Plant–Fungal Interactions: A Case Study of Epicoccoum nigrum Link
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungi Used in the Experiment
2.2. Culture Filtrate from E. nigrum Strain Preparation
2.3. Effect of Culture Filtrate from E. nigrum Strain on Seeds and Seedlings of Garden Cress (Lepidium sativum L.)
2.4. Enzyme Assay of E. nigrum Strain
2.4.1. Amylolytic Enzymes
2.4.2. Proteolytic Enzymes
2.4.3. Cellulolytic Enzymes
2.4.4. Pectinolytic Enzymes
2.4.5. Standard Curves
2.5. Assessing Host Specialization in E. nigrum Strain
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Fungal Strain | Seed Germination (%) | Sprout Length (mm) | ||||||
---|---|---|---|---|---|---|---|---|
3 Days * | 6 Days | 3 Days | 6 Days | |||||
UP_EPC_02 | 60.32 | iA** | 61.90 | gA | 1.77 | fgA | 2.15 | hiA |
UP_EPC_04 | 88.52 | deA | 91.80 | bcdA | 3.52 | efgA | 4.80 | efgA |
UP_EPC_06 | 95.24 | bcA | 95.24 | bcA | 1.94 | fgA | 2.82 | fghiA |
UP_EPC_09 | 71.88 | fghA | 71.88 | efgA | 1.32 | gA | 1.95 | hiA |
UP_EPC_21 | 91.67 | bcdB | 96.67 | abcA | 3.55 | efgA | 5.10 | efA |
UP_EPC_25 | 78.13 | fgA | 79.69 | defgA | 1.78 | fgA | 2.34 | ghiA |
UP_EPC_31 | 67.21 | hiA | 68.85 | fgA | 1.76 | fgA | 2.03 | hiA |
UP_EPC_32 | 96.43 | bA | 96.43 | abcA | 8.04 | cdB | 10.20 | cdA |
UP_EPC_39 | 90.00 | cdA | 95.00 | cdeA | 6.28 | deA | 10.00 | cdA |
UP_EPC_49 | 80.00 | efgA | 80.00 | defA | 1.20 | gA | 1.83 | iA |
UP_EPC_51 | 95.00 | bcB | 98.33 | abA | 11.40 | bB | 13.20 | bA |
UP_EPC_54 | 93.33 | bcdA | 93.33 | bcdA | 8.40 | bcdA | 9.32 | dA |
UP_EPC_55 | 90.48 | cdA | 90.48 | bcdA | 2.34 | fgA | 3.44 | efghiA |
UP_EPC_69 | 75.00 | fghA | 75.00 | efgA | 1.75 | fgA | 2.10 | hiA |
UP_EPC_76 | 91.30 | bcdA | 91.30 | bcdA | 2.91 | fgA | 4.32 | efghA |
UP_EPC_79 | 95.00 | bcA | 95.67 | bcA | 4.47 | efA | 5.56 | eA |
UP_EPC_81 | 81.67 | efA | 81.67 | defA | 1.98 | fgA | 2.91 | fghiA |
UP_EPC_82 | 70.77 | ghiA | 72.31 | efgA | 1.48 | fgA | 2.76 | fghiA |
Control—media | 90.70 | bcdA | 92.60 | bcdA | 9.91 | bcA | 12.30 | bcA |
Control—distilled water | 100.00 | aA | 100.00 | aA | 18.10 | aB | 29.30 | aA |
Fungal Strain | Electrical Conductivity (μS mL−1 of Exudate) | Length (mm) | ||||||
---|---|---|---|---|---|---|---|---|
30 Seedlings | 30 Leaves | Seedling | Leaf | |||||
UP_EPC_02 | 2.20 | bcd * | 1.35 | abc | 17.47 | ij | 5.30 | abcd |
UP_EPC_04 | 2.33 | abcd | 1.40 | abc | 20.40 | fg | 5.50 | abcd |
UP_EPC_06 | 3.25 | abcd | 1.93 | abc | 12.80 | l | 4.63 | bcd |
UP_EPC_09 | 4.75 | a | 3.00 | a | 9.67 | o | 3.77 | d |
UP_EPC_21 | 1.28 | cd | 0.74 | c | 29.20 | c | 6.17 | ab |
UP_EPC_25 | 3.38 | abcd | 1.93 | abc | 15.67 | k | 4.50 | bcd |
UP_EPC_31 | 4.50 | ab | 2.83 | ab | 10.87 | no | 4.07 | cd |
UP_EPC_32 | 1.73 | cd | 0.90 | c | 23.07 | e | 5.60 | abcd |
UP_EPC_39 | 1.55 | cd | 0.98 | bc | 26.47 | d | 5.80 | abcd |
UP_EPC_49 | 2.53 | abcd | 1.47 | abc | 18.40 | hi | 4.97 | abcd |
UP_EPC_51 | 1.25 | cd | 0.80 | c | 33.20 | b | 6.13 | abc |
UP_EPC_54 | 2.75 | abcd | 1.40 | abc | 16.33 | jk | 4.97 | abcd |
UP_EPC_55 | 1.75 | cd | 0.98 | bc | 23.73 | e | 5.70 | abcd |
UP_EPC_69 | 3.70 | abc | 2.18 | abc | 11.93 | mn | 4.40 | bcd |
UP_EPC_76 | 2.33 | abcd | 1.28 | abc | 19.33 | gh | 5.38 | abcd |
UP_EPC_79 | 2.28 | abcd | 1.31 | abc | 20.93 | f | 5.47 | abcd |
UP_EPC_81 | 2.50 | abcd | 1.43 | abc | 17.40 | ij | 4.80 | bcd |
UP_EPC_82 | 1.50 | cd | 1.04 | bc | 23.87 | e | 5.93 | abc |
Control—media | 2.95 | abcd | 1.88 | abc | 19.33 | fgh | 4.67 | bcd |
** Control | 1.08 | d | 0.68 | c | 35.13 | a | 6.93 | a |
Fungal Strain | Amylase | Protease | Cellulase | Pectinase | ||||
---|---|---|---|---|---|---|---|---|
(mm) | EU 10−3 | (mm) | EU 10−3 | (mm) | EU 10−5 | (mm) | EU 10−1 | |
UP_EPC_02 | 4.50 | 3.12 a * | 0.00 | 0.00 d | 0.00 | 0.00 b | 0.26 | 0.10 bc |
UP_EPC_04 | 3.22 | 2.23 ab | 2.20 | 0.67 abcd | 5.82 | 3.64 a | 3.30 | 1.27 a |
UP_EPC_06 | 2.28 | 1.58 bc | 0.00 | 0.00 d | 0.00 | 0.00 b | 0.00 | 0.00 c |
UP_EPC_09 | 0.00 | 0.00 d | 3.30 | 1.01 ab | 0.14 | 0.09 b | 0.00 | 0.00 c |
UP_EPC_21 | 0.00 | 0.00 d | 3.48 | 1.06 ab | 0.00 | 0.00 b | 0.00 | 0.00 c |
UP_EPC_25 | 0.04 | 0.03 d | 0.08 | 0.02 d | 0.12 | 0.08 b | 0.00 | 0.00 c |
UP_EPC_31 | 0.00 | 0.00 d | 0.00 | 0.00 d | 1.06 | 0.66 b | 0.84 | 0.32 bc |
UP_EPC_32 | 0.36 | 0.25 de | 0.18 | 0.05 cd | 0.00 | 0.00 b | 0.00 | 0.00 c |
UP_EPC_39 | 0.00 | 0.00 d | 0.25 | 0.08 cd | 0.00 | 0.00 b | 2.28 | 0.88 ab |
UP_EPC_49 | 0.50 | 0.35 cd | 0.00 | 0.00 d | 0.04 | 0.05 b | 0.00 | 0.00 c |
UP_EPC_51 | 0.12 | 0.08 d | 1.40 | 0.43 bcd | 0.00 | 0.00 b | 0.00 | 0.00 c |
UP_EPC_54 | 0.04 | 0.03 d | 0.00 | 0.00 d | 0.00 | 0.00 b | 0.40 | 0.15 bc |
UP_EPC_55 | 0.00 | 0.00 d | 0.04 | 0.01 d | 0.00 | 0.00 b | 1.60 | 0.62 abc |
UP_EPC_69 | 0.20 | 0.14 d | 0.00 | 0.00 d | 0.00 | 0.00 b | 0.00 | 0.00 c |
UP_EPC_76 | 0.00 | 0.00 d | 4.88 | 1.49 a | 0.18 | 0.11 b | 0.00 | 0.00 c |
UP_EPC_79 | 1.00 | 0.69 cd | 3.08 | 0.94 abc | 0.16 | 0.10 b | 0.00 | 0.00 c |
UP_EPC_81 | 0.08 | 0.06 d | 0.00 | 0.00 e | 0.08 | 0.06 b | 0.00 | 0.00 c |
UP_EPC_82 | 0.00 | 0.00 d | 1.16 | 0.35 bcd | 0.00 | 0.00 b | 0.00 | 0.00 c |
Means | 0.69 | 0.48 | 1.11 | 0.34 | 0.32 | 0.27 | 0.48 | 0.19 |
Fungal Strain | % Of Colonized Seedlings | Seedling Length (mm) | ||||||
---|---|---|---|---|---|---|---|---|
Sugar Beet | Spring Wheat | Red Clover | Winter Oilseed Rape | Sugar Beet | Spring Wheat | Red Clover | Winter Oilseed Rape | |
UP_EPC_02 | 31.3 abcdA* | 2.5 iD | 21.1 gB | 14.4 bcC | 1.6 bcd | 9.4 e | 20.3 cd | 2.2 b |
UP_EPC_04 | 31.3 abcdB | 21.1 abC | 33.3 cdA | 20.1 abC | 1.1 bcd | 10.7 cde | 14.2 ef | 3.2 ab |
UP_EPC_06 | 3.2 hC | 10.3 efgB | 25.6 fA | 10.0 cdeB | 2.6 ab | 12.8 a | 19.5 cd | 4.3 a |
UP_EPC_09 | 18.8 cdefgB | 12.9 defC | 34.4 cA | 12.3 cC | 0.6 d | 11.8 ab | 12.9 fg | 3.3 ab |
UP_EPC_21 | 38.3 abcA | 2.8 iD | 19.5 ghB | 14.3 bcC | 1.3 bcd | 11.9 ab | 19.8 cd | 3.9 ab |
UP_EPC_25 | 21.1 bcdefC | 25.8 aB | 34.4 cA | 11.9 cD | 1.5 bcd | 9.9 de | 14.4 ef | 3.6 ab |
UP_EPC_31 | 18.8 efgB | 15.1 cdC | 28.9 efA | 7.1 defD | 1.9 abcd | 12.6 a | 15.3 e | 3.5 ab |
UP_EPC_32 | 23.1 abcdefB | 2.9 iD | 44.1 aA | 9.3 cdefC | 0.7 cd | 11.4 abc | 9.0 h | 3.4 ab |
UP_EPC_39 | 33.3 abcA | 13.2 deC | 16.7 hB | 5.7 fgD | 1.7 abcd | 11.2 abc | 23.1 ab | 4.3 a |
UP_EPC_49 | 9.3 fghB | 7.1 hC | 33.3 cdA | 9.7 cdefB | 2.4 abc | 11.7 ab | 13.1 fg | 4.2 a |
UP_EPC_51 | 13.0 efghB | 7.3 ghC | 42.4 abA | 2.0 hD | 0.9 bcd | 11.9 ab | 13.2 fg | 4.1 ab |
UP_EPC_54 | 14.3 defghB | 2.6 iC | 30.0 deA | 1.9 hC | 2.1 abcd | 12.2 ab | 14.7 ef | 4.0 ab |
UP_EPC_55 | 39.3 abA | 7.1 hC | 38.9 bA | 21.9 aB | 0.9 bcd | 12.0 ab | 11.8 g | 2.9 ab |
UP_EPC_69 | 43.3 aA | 9.5 fghD | 33.3 cdB | 11.4 cdC | 0.7 cd | 11.8 ab | 13.7 efg | 3.7 ab |
UP_EPC_76 | 5.7 ghD | 17.5 bcB | 31.1 cdeA | 10.3 cdeC | 2.3 abcd | 11.8 ab | 14.1 ef | 4.1 ab |
UP_EPC_79 | 2.8 efghA | 8.8 efgA | 23.0 gA | 16.1 cA | 2.5 abc | 12.2 ab | 22.7 ab | 3.9 ab |
UP_EPC_81 | 25.9 abcdeA | 14.9 cdC | 20.1 gB | 6.0 efgD | 2.3 abcd | 11.9 ab | 21.3 bc | 3.9 ab |
UP_EPC_82 | 19.4 bcdefgB | 7.9 ghC | 30.0 deA | 1.7 hD | 2.3 abcd | 21.1 ab | 18.4 d | 4.2 a |
Control without fungi | 3.3 hA | 2.4 iA | 3.4 iA | 3.5 ghA | 3.4 a | 12.8 a | 24.4 a | 4.6 a |
Fungal Strain | Sugar Beet | Spring Wheat | Red Clover | Winter Oilseed Rape | ||||
---|---|---|---|---|---|---|---|---|
UP_EPC_02 | 0.34 | abcA * | 0.03 | aB | 0.36 | abA | 0.16 | aAB |
UP_EPC_04 | 0.41 | abAB | 0.32 | aAB | 0.69 | aA | 0.21 | aB |
UP_EPC_06 | 0.03 | cA | 0.13 | aA | 0.40 | abA | 0.10 | aA |
UP_EPC_09 | 0.28 | abcB | 0.19 | aB | 0.63 | aA | 0.12 | aB |
UP_EPC_21 | 0.31 | abcAB | 0.03 | aC | 0.36 | abA | 0.11 | aBC |
UP_EPC_25 | 0.24 | abcA | 0.40 | aA | 0.53 | aA | 0.13 | aA |
UP_EPC_31 | 0.19 | abcA | 0.20 | aA | 0.46 | abA | 0.07 | aA |
UP_EPC_32 | 0.27 | abcB | 0.02 | aC | 0.78 | aA | 0.09 | aBC |
UP_EPC_39 | 0.21 | abcA | 0.16 | aA | 0.30 | abA | 0.03 | aA |
UP_EPC_49 | 0.13 | abcA | 0.10 | aA | 0.52 | abA | 0.09 | aA |
UP_EPC_51 | 0.14 | abcB | 0.09 | aB | 0.61 | aA | 0.02 | aB |
UP_EPC_54 | 0.14 | abcB | 0.02 | aB | 0.51 | abA | 0.02 | aB |
UP_EPC_55 | 0.43 | aAB | 0.12 | aB | 0.68 | aA | 0.25 | aAB |
UP_EPC_69 | 0.43 | aA | 0.11 | aB | 0.54 | aA | 0.12 | aB |
UP_EPC_76 | 0.06 | bcB | 0.23 | aAB | 0.55 | aA | 0.10 | aAB |
UP_EPC_79 | 0.03 | abcB | 0.11 | aB | 0.48 | abA | 0.15 | aAB |
UP_EPC_81 | 0.37 | abcA | 0.20 | aA | 0.33 | abA | 0.08 | aA |
UP_EPC_82 | 0.29 | abcA | 0.13 | aA | 0.41 | abA | 0.02 | aA |
Control without fungi | 0.03 | cA | 0.05 | aA | 0.04 | bA | 0.05 | aA |
Fungal Strain | Sugar Beet | Spring Wheat | Red clover | Winter Oilseed Rape | ||||
---|---|---|---|---|---|---|---|---|
D * | ND | D | ND | D | ND | D | ND | |
UP_EPC_02 | 66.7 abcB ** | 85.7 bA | 7.8 jB | 32.0 fA | 83.3 cB | 100.0 aA | 33.3 bB | 42.9 deA |
UP_EPC_04 | 63.6 abcdB | 71.4 deA | 64.5 cB | 83.3 bA | 100.0 aA | 100.0 aA | 50.0 aB | 58.3 bcA |
UP_EPC_06 | 33.5 ghB | 100.0 aA | 77.5 abB | 100.0 aA | 77.8 eB | 100.0 aA | 37.5 bcB | 60.0 bA |
UP_EPC_09 | 33.3 hgB | 83.3 bcA | 25.0 hiB | 100.0 aA | 80.0 dB | 100.0 aA | 40.0 bB | 75.0 aA |
UP_EPC_21 | 50.0 defB | 84.6 bA | 28.5 ghB | 50.0 dA | 100.0 aA | 100.0 aA | 50.0 aA | 50.0 cdA |
UP_EPC_25 | 68.8 abcA | 80.0 bcdA | 65.0 cB | 83.3 bA | 100.0 aA | 100.0 aA | 50.0 aB | 71.4 aA |
UP_EPC_31 | 45.0 efgB | 71.4 deA | 81.0 abB | 100.0 aA | 100.0 aA | 100.0 aA | 40.0 bB | 55.6 bcA |
UP_EPC_32 | 76.0 aB | 100.0 aA | 78.0 abB | 100.0 aA | 71.4 gB | 100.0 aA | 0.0 dB | 33.3 fA |
UP_EPC_39 | 71.4 abB | 100.0 aA | 0.0 jB | 31.0 fA | 100.0 aA | 100.0 aA | 25.0 cB | 50.0 cdA |
UP_EPC_49 | 45.0 efgB | 100.0 aA | 50.0 dA | 50.0 dA | 100.0 aA | 100.0 aA | 0.0 dB | 55.6 cdA |
UP_EPC_51 | 61.0 bcdB | 100.0 aA | 23.5 hiB | 50.0 dA | 72.7 fB | 80.0 bA | 50.0 aB | 75.0 aA |
UP_EPC_54 | 33.3 ghA | 50.0 fA | 39.0 efA | 50.0 dA | 100.0 aA | 100.0 aA | 25.0 cB | 50.0 cdA |
UP_EPC_55 | 37.5 fgB | 75.0 cdeA | 33.3 fgB | 42.9 eA | 100.0 aA | 100.0 aA | 33.3 bB | 60.0 bA |
UP_EPC_69 | 50.0 defB | 100.0 aA | 42.0 deB | 66.7 cA | 90.0 bB | 100.0 aA | 33.3 bB | 40.0 efA |
UP_EPC_76 | 22.5 hB | 44.5 fA | 83.3 aB | 100.0 aA | 100.0 aA | 100.0 aA | 0.0 dB | 50.0 cdA |
UP_EPC_79 | 56.0 cdeB | 100.0 aA | 18.6 iB | 33.3 fA | 100.0 aA | 100.0 aA | 33.3 bB | 53.8 bcA |
UP_EPC_81 | 50.0 defB | 83.3 bcA | 75.0 bB | 100.0 aA | 100.0 aA | 100.0 aA | 0.0 dB | 50.0 cdA |
UP_EPC_82 | 33.3 ghB | 66.7 eA | 20.0 iB | 55.6 dA | 60.0 hB | 100.0 aA | 0.0 dB | 50.0 cdA |
Control—healthy plants | 0.0 iA | 0.0 gA | 0.0 jA | 0.0 gA | 0.0 iA | 0.0 cA | 0.0 dA | 0.0 gA |
Control—infested plants | 0.0 iA | 0.0 gA | 0.0 jA | 0.0 gA | 0.0 iA | 0.0 cA | 0.0 dA | 0.0 gA |
References
- Hawksworth, D.L. The magnitude of fungal diversity: The 1.5 million species estimate revisited. Mycol. Res. 2016, 105, 1422–1432. [Google Scholar] [CrossRef] [Green Version]
- Sterflinger, K. Fungi as geologic agents. Geomicrobiol. J. 2000, 17, 97–124. [Google Scholar] [CrossRef]
- Rashid, M.I.; Mujawar, L.H.; Shahzad, T.; Almeelbi, T.; Ismail, I.M.I.; Oves, M. Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiol. Res. 2016, 183, 26–41. [Google Scholar] [CrossRef] [PubMed]
- Ogórek, R.; Lejman, A.; Sobkowicz, P. Effect of the intensity of weed harrowing with spike-tooth harrow in barley-pea mixture on yield and mycobiota of harvested grains. Agronomy 2019, 9, 103. [Google Scholar] [CrossRef] [Green Version]
- Ogórek, R. Enzymatic activity of potential fungal plant pathogens and the effect of their culture filtrates on seed germination and seedling growth of garden cress (Lepidium sativum L.). Eur. J. Plant. Pathol. 2016, 145, 469–481. [Google Scholar] [CrossRef]
- Braga, R.M.; Padilla, G.; Araújo, W.L. The biotechnological potential of Epicoccum spp.: Diversity of secondary metabolites. Crit. Rev. Microbiol. 2018, 44, 759–778. [Google Scholar] [CrossRef] [PubMed]
- Schulz, B.; Boyle, C. The endophytic continuum. Mycol. Res. 2005, 109, 661–686. [Google Scholar] [CrossRef] [Green Version]
- Ogórek, R.; Višňovská, Z.; Tancinová, D. Mycobiota of underground habitats: Case study of Harmanecká cave in Slovakia. Microb. Ecol. 2015, 71, 87–99. [Google Scholar] [CrossRef]
- Ogórek, R.; Pusz, W.; Lejman, A.; Uklańska-Pusz, C. Microclimate effects on number and distribution of fungi in the Włodarz underground complex in the Owl Mountains (Góry Sowie), Poland. J. Cave Karst. Stud. 2014, 76, 146–153. [Google Scholar] [CrossRef]
- Nighat, F.; Ismail, T.; Muhammad, S.A.; Jadoon, M.; Ahmed, S.; Azhar, S.; Mumtaz, A. Epicoccum sp. an emerging source of unique bioactive. Acta Pol. Pharm. 2016, 73, 13–21. [Google Scholar]
- Wangun, H.V.K.; Dahse, H.M.; Hertweck, C. Epicoccamides B—D, glycosylated tetramic acid derivatives from an Epicoccum sp. associated with the tree fungus Pholiota squarrosa. J. Nat. Prod. 2007, 70, 1800–1803. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.B.; Xu, J.L.; Geng, M.; Xu, R.; Hui, R.R.; Zhao, J.W.; Xu, Q.; Xu, H.X.; Li, J.X. Synthesis of a novel series of diphenolic chromone derivatives as inhibitors of NO production in LPS-activated RAW264.7 Macrophages. Bioorg. Med. Chem. Lett. 2010, 18, 2864–2871. [Google Scholar] [CrossRef] [PubMed]
- Kamal, A.; Kumar, B.A.; Suresh, P.; Juvekar, A.; Zingde, S. Synthesis of 4 β-Carbamoyl epipodophyllotoxins as potential antitumour agents. Bioorg. Med. Chem. Lett. 2011, 19, 2975–2979. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.K.; Kumar, S.; Chand, K.; Kathuria, A.; Gupta, A.; Jain, R. An Update on natural occurrence and biological activity of chromones. Curr. Med. Chem. 2011, 18, 3825–3852. [Google Scholar] [CrossRef]
- Ikawa, M.; McGrattan, C.J.; Burge, W.R.; Iannitelli, R.C.; Uebel, J.J.; Noguchi, T. Epirodin, a polyene antibiotic from the mold Epicoccum nigrum. J. Antibiot. 1978, 31, 159–161. [Google Scholar] [CrossRef] [Green Version]
- Bell, P.J.L.; Karuso, P. Epicocconone, a novel fluorescent compound from the fungus Epicoccum nigrum. J. Am. Chem. Soc. 2003, 125, 9304–9305. [Google Scholar] [CrossRef]
- Romica, C.; Bahrim, G.; Stefan, D.; Olteanu, M. Evaluation of physical and chemical characteristics of yellow colorant produced by Epicoccum nigrum MIUG 2.15 in crude extracts and emulsions. Rom. Biot. Lett. 2008, 13, 59–68. [Google Scholar]
- Hashem, M.; Ali, E. Epicoccum nigrum as biocontrol agent of Pythium damping-off and root-rot of cotton seedlings. Arch. Phytopathol. Pflanzenschutz 2004, 37, 283–297. [Google Scholar] [CrossRef]
- Derbalah, A.S.; El Kot, G.A.; Hamza, A.M. Control of powdery mildew in okra using cultural filtrates of certain bio-agents alone and mixed with penconazole. Arch. Phytopathol. Pflanzenschutz 2011, 44, 2012–2023. [Google Scholar] [CrossRef]
- De Lima Fávaro, L.C.; de Souza Sebastianes, F.L.; Araújo, W.L. Epicoccum nigrum P16, a sugarcane endophyte, produces antifungal compounds and induces root growth. PLoS ONE 2012, 7, e36826. [Google Scholar]
- Bamford, P.C.; Norris, G.L.F.; Ward, G. Flavipin production by Epicoccum spp. Trans. Br. Mycol. Soc. 1961, 44, 354–356. [Google Scholar] [CrossRef]
- Mallea, M.; Pesando, D.; Bernard, P.; Khoulalene, B. Comparison between antifungal and antibacterial activities of several strains of Epicoccum purpurascens from the Mediterranean area. Mycopathologia 1991, 115, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Pascual, S.; Melgarejo, P.; Magan, N. Production of the fungal biocontrol agent Epicoccum nigrum by solid substrate fermentation: Effect of water activity on accumulation of compatible solutem. Mycopathologia 1999, 146, 83–89. [Google Scholar] [CrossRef]
- Pascual, S.; Melgarejo, P.; Magan, N. Water availability affects the growth, accumulation of compatible solutes and the viability of the biocontrol agent Epicoccum nigrum. Mycopathologia 2002, 156, 93–100. [Google Scholar] [CrossRef] [PubMed]
- De Lima Favaro, L.C.; de Melo, F.L.; Aguilar-Vildoso, C.I.; Araújo, W.L. Polyphasic analysis of intraspecific diversity in Epicoccum nigrum warrants reclassification into separate species. PLoS ONE 2011, 6, e14828. [Google Scholar] [CrossRef] [Green Version]
- Khulbe, R.D.; Dhyani, A.P.; Sati, M.C. Seed-borne infection, pathogenic importance and control of Epicoccum nigrum Ehrenb, ex Schlecht. in rape seed (Brassica napus L.) in Kumaun Hills, U.P., India. Proc. Indian Natl. Sci. Acad. 1992, 858, 135–140. [Google Scholar]
- Bruton, B.D.; Redlin, S.C.; Collins, J.K.; Sams, C.E. Postharvest decay of cantaloupe caused by Epicoccum nigrum. Plant Dis. 1993, 77, 1060–1062. [Google Scholar] [CrossRef]
- Ristić, D.; Stanković, I.; Vučurović, A.; Berenji, J.; Krnjajić, S.; Krstić, B.; Bulajić, A. Epicoccum nigrum novi patogen semena sirka u Srbiji. Ratarstvo i Povrtarstvo 2012, 49, 160–166. [Google Scholar]
- Ogórek, R.; Lejman, A.; Pusz, W.; Miłuch, A.; Miodyńska, P. Characteristics and taxonomy of Cladosporium fungi. Mikologia Lekarska 2012, 19, 80–85. [Google Scholar]
- Musetti, R.; Grisan, S.; Polizzotto, R.; Martini, M.; Paduano, C.; Osler, R. Interactions between ‘Candidatus Phytoplasma mali’ and the apple endophyte Epicoccum nigrum in Catharanthus roseus plants. J. Appl. Microbiol. 2011, 110, 746–756. [Google Scholar] [CrossRef]
- Biggs, A.R.; Alm, G.R. Response of peach bark tissues to inoculation with epiphytic fungi alone and in combination with Leucostoma cincta. Can. J. Bot. 1992, 70, 186–191. [Google Scholar] [CrossRef]
- Pandey, R.R.; Arora, D.K.; Dubey, R.C. Antagonistic interactions between fungal pathogens and phylloplane fungi of guava. Mycopathologia 1993, 124, 31–39. [Google Scholar] [CrossRef]
- Pieckenstain, F.; Bazzalo, M.; Roberts, A.; Ugalde, R. Epicoccum purpurascens for biocontrol of Sclerotinia head rot of sunflower. Mycol. Res. 2001, 105, 77–84. [Google Scholar] [CrossRef]
- Larena, I.; de Cal, A.; Malgarejo, P. Solid substrate production of Epicoccum nigrum conidia for biological control of brown rot on stone fruits. Int. J. Food Microbiol. 2004, 94, 161–167. [Google Scholar] [CrossRef]
- Ogórek, R.; Plaskowska, E. Epicoccum nigrum for biocontrol agents in vitro of plant fungal pathogens. Comm. Agric. Appl. Biol. Sci. 2011, 76, 691–697. [Google Scholar]
- Ogórek, R.; Lejman, A. Biotic effects between selected isolates of Epicoccum nigrum and fungi of the genus Fusarium. Episteme 2014, 3, 281–289. (In Polish) [Google Scholar]
- Kukreja, N.; Sridhara, S.; Singh, B.P.; Arora, N. Effect of proteolytic activity of Epicoccum purpurascens major allergen, Epi P 1 in allergic inflammation. Clin. Exp. Immunol. 2008, 54, 162–171. [Google Scholar] [CrossRef]
- Fairchild, J.F.; Ruessler, D.S.; Carlson, A.R. Comparative sensitivity of five species of macrophytes and six species of algae to atrazine, metribuzin, alachlor, and metolachlor. Environ. Toxicol. Chem. 2009, 17, 1830–1834. [Google Scholar] [CrossRef]
- Marwood, C.A.; Solomon, K.R.; Greenberg, B.M. Chlorophyll fluorescence as a bioindicator of effects on growth in aquatic macrophytes from mixtures of polycyclicaromatic hydrocarbons. Environ. Toxicol. Chem. 2001, 20, 890–898. [Google Scholar] [CrossRef]
- Agarwal, N.; Sharma, S. Garden cress (Lepidium sativum L.)—A non conventional traditional plant item for food product. IJTK 2013, 12, 699–706. [Google Scholar]
- Sharma, S.; Singh, A.K.; Singh, R.P.; Singh, M.K.; Singh, P.; Mohapatra, C. Effects of plant growth regulator on in vitro callogenesis of Garden cress (Lepidum sativum L.). Bioscan 2015, 10, 167–171. [Google Scholar]
- Ogórek, R. Analysis of Variability and Biotic Characteristics of Epicoccum Nigrum Link; Wrocław University of Environmental and Life Sciences: Poland, Wrocław, 2014; pp. 15–19. (In Polish) [Google Scholar]
- Ogórek, R.; Dyląg, M.; Kozak, B. Dark stains on rock surfaces in Driny Cave (Little Carpathian Mountains, Slovakia). Extremophiles 2016, 20, 641–652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Locquin, M. Chromotaxia. Paris, 1957.
- Townsenda, G.R.; Heubergera, J.W. Methodes for estimating losses caused by diseases in fungicide experiments. Plant Dis. Report. 1943, 24, 340–343. [Google Scholar]
- Kidd, S.; Halliday, C.; Alexiou, H.; Ellis, D. Descriptions of Medical Fungi, 3rd ed.; Newstyle Printing: Adelaide, SA, Australia; CutCut Digital: Mile End, Israel, 2016; p. 83. [Google Scholar]
- Ogórek, R.; Kurczaba, K.; Łobas, Z.; Żołubak, E.; Jakubska-Busse, A. Species Diversity of micromycetes associated with Epipactis helleborine and Epipactis purpurata (Orchidaceae, Neottieae) in Southwestern Poland. Diversity 2020, 12, 182. [Google Scholar] [CrossRef]
- Ogórek, R.; Kozak, B.; Višňovská, Z.; Tančinová, D. Phenotypic and genotypic diversity of airborne fungal spores in Demänovská Ice Cave (Low Tatras, Slovakia). Aerobiologia 2018, 34, 13–28. [Google Scholar] [CrossRef] [Green Version]
- Bliss, C.T. The method of probits. Science 1924, 79, 38–39. [Google Scholar] [CrossRef]
- Themmen, A.P.N.; Gregory, A.T.; Grierson, D. Degradation of isolated tomato cell walls by purified polygalacturonase in vitro. Plant Physiol. 1982, 69, 122–124. [Google Scholar] [CrossRef]
- Mendgen, K.; Hakn, M.; Deising, H. Morphogenesis and mechanisms of penetration by plant pathogenic fungi. Annu. Rev. Phytopathol. 1996, 34, 367–386. [Google Scholar] [CrossRef] [Green Version]
- Gomathi, V.; Gnanamanickam, S.S. Polygalacturonase-inhibiting proteins in plant defence. Curr. Sci. 2004, 87, 1211–1217. [Google Scholar]
- Piecuch, A.; Ogórek, R.; Dyląg, M.; Cal, M.; Przywara, K. Epicoccum nigrum Link as a potential biocontrol agent against selected dermatophytes. Acta Mycol. 2020, 55, 5516. [Google Scholar] [CrossRef]
- Choi, H.Y.; Veal, D.A.; Karuso, P. Epicocconone, a new cell-permeable long stokes’ shift fluorescent stain for live cell imaging and multiplexing. J. Fluoresc. 2006, 16, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Mapari, S.A.S.; Mayer, A.S.; Thrane, U. Evaluation of Epicoccum nigrum for growth, morphology and production of natural colorants in liquid media and on a solid rice medium. Biotechnol. Lett. 2008, 30, 2183–2190. [Google Scholar] [CrossRef] [PubMed]
- Foppen, F.H.; Gribanovski-Sassu, O. Lipids produced by Epicoccum nigrum in submerged culture. Biochem. J. 1968, 106, 97–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuttobello, L.; Foppen, F.H.; Carilli, A. Growth and pigmentation of Epicoccum nigrum in submerged culture. J. App. Microbiol. 1969, 17, 847–852. [Google Scholar] [CrossRef] [Green Version]
- Dwivedi, R. Effect of growth products of staled fungal spp. on germination and field of exotic potato culture. Indian Phytopath. 1988, 41, 500–502. [Google Scholar]
- Khurshid, S.; Shoaib, A.; Javaid, A. In vitro toxicity evaluation of culture filtrates of Fusarium oxysporum f. sp. lycopersici growth and physiology of tomato under chro-mium (VI) stress. J. Anim. Plant Sci. 2014, 24, 1241–1245. [Google Scholar]
- Suthar, R.; Bhatt, D.P.; Bhatt, P.N. Effect of culturefiltrate of Fusarium equisetion seed germination and seed-ling growth of cumin (Cuminum cyminum). Indian Phytopath. 2014, 67, 193–194. [Google Scholar]
- Csonka, L.N. Physiological and genetic responses of bacteria to osmotic stress. Microbiol. Rev. 1989, 53, 121–147. [Google Scholar] [CrossRef] [Green Version]
- Urbanek, H. The role of the enzyme in the interaction higher plant-pathogen. Wiadomości Botaniczne 1987, 31, 15–28. (In Polish) [Google Scholar]
- Subramanian, D. Enzymes in pathogenesis. Proc. Indian Acad. Sci. B 2009, 69, 133–141. [Google Scholar]
- Dean, R.A.; Timberlake, W.E. Production of cell wall-degrading enzymes by Aspergillus nidulans: A model system for fungal pathogenesis of plants. Plant Cell 1989, 1, 265–273. [Google Scholar] [PubMed] [Green Version]
