermal decomposition behavior of deep eutectic solvents. J. Mol. Liq. 2020, 300, 112357. [Google Scholar] [CrossRef]
- Kala, H.K.; Mehta, R.; Sen, K.K.; Tandey, R.; Mandal, V. Critical analysis of research trends and issues in microwave assisted extraction of phenolics: Have we really done enough. TrAC Trends Anal. Chem. 2016, 85, 140–152. [Google Scholar] [CrossRef]
- Wei, Z.F.; Wang, X.Q.; Peng, X.; Wang, W.; Zhao, C.J.; Zu, Y.G.; Fu, Y.J. Fast and green extraction and separation of main bioactive flavonoids from Radix Scutellariae. Ind. Crops Prod. 2015, 63, 175–181. [Google Scholar] [CrossRef]
- Chen, J.; Liu, M.; Wang, Q.; Du, H.; Zhang, L. Deep eutectic Solvent-Based Microwave-Assisted method for extraction of hydrophilic and hydrophobic components from radix salviae miltiorrhizae. Molecules 2016, 21, 1383. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Wang, P.; Zheng, W.; Yu, G.; Li, Z.; She, Y.; Lee, M. Three-stage microwave extraction of cumin (Cuminum cyminum L.) Seed essential oil with natural deep eutectic solvents. Ind. Crops Prod. 2019, 140, 111660. [Google Scholar] [CrossRef]
- Cui, Q.; Liu, J.Z.; Wang, L.T.; Kang, Y.F.; Meng, Y.; Jiao, J.; Fu, Y.J. Sustainable deep eutectic solvents preparation and their efficiency in extraction and enrichment of main bioactive flavonoids from sea buckthorn leaves. J. Clean. Prod. 2018, 184, 826–835. [Google Scholar] [CrossRef]
- Wang, G.; Cui, Q.; Yin, L.J.; Zheng, X.; Gao, M.Z.; Meng, Y.; Wang, W. Efficient extraction of flavonoids from Flos Sophorae Immaturus by tailored and sustainable deep eutectic solvent as green extraction media. J. Pharm. Biomed. Anal. 2019, 170, 285–294. [Google Scholar] [CrossRef]
- Kou, P.; Kang, Y.F.; Wang, L.T.; Niu, L.J.; Xiao, Y.; Guo, N.; Cui, Q.; Li, Y.Y.; Fu, Y.J. An integrated strategy for production of four anthocyanin compounds from Ribes nigrum L. by deep eutectic solvents and flash chromatography. J. Ind. Eng. Chem. 2019, 80, 614–625. [Google Scholar] [CrossRef]
- Xie, Y.; Liu, H.; Lin, L.; Zhao, M.; Zhang, L.; Zhang, Y.; Wu, Y. Application of natural deep eutectic solvents to extract ferulic acid from Ligusticum chuanxiong Hort with microwave assistance. RSC Adv. 2019, 9, 22677–22684. [Google Scholar] [CrossRef] [Green Version]
- Pavlović, N.; Jokić, S.; Jakovljević, M.; Blažić, M.; Molnar, M. Green extraction methods for active compounds from food waste Cocoa bean shell. Foods 2020, 9, 140. [Google Scholar] [CrossRef] [Green Version]
- Gao, M.Z.; Cui, Q.; Wang, L.T.; Meng, Y.; Yu, L.; Li, Y.Y.; Fu, Y.J. A green and integrated strategy for enhanced phenolic compounds extraction from mulberry (Morus alba L.) leaves by deep eutectic solvent. Microchem. J. 2020, 154, 104598. [Google Scholar] [CrossRef]
- Alañón, M.E.; Ivanović, M.; Pimentel-Mora, S.; Borrás-Linares, I.; Arráez-Román, D.; Segura-Carretero, A. A novel sustainable approach for the extraction of value-added compounds from Hibiscus sabdariffa L. calyces by natural deep eutectic solvents. Food Res. Int. 2020, 137, 109646. [Google Scholar] [CrossRef]
- Briones-Labarca, V.; Giovagnoli-Vicuña, C.; Cañas-Sarazúa, R. Optimization of extraction yield, flavonoids and lycopene from tomato pulp by high hydrostatic pressure-assisted extraction. Food Chem. 2019, 278, 751–759. [Google Scholar] [CrossRef]
- Pinela, J.; Prieto, M.A.; Barros, L.; Carvalho, A.M.; Oliveira, M.B.P.P.; Saraiva, J.A.; Ferreira, I.C.F.R. Cold extraction of phenolic compounds from watercress by high hydrostatic pressure: Process modelling and optimization. Sep. Purif. Technol. 2018, 192, 501–512. [Google Scholar] [CrossRef] [Green Version]
- Rajha, H.N.; Mhanna, T.; El Kantar, S.; El Khoury, A.; Louka, N.; Maroun, R.G. Innovative process of polyphenol recovery from pomegranate peels by combining green deep eutectic solvents and a new infrared technology. Lwt 2019, 111, 138–146. [Google Scholar] [CrossRef]
- Abi-Khattar, A.M.; Rajha, H.N.; Abdel-Massih, R.M.; Maroun, R.G.; Louka, N.; Debs, E. Intensification of polyphenol extraction from olive leaves using ired-irrad®, an environmentally-friendly innovative technology. Antioxidants 2019, 8, 227. [Google Scholar] [CrossRef] [Green Version]
- Guo, N.; Ping-Kou; Jiang, Y.W.; Wang, L.T.; Niu, L.J.; Liu, Z.M.; Fu, Y.J. Natural deep eutectic solvents couple with integrative extraction technique as an effective approach for mulberry anthocyanin extraction. Food Chem. 2019, 296, 78–85. [Google Scholar] [CrossRef]
- Panić, M.; Gunjević, V.; Cravotto, G.; Radojčić Redovniković, I. Enabling technologies for the extraction of grape-pomace anthocyanins using natural deep eutectic solvents in up-to-half-litre batches extraction of grape-pomace anthocyanins using NADES. Food Chem. 2019, 300, 125185. [Google Scholar] [CrossRef]
- Altunay, N.; Elik, A.; Gürkan, R. Preparation and application of alcohol based deep eutectic solvents for extraction of curcumin in food samples prior to its spectrophotometric determination. Food Chem. 2020, 310, 125933. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Chen, L.; Li, M.; Cao, F.; Zhao, L.; Su, E. Efficient extraction of proanthocyanidin from Ginkgo biloba leaves employing rationally designed deep eutectic solvent-water mixture and evaluation of the antioxidant activity. J. Pharm. Biomed. Anal. 2018, 158, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Paradiso, V.M.; Squeo, G.; Pasqualone, A.; Caponio, F.; Summo, C. An easy and green tool for olive oils labelling according to the contents of hydroxytyrosol and tyrosol derivatives: Extraction with a natural deep eutectic solvent and direct spectrophotometric analysis. Food Chem. 2019, 291, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.S.; Zhong, Z.F.; Bian, G.L.; Cheng, X.J.; Li, D.Q. Ultra-rapid, enhanced and eco-friendly extraction of four main flavonoids from the seeds of Oroxylum indicum by deep eutectic solvents combined with tissue-smashing extraction. Food Chem. 2020, 319, 126555. [Google Scholar] [CrossRef]
- Essien, S.O.; Young, B.; Baroutian, S. Recent advances in subcritical water and supercritical carbon dioxide extraction of bioactive compounds from plant materials. Trends Food Sci. Technol. 2020, 97, 156–169. [Google Scholar] [CrossRef]
- Machmudah, S.; Lestari, S.D.; Widiyastuti; Wahyudiono; Kanda, H.; Winardi, S.; Goto, M. Subcritical Water Extraction Enhancement by Adding Deep Eutectic Solvent for Extracting Xanthone from Mangosteen Pericarps; Elsevier B.V.: Amsterdam, The Netherlands, 2018; Volume 133, ISBN 8152789399. [Google Scholar]
- Craveiro, R.; Aroso, I.; Flammia, V.; Carvalho, T.; Viciosa, M.T.; Dionísio, M.; Barreiros, S.; Reis, R.L.; Duarte, A.R.C.; Paiva, A. Properties and thermal behavior of natural deep eutectic solvents. J. Mol. Liq. 2016, 215, 534–540. [Google Scholar] [CrossRef]
- Delgado-Mellado, N.; Larriba, M.; Navarro, P.; Rigual, V.; Ayuso, M.; García, J.; Rodríguez, F. Thermal stability of choline chloride deep eutectic solvents by TGA/FTIR-ATR analysis. J. Mol. Liq. 2018, 260, 37–43. [Google Scholar] [CrossRef]
- Nam, M.W.; Zhao, J.; Lee, M.S.; Jeong, J.H.; Lee, J. Enhanced extraction of bioactive natural products using tailor-made deep eutectic solvents: Application to flavonoid extraction from Flos sophorae. Green Chem. 2015, 17, 1718–1727. [Google Scholar] [CrossRef]
- Tian, H.; Wang, J.; Li, Y.; Bi, W.; Chen, D.D.Y. Recovery of Natural Products from Deep Eutectic Solvents by Mimicking Denaturation. ACS Sustain. Chem. Eng. 2019, 7, 9976–9983. [Google Scholar] [CrossRef]
- Yoo, D.E.; Jeong, K.M.; Han, S.Y.; Kim, E.M.; Jin, Y.; Lee, J. Deep eutectic solvent-based valorization of spent coffee grounds. Food Chem. 2018, 255, 357–364. [Google Scholar] [CrossRef]
- Seleem, D.; Pardi, V.; Murata, R.M. Review of flavonoids: A diverse group of natural compounds with anti-Candida albicans activity in vitro. Arch. Oral Biol. 2017, 76, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Florindo, C.; Lima, F.; Ribeiro, B.D.; Marrucho, I.M. Deep eutectic solvents: overcoming 21st century challenges. Curr. Opin. Green Sustain. Chem. 2019, 18, 31–36. [Google Scholar] [CrossRef]
- Pavić, V.; Flačer, D.; Jakovljević, M.; Molnar, M.; Jokić, S. Assessment of total phenolic content, in vitro antioxidant and antibacterial activity of ruta graveolens L. Extracts obtained by choline chloride based natural deep eutectic solvents. Plants 2019, 8, 69. [Google Scholar] [CrossRef] [Green Version]
Plant Material | Selected DES/NADES (Number of Tested Solvents) | ∆Extraction Conditions | Type of Chemical Compounds/Index Determined | Instrumental Analysis | Reference | ||||
---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | |||||
Phenolic Compounds | |||||||||
Olive cake | Lactic acid:glucose (3) | 1:5 | 15 | 75/1 | 60 | 40 °C | Phenolic acids:trans-ferulic acid, caffeic acid Flavonoids: tyrosol, 3-hydroxytyrosol, rutin hydrate, apigenin, luteolin | HPLC-DAD | [53] |
Onion | |||||||||
Tomato waste | |||||||||
Pear waste | |||||||||
Mulberry leaves (Morus alba L.) | §ChCl:citric acid (12) | 2:1 | 25% | 50/1 | 30 | 40 °C | Phenolic acids: gallic acid, gentisic acid, chlorogenic acid, catechinic acid, vanillic acid, caffeic acid, syringic acid, benzoic aicd Flavonoids: epicatechin, rutin, hysperin, astragalin, quercetin | HPLC-UV | [107] |
Lycium ruthenicum Murr. | ChCl:1,2-propanediol (4) | 1:2 | 10% | 50/1 | 45 | 52 °C | Anthocyanins: petunidin-3-O-rutinoside-5-O-glucoside, malvidin-derivative, petunidin-3-O-(glucosyl-trans-p-coumaroyl)- rutinoside-5-O-glucoside, petunidin-3-O-(glucosyl-cis-p-coumaroyl)-rutinoside-5-O-glucoside, petunidin-derivative, delphinidin-derivative, petunidin-3-O-(caffeoyl)-rutinoside-5-O-glucoside, delphinidin-3-O-(p-coumaroyl)-rutinoside-5-O-glucoside, petunidin-3-O-(cis-p-coumaroyl)-rutinoside-5-O-glucoside, petunidin-3-O-(trans-p-coumaroyl)-rutinoside-5-O-glucoside, petunidin-derivative,malvidin-3-O-(p-coumaroyl)-rutinoside-5-O-glucoside, petunidin-3-O-(p-coumaroyl)-rutinoside isomer | HPLC-DAD/ESI-MS UPLC-Q-TOF-MS | [118] |
Peppermint leaves (Mentha piperita L.) | ChCl:glucose (9) | 5:2 | ND | 100/1 | 45 | RT | Phenolic acids: rosmarinic acid, salvianolic acid Flavonoids: eriocitrin, luteolin 7-O-rutinoside | UHPLC-Q-TOF-MS | [112] |
TPC, TFC, DPPH, ABTS, FRAP | Spectrophotometry | ||||||||
Camellia oleifera flowers | ChCl:lactic acid (13) | 1:2 | 35% | 40/1 | 50 | 40 °C | Flavonoids: quercetin 3-O-rhamnoside, kaempferol 3-O-rhamnoside, quercetin, kaempferol | HPLC-DAD | [119] |
Pollen Typhae | ChCl:1,2-propanediol (8) | 1:4 | 30% | 50/1 | 35 | ND | Flavonoid aglycons: quercetin, naringenin, kaempferol, isorhamnetin | HPLC-DAD LC-MS | [110] |
Larrea cuneifolia | Lactic acid:dextrose (1) | 5:1 | 15% | 75/1 | 42 | 40 °C | Phenolic acids: caffeic acid, trans-ferulic acid, rosmarinic acid, cinnamic acid, nordihydroguaiaretic acid Flavonoids: ( ± ) ctechin hydrate, tyrosol, naringenin, apigenin, quercetin, luteolin, rutin hydrate | HPLC-DAD | [120] |
Greek propolis | ChCl:tartaric acid (1) | 2:1 | ND | ND | 30 | ND | TFC, TCTC, DPPH | Spectrophotometry | [121] |
Lycium barbarum L. | ChCl:p-toluenesulfonic acid (11) | 1:2 | No | 50/1 | 90 | 25 °C | Phenolic acids: chlorogenic acid, ferulic acid, p-coumaric acid Flavonoids: luteolin, rutin, myricetin, quercitrin, apigenin, hyperoside | HPLC-UV/ViS | [66] |
Buckwheat sprouts (Fagopyrum esculentum M.) | ChCl:triethylene glycol (18) | 1:4 | 20% | 20/1 | 40 | 56 °C | Flavonoids: orientin, isoorientin, vitexin, isovitexin, quercetin-3-O-robinobioside, rutin | HPLC-Q-TOF/MS HPLC-PDA | [47] |
TFC | Spectrophotometry | ||||||||
Safflower (Carthamus tinctorius L.) | ChCl:ethylene glycol | 1:1 | ND | 17.8/1 | 55.9 | 41 °C | TFC | Spectrophotometry | [111] |
Mature citrus (Nobis tangerine) | ChCl: levulinic acid:N-methyl urea (18) | 1:1.2:0.8 | 20% | 20/1 | 25 | 50 °C | Flavonoids: narirutin, hesperidin, sinensetin, nobiletin, tangeretin, kaempferol-3-O-rutinoside, isosinensetin, 3,5,6,7,8,3′,4′-pentamethoxyflavone, 5-hydroxy-6,7,8,3′,4′-penta- methoxyflavon | UHPLC-UV UHPLC-Q-Orbitrap-MS/MS | [122] |
Beal (Aegle marmelos) | ChCl:oxalic acid (1) | 1:1 | 25% | 20/1 | ND | 80 °C | Phenolic acids: ascorbic acid, gallic acid, protocatechuic acid, p-coumaric acid, ferulic acid Flavonoids: quercetin, kaempferol, apigenin | HPLC-UV | [106] |
TPC | Spectrophotometry | ||||||||
Byrsonima intermedia leaves | ChCl:glycerol (5) | 1:1 | 20% | 70.6/1 | 25 | 45 °C | Phenolic acid: digalloyl quinic acid Proanthocyanidins: proanthocyanidin dimer, galloylproanthocyanidin dimer, Flavonoids: quercetin-O-hexoside, galloyl quercetin hexoside, quercetin-O-pentoside and galloyl quercetin pentoside | HPLC-MS/MS HPLC-DAD | [109] |
DPPH, ABTS | Spectrophotometry | ||||||||
Chickpea sprouts (Cicer arietinum L.) | ChCl:propilene glycol (20) | 1:1 | 33% | 40/1 | 35 | 59 °C | Isoflavones: ononin, sissotrin, formononetin, biochanin A | UPLC-QqQ-MS/MS | [48] |
TFC, DPPH, ABTS | Spectrophotometry | ||||||||
Flos Trollii | ChCL:ZnBr2 (12) | 1:1 | 48% | 23.8/1 | 28 | 50 °C | Flavones: orientin, vitexin, 2′’-O-galactopyranosylorientin | HPLC-UV | [79] |
Epimedium pubescens Maxim. | ChCl:lactic acid (18) | 1:2 | 17.5% | 6.4/1 | 21 | 25 °C | Prenylflavonol glycosides: epimedin A, epimedin B, epimedin C, icariin | HPLC-UV | [123] |
Medicus flowers (Abelmoschus manihot Linn.) | ChCl:acetic acid (7) | 1:2 | 30% | 35/1 | 30 | 30 °C | Flavonoids: hyperoside, isoquercitrin, myricetin | UHPLC-MS/MS | [124] |
Myrothamnus flabellifolia Welw. | Sucrose:citric acid:water (4) | 1:1:10 | 25% | 50/1 | 90 | 50–55 °C | Anthocyanins: cyanidin-3-acetyl glucosamine, cyanidin-3-p-coumaryl glucoside, delphinidin-3- glucoside, delphinidin-3-p-coumaryl glucoside, malvidin-3-acetyl glucoside, malvidin-3-glucoside, malvidin-3-coumaryl glucoside, pet-3-acetyl glucoside, pet-3-coumaryl glucoside | LC-QTOF-MS/MS | [125] |
Rosemary (Rosmarinus officinalis L.) | ChCl:1,2-propanediol (4) | 1:2 | 10% | 52.6/1 | 120 | 40 °C | Phenolic acids: rosmarinic acid and ferulic acid Flavonoids: 7-methylrosmanol, rutin, naringin Other compounds: caffeine | HPLC-DAD | [126] |
TPC, DPPH, FRAP | Spectrophotometry | ||||||||
Ginger (Zingiber officinale Roscoe) | L-carnitine:1,3-butanediol (15) | 1:4 | 25% | 30/1 | 30 | 50 °C | Gingerols: 10-gingerol, 8-gingerol, 6-gingerol | HPLC-DAD | [64] |
FRAP, ABTS | Spectrophotometry | ||||||||
Elderberry plant (Sambucus nigra) | Lactic acid:glycine (5) | 5:1 | 15% | 16.7/1 | 28 | RT | Phenolic acids: neochlorogenic acid, hlorogenic acid, di-caffeoylquinic acid, p-coumaroylquinic acid derivative Flavonols: quercetin 3-O-rutinoside (rutin), quercetin 3-O-glucoside (isoquercitrin), isorhamnetin-3-O-rutinoside, quercetin | LC-DAD-MS HPLC-DAD | [127] |
TPC, TFC, DPPH, FRAP | Spectrophotometry | ||||||||
Extra-virgin olive oil | Betaine:glycerol (10) | 1:2 | 30% | 1/1 | 20 | RT | Phenolic aclohols: hydroxytyrosol, tyrosol Secoiridoid derivatives: dialdehydic form of oleuropein aglycone, oleuropein aglycone isomer, lygstroside aglycone | HPLC-DAD-ESI-MS HPLC-DAD | [108] |
Coffee pulp Cocoa pod husk cocoa husk | ChCl:lactic acid (6) | 1:2 | 10% | 200/1 | 3 | 45 °C | Phenolic acid: chlorogenic acid | HPLC-UV UPLC-MS | [105] |
TPC | Spectrophotometry | ||||||||
Cortex Fraxini | Betaine:glycerin (17) | 1:3 | 20% | 15/1 | 30 | ND | Coumarins: aesculetin, aesculin, fraxetin and fraxin | HPLC-UV | [128] |
Coffee beans | Betaine:triethylene glycol (15) | 1:2 | 30% | 66.7/1 | 20 | 65 °C | Phenolic acids: 3-O-caffeoylquinic acid, caffeoylepi-quinic acid, caffeoylepi-quinic acid, 5-O-caffeoylquinic acid, 4-O-caffeoylquinic acid, 5-pcoumaroylquinic acid, quinolactone, 4-feruloylquinic acid, 3-feruloylquinic acid, quinolactone, 3,4-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid, 4,5-dicaffeoylquinic acid, caffeoylferuloylquinic acid, caffeoylferuloylquinic acid | HPLC-PDA/ESI-MS | [129] |
Chokeberry (Aronia melanocarpa) | ChCl:lactic acid (4) | 1:2 | 33% | 200/1 | 20 | 35 °C | Phenolic acids: gallic acid, protcatehuic acid, chlorogenic acid, vanillic acid, caffeic acid, syringic acid, p-coumaric acid, trans-cinnamic acid and ferulic acid Flavonoids: epicatechin and quercetin | HPLC-DAD | [130] |
TPC, TFC, TAC | Spectrophotometry | ||||||||
Hibiscus sabdariffa | Citric acid:ethylene glycol (1) | 1:4 | 50% | 12.5/1 | 43 | ND | TPC, TAC, DPPH, FRAP | Spectrophotometry | [131] |
Moringa oleifera L. leaves | L-proline:glycerol (13) | 2:5 | 37% | 12.5/1 | 15 | 40 °C | Phenolic acids: gallic acid, p-hydroxybenzoic acid, rosmarinic acid, Flavonoids: ( + )-catechin, vicenin-2, orientin, rutin, hyperoside, kaempferol-3-O-rutinoside, isorhamnetin 3-O-glucoside, quercetin; apigenin, kaempferol, (−)-epigallocatechin | HPLC-ESI-Q-TOF-MS/MS | [132] |
TPC, TFC, DPPH, ABTS, FRAP | Spectrophotometry | ||||||||
Peumus boldus leaves | L-proline:oxalic acid (7) | 1:1 | 20% | 10/1 | 20 | RT | 21 different phenolic compounds | HPLC-PDA-IT-MS HPLC-ESI-QTOF-MS | [133] |
TPC | Spectrophotometry | ||||||||
Alkaloids | |||||||||
Carinum powellii bulbs | ChCl:fructose (10) | 5:2 | 35% | 400/1 | 60 | 50 °C | Lycorine, crinine, crinamine | HPTLC | [116] |
Chinese dark tea (Camellia Sinensis L.) | ChCl:lactic acid (8) | 1:1 | 31% | 34.5/1 | 38 | 58 °C | Caffeine | HPLC-UV | [103] |
Caulis inomenii, Coptis chinensis, Stephania tetrandra, Tetradium ruticarpum, Sophora flavescens | ChCl:lactic acid (8) | 1:2 | 30% | 60/1 | 30 | 54 °C | Sinomenine, magnoflorine, berberine hydrochloride, epiberberine, coptisine, palmatine hydrochloride, tetrandrine, fangchinolinee, evodiamine, rutaecarpine, matrine, oxymatrine | HPLC-UV | [117] |
Peumus boldus leaves | L-proline:oxalic acid (7) | 1:1 | 20% | 10/1 | 20 | RT | Coclaurine, N-methylcoclaurine, laurolitsine, isoboldine, boldine, reticuline, isocorydine, laurotetanine, N-methyllaurotetanine | HPLC-IT-MS/MS | [133] |
Plant Material | Selected DES/NADES (Number of Tested Solvents) | ∆Extraction Conditions | Type of Chemical Compounds/Index Determined | Instrumental Analysis | Reference | |||||
---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | |||||
Virgin olive pomace | §ChCl:citric acid (4) | 1:2 | 20% | 80/1 | 30 | 60 °C | 200 | Secoiridoids: oleuropein, hydroxytyrsol, Phenolic acid: caffeic acid Phenolic aldehyde: vanillin Flavonoids: rutin, luteolin | HPLC-DAD | [52] |
TPC, DPPH | Spectrophotometry | |||||||||
Lemon verbena (Lippia citriodora L.) | ChCl:lactic acid (11) | 1:2 | 32% | 100/1 | 17.1 | 63.7 °C | 700 | 25 different phenolic compounds including: 8 iridoid glycosides, 12 phenylpropanoid glycosides, 5 flavonoid glycosides | HPLC-DAD-ESI-TOF-MS | [68] |
TPC | Spectrophotometry | |||||||||
Sea buckthorn leaves (Hippophae rhamnoides L.) | ChCl:1,4-butanediol (12) | 1:3 | 20% | 47.6/1 | 17 | 64 °C | 600 | Flavonoids: rutin, quercetin-3-O-glucoside, quercetin, kaempferol, isorhamnetin | HPLC-DAD | [143] |
Flos Sophorae Immaturus | ChCl:1,4-butanediol (9) | 1:2 | 25% | 38.5/1 | 20 | 62 °C | 600 | Flavonoids: rutin, nicotiflorin, narcissin, quercetin, kaempferol, isorhamnetin | HPLC-UV | [144] |
Blackcurrant (Ribes nigrum L.) | ChCl:lactic acid (10) | 1:2 | 20% | 76.9/1 | 14 | 45 °C | ND | Anthocyanins: delphinidin 3-O-glucoside, delphinidin 3-O-rutinoside, cyanidin 3-O-glucoside, cyanidin 3-O- rutinoside | HPLC-UV | [145] |
TAC | Spectrophotometry | |||||||||
Chuanxiong rhizoma | ChCl:1,2-propanediol (20) | 1:1 | 30% | 33.3/1 | 20 | 68 °C | 1360 | Phenolic acid: ferulic acid | HPLC-UV | [146] |
Onion peel (Allium cepa L.) | ChCl:urea (3) | 1:2 | 30% | 20/1 | 120 | 60 °C | 850 | Flavonoids: quercetin, kaempferol, myricetin | LC-MS/MS HPLC-UV | [54] |
TPC, FRAP, DPPH | Spectrophotometry | |||||||||
Cocoa bean shell | ChCl:oxalic acid (16) | 1:1 | 49.4% | 50/1 | 11.4 | 35.1 °C | 800 | Phenolic acids: gallic acid, caffeic acid Flavonoids: catechin, epicatechin | HPLC-DAD | [147] |
DPPH | Spectrophotometry | |||||||||
Ripe mango (Mangifera indica L.) | Sodium acetate: lactic acid (8) | 1:3 | 30% | 16.7/1 | 19.7 | ND | 436 | Xanthone: mangiferin | HPLC-UV/ViS | [55] |
TPC, FRAP, DPPH | Spectrophotometry | |||||||||
Mulberry leaves (Morus alba L.) | ChCl:glycerol (12) | 1:2 | 20% | 50/1 | 18 | 66 °C | 600 | Phenolic acids: neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, caffeic acid Flavonoids: rutin, isoquercetin, astragalin | HPLC-UV | [148] |
Olive leaf (Olea europa) | ChCl:ethylene glycole (9) | 1:2 | 43.3% | 133.3/1 | 16.7 | 79.6 °C | ND | 48 different phenolic compounds identifed, the most important are: eleoside, elonolic acid, hydroxyoleuropein, luteolin glucoside, oleuropein glucoside, oleuropein, ligstroside | HPLC-DAD-ESI-TOF-MS | [80] |
TPC | Spectrophotometry | |||||||||
Hibiscus calyces (Hibiscus sabdariffa L.) | ChCl:oxalic acid (8) | 1:1 | 55% | 30/1 | 20 | 75 °C | 700 | Phenolic acids: chlorogenic acid quinone, neochlorogenic acid, chlorogenic acid, criptochlorogenic acid, coumaroylquinic acid, 5-O-Caffeoylshikimic acid Flavonoids: myricetin-3-arabinogalactoside, quercetin-3-sambubioside, quercetin-3-rutinoside, kaempferol-3-O-sambubioside, quercetin-3-glucoside, methylepigallocatechin, myricetin, quercetin, kaempferol Anthocyanins: delphinidin-3-sambubioside, cyanidin-3-sambubioside | HPLC-DAD-ESI-TOF-MS | [149] |
TPC, TAC | Spectrophotometry |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanović, M.; Islamčević Razboršek, M.; Kolar, M. Innovative Extraction Techniques Using Deep Eutectic Solvents and Analytical Methods for the Isolation and Characterization of Natural Bioactive Compounds from Plant Material. Plants 2020, 9, 1428. https://doi.org/10.3390/plants9111428
Ivanović M, Islamčević Razboršek M, Kolar M. Innovative Extraction Techniques Using Deep Eutectic Solvents and Analytical Methods for the Isolation and Characterization of Natural Bioactive Compounds from Plant Material. Plants. 2020; 9(11):1428. https://doi.org/10.3390/plants9111428
Chicago/Turabian StyleIvanović, Milena, Maša Islamčević Razboršek, and Mitja Kolar. 2020. "Innovative Extraction Techniques Using Deep Eutectic Solvents and Analytical Methods for the Isolation and Characterization of Natural Bioactive Compounds from Plant Material" Plants 9, no. 11: 1428. https://doi.org/10.3390/plants9111428