Interactive Effects of the Potassium and Nitrogen Relationship on Yield and Quality of Strawberry Grown Under Soilless Conditions
Abstract
:1. Introduction
2. Results
2.1. Plant Variables
2.2. Total Antioxidants
2.3. N–K Interaction
2.4. Phenolic Compounds
2.5. Total Antioxidants
3. Discussion
4. Materials and Methods
4.1. Study Site and Experimental Conditions
4.2. Treatments and Experimental Design
4.3. Fruit Yield and Quality
4.4. Determination of Nutraceutical Quality
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Marschner, H. Mineral Nutrition of Higher Plants, 2nd ed.; Academic Press: San Diego, CA, USA, 1995; 889p, Available online: https://www.elsevier.com/books/mineral-nutrition-of-higher-plants/marschner/978-0-08-057187-4 (accessed on 28 October 2019).
- Monroy, J.; Vera–Nuñez, J.A.; Carrera, M.A.; Grageda–Cabrera, O.A.; Peña–Cabriales, J.J. Absorción de nitrógeno (15N) y productividad del agua por el cultivo de fresa (Fragaria × ananassa) en “El Bajío”, México. Terra 2002, 20, 65–69. Available online: https://www.redalyc.org/pdf/573/57320111.pdf (accessed on 15 November 2019).
- Cardeñosa, V.; Medrano, E.; Lorenzo, P.; Sánchez-Guerrero, M.C.; Cuevas, F.; Pradas, I.; Moreno-Rojas, J.M. Effects of salinity and nitrogen supply on the quality and health-related compounds of strawberry fruits (Fragaria × ananassa cv. Primoris). J. Sci. Food Agric. 2015, 95, 2924–2930. [Google Scholar] [CrossRef]
- Tulipani, S.; Marzban, G.; Herndl, A.; Laimer, M.; Mezzetti, B.; Battino, M. Influence of environmental and genetic factors on health-related compounds in strawberry. Food Chem. 2011, 124, 906–913. [Google Scholar] [CrossRef]
- Winter, C.K.; Davis, S.F. Organic foods. J. Food Sci. 2006, 71, 117–124. [Google Scholar] [CrossRef]
- Khayyat, M.; Tafazoli, E.; Eshghi, S.; Rahemi, M.; Rajaee, S. Salinity, supplementary calcium and potassium effects on fruit yield and quality of strawberry (Fragaria ananassa Duch.). Am. Eurasian J. Agric. Environ. Sci. 2007, 2, 539–544. Available online: https://www.idosi.org/aejaes/jaes2(5)/13.pdf (accessed on 11 November 2019).
- Schwarz, K.; Vilela-Resende, J.T.; Pierozan-Junior, C.; Tauffer-de-Paula, J.; Baier, J.E.; de Souza-Silva, M.L.; Brendler-Oliveira, F. Yield and nutrition of greenhouse-grown strawberries (Fragaria × ananassa (Duchesne ex Weston) Duchesne ex Rozier. cv. Camarosa) as affected by potassium fertilization. Acta Agron. 2018, 67, 114–119. [Google Scholar] [CrossRef]
- Khayyat, M.; Tafazoli, E.; Rajaee, S.; Vazifeshenas, M.; Mahmoodabadi, M.R.; Sajjadinia, A. Effects of NaCl and supplementary potassium on gas exchange, ionic content, and growth of salt-stressed strawberry plants. J. Plant Nutr. 2009, 32, 907–918. [Google Scholar] [CrossRef]
- Khayyat, M.; Vazifeshenas, M.R.; Rajaee, S.; Jamalian, S. Potassium effect on ion leakage, water usage, fruit yield and biomass production by strawberry plants grown under NaCl stress. J. Fruit Ornam. Plant Res. 2009, 17, 79–88. Available online: http://www.inhort.pl/files/journal_pdf/journal2009/vol17(1)2009/Full8%202009_1_.pdf (accessed on 28 October 2019).
- Tohidloo, G.; Souri, M.K.; Eskandarpour, S. Growth and fruit biochemical characteristics of three strawberry genotypes under different potassium concentrations of Nutrient Solution. Open Agric. 2018, 3, 356–362. [Google Scholar] [CrossRef]
- Giampieri, F.; Forbes-Hernandez, T.Y.; Gasparrini, M.; Alvarez-Suarez, J.M.; Afrin, S.; Bompadre, S.; Quiles, J.L.; Mezzetti, B.; Battino, M. Strawberry as a health promoter: An evidence based review. Food Funct. 2015, 6, 1386–1398. [Google Scholar] [CrossRef] [Green Version]
- Kirnak, H.; Kaya, C.; Higgs, D.; Gercek, S. A long-term experiment to study the role of mulches in the physiology and macro-nutrition of strawberry grown under water stress. Austral. J. Agric. Res. 2001, 52, 937–943. [Google Scholar] [CrossRef]
- Cárdenas-Navarro, R.; López-Pérez, L.; Lobit, P.; Ruiz-Corro, R.; Castellanos-Morales, V.C. Effects of nitrogen source on growth and development of strawberry plants. J. Plant Nutr. 2006, 29, 1699–1707. [Google Scholar] [CrossRef]
- Mikkelsen, R.L. The ‘‘4R’’ Nutrient stewardship framework for horticulture. HortTechnology 2011, 21, 658–662. [Google Scholar] [CrossRef]
- Asami, D.K.; Hong, Y.J.; Barrett, D.M.; Mitchell, A.E. Comparison of the total phenolic and ascorbic acid content of freeze-dried and air-dried marionberry, strawberry, and corn grown using conventional, organic, and sustainable agricultural practices. J. Agric. Food Chem. 2003, 51, 1237–1241. [Google Scholar] [CrossRef] [PubMed]
- Ojeda-Real, L.A.; Cárdenas-Navarro, R.; Lobit, P.; Grageda-Cabrera, O.; Valencia-Cantero, E.; Macías-Rodríguez, L. Efecto de la nutrición nítrica y sistemas de riego en el sabor de la fresa (Fragaria x ananassa Duch.). Rev. Chap. Ser. Hortic. 2008, 14, 61–70. Available online: http://www.scielo.org.mx/pdf/rcsh/v14n1/v14n1a9.pdf (accessed on 22 January 2020).