- Shah, J. Lipids, lipases, and lipid-modyfing enzymes in plant disease resistance. Annu. Rev. Phytopathol. 2005, 43, 229–260. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Yen, Y. Jasmonate and ethylene signaling pathway may mediate Fusarium head blight resistance in wheat. Crop. Sci. 2008, 48, 1888–1896. [Google Scholar] [CrossRef]
- Stanley, D.; Farnden, K.J.F.; MacRae, E.A. Plant α-amylases: Functions and roles in carbohydrate metabolism. Biologia Bratislava 2005, 60, 65–71. [Google Scholar]
- Tucker, S.L.; Talbot, N.J. Surface attachment and pre-penetration stage development by plant pathogenic fungi. Annu. Rev. Phytopathol. 2001, 39, 385–417. [Google Scholar] [CrossRef]
- Kluth, S.; Kruess, A.; Tscharntke, T. Insects as vectors of plant pathogens: Mutualistic and antagonistic interactions. Oecologia 2002, 133, 193–199. [Google Scholar] [CrossRef]
- Matkowski, K. The Use of Saprophytic Forms of Fusarium oxysporum Schlecht. ex Fr. for the Control of the Pink Root Rot of Leek Allium ampeloprasum ssp. porrum (L) J. Gay. Habilitation Thesis, Wrocław University of Environmental and Life Sciences, Wrocław, Poland, 2010; pp. 18–23. (In Polish). [Google Scholar]
No. | E. nigrum | Host Plant | Location of Crops | |||
---|---|---|---|---|---|---|
Fungal Strain | GenBank Accession No. | Species | Cultivar | Type of Cultivation | ||
1 | UP_EPC_02 | KM434169.1 | Rye * | Stach | grain mixture | Lower Silesia (Poland) |
2 | UP_EPC_04 | KM434162.1 | Rye | Konto | grain mixture | |
3 | UP_EPC_06 | KM434172.1 | Rye | Konto | grain mixture | |
4 | UP_EPC_09 | KM434164.1 | Spring barley | Nagradowicki | barley-pea mixture | |
5 | UP_EPC_21 | KM434165.1 | Rye | Picasso | grain mixture | |
6 | UP_EPC_25 | KM434177.1 | Rye | Picasso | grain mixture | |
7 | UP_EPC_31 | KM434173.1 | Rye | Dańkowskie | grain mixture | |
8 | UP_EPC_32 | KM434166.1 | Rye | Konto | grain mixture | |
9 | UP_EPC_39 | KM434161.1 | Rye | Picasso | grain mixture | |
10 | UP_EPC_49 | KM434171.1 | Rye | Picasso | grain mixture | |
11 | UP_EPC_51 | KM434167.1 | Rye | Dańkowskie | grain mixture | |
12 | UP_EPC_54 | KM434174.1 | Rye | Dańkowskie | grain mixture | |
13 | UP_EPC_55 | KM434163.1 | Winter wheat | Levis | pure stands | Changins (Switzerland) |
14 | UP_EPC_69 | KM434170.1 | Rye | Picasso | grain mixture | Lower Silesia (Poland) |
15 | UP_EPC_76 | KM434176.1 | Winter wheat | Bogatka | pure stands | |
16 | UP_EPC_79 | KM434160.1 | Rye | Picasso | grain mixture | |
17 | UP_EPC_81 | KM434175.1 | Winter wheat | Combin | pure stands | Cadenazzo (Switzerland) |
18 | UP_EPC_82 | KM434168.1 | Winter wheat | Combin | pure stands |
Fungal Strain (*) and the Color of the Culture Filtrates (**) According to Locquin [42]. | |||
---|---|---|---|
UP_EPC_02 * UP_EPC_25 * UP_EPC_49 * UP_EPC_51 * UP_EPC_81 * Y40 R20 ** | control without fungi * UP_EPC_04 * Y05 C50 ** | UP_EPC_06 * Y10 R30 ** | UP_EPC_09 * Y40 R10 B05 ** |
| | | |
UP_EPC_21 * Y20 R10 ** | UP_EPC_31 * UP_EPC_55 * Y40 B10 R10 ** | UP_EPC_32 * Y10 R30 ** | UP_EPC_39 * B50 R40 ** |
| | | |
UP_EPC_54 * Y50 B10 R10 ** | UP_EPC_32 * Y10 R30 ** | UP_EPC_76 * Y50 R05 ** | UP_EPC_79 * UP_EPC_82 * Y50 R20 ** |
| | | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogórek, R.; Przywara, K.; Piecuch, A.; Cal, M.; Lejman, A.; Matkowski, K. Plant–Fungal Interactions: A Case Study of Epicoccoum nigrum Link. Plants 2020, 9, 1691. https://doi.org/10.3390/plants9121691
Ogórek R, Przywara K, Piecuch A, Cal M, Lejman A, Matkowski K. Plant–Fungal Interactions: A Case Study of Epicoccoum nigrum Link. Plants. 2020; 9(12):1691. https://doi.org/10.3390/plants9121691
Chicago/Turabian StyleOgórek, Rafał, Katarzyna Przywara, Agata Piecuch, Magdalena Cal, Agnieszka Lejman, and Krzysztof Matkowski. 2020. "Plant–Fungal Interactions: A Case Study of Epicoccoum nigrum Link" Plants 9, no. 12: 1691. https://doi.org/10.3390/plants9121691
APA StyleOgórek, R., Przywara, K., Piecuch, A., Cal, M., Lejman, A., & Matkowski, K. (2020). Plant–Fungal Interactions: A Case Study of Epicoccoum nigrum Link. Plants, 9(12), 1691. https://doi.org/10.3390/plants9121691