- Andriolo, J.L.; Erpen, L.; Cardoso, F.L.; Cocco, C.; Casagrande, G.S.; Jänisch, D.I. Nitrogen levels in the cultivation of strawberries in soilless culture. Horticult. Bras. 2011, 29, 516–519. [Google Scholar] [CrossRef] [Green Version]
- Albregts, E.E.; Hochnmth, G.J.; Chandler, C.K.; Cornell, J.; Harrison, J. Potassium fertigation requirements of drip-irrigated strawberry. J. Am. Soc. Hortic. Sci. 1996, 121, 164–168. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, H.; Sajid, M.; Ullah, R.; Hayat, S.; Shahab, M. Dose optimization of potassium (K) for yield and quality increment of strawberry (Fragaria × ananassa Duch) Chandler. Am. J. Exp. Agric. 2014, 4, 1526–1535. [Google Scholar] [CrossRef]
- Chow, K.K.; Price, T.V.; Hanger, B.C. Nutritional requirements for growth and yield of strawberry in deep flow hydroponic systems. Sci. Hortic. 1992, 52, 95–104. [Google Scholar] [CrossRef]
- Kafkas, E.; Koşar, M.; Paydaş, S.; Kafkas, S.; Başer, K.H.C. Quality characteristics of strawberry genotypes at different maturation stages. Food Chem. 2007, 100, 1229–1236. [Google Scholar] [CrossRef]
- Gallace, N.; Lieten, P. Potassium-calcium ratio of the nutrient solution: Implications for fruit quality in June-bearing and day-neutral strawberry cultivars. Acta Hortic. 2018, 1217, 405–410. [Google Scholar] [CrossRef]
- Roudeillac, P.; Trajkovski, K. Breeding for fruit quality and nutrition in strawberries. Acta Hortic. 2004, 649, 55–60. [Google Scholar] [CrossRef]
- Karadeniz, F.; Burdurlu, H.S.; Koca, N.; Soyer, Y. Antioxidant activity of selected fruits and vegetables grown in Turkey. Turk. J. Agric. For. 2005, 29, 297–303. Available online: http://journals.tubitak.gov.tr/agriculture/issues/tar-05-29-4/tar-29-4-9-0409-12.pdf (accessed on 22 January 2020).
- Cordenunsi, B.R.; Nascimento, J.R.O.; Lajolo, F.M. Physico-chemical changes related to quality of five strawberry Fruit cultivars during cool-storage. Food Chem. 2003, 83, 167–173. [Google Scholar] [CrossRef]
- Wang, M.; Zheng, Q.; Shen, Q.; Guo, S. The Critical Role of Potassium in Plant Stress Response. Int. J. Mol. Sci. 2013, 14, 7370–7390. [Google Scholar] [CrossRef] [Green Version]
- Ebrahimi, R.; Souri, M.K.; Ebrahimi, F.; Ahmadizadeh, M. Growth and yield of strawberries under different potassium concentrations of hydroponic system in three substrates. World Appl. Sci. J. 2012, 16, 1380–1386. Available online: https://www.idosi.org/wasj/wasj16(10)12/7.pdf (accessed on 24 January 2020).
- Haynes, R.J.; Goh, K.M. Effects of nitrogen and potassium applications on strawberry growth, yield and quality. Commun. Soil Sci. Plant Anal. 1987, 18, 457–471. [Google Scholar] [CrossRef]
- Wang, S.Y.; Galletta, G.J. Foliar application of potassium silicate induces metabolic changes in strawberry plants. J. Plant Nutr. 1998, 21, 157–167. [Google Scholar] [CrossRef]
- Steiner, A.A. A universal method for preparing nutrient solutions of a certain desired composition. Plant Soil 1961, 15, 134–154. [Google Scholar] [CrossRef] [Green Version]
- Pokhrel, B.; Laursen, K.H.; Petersen, K.K. Yield, quality, and nutrient concentrations of strawberry (Fragaria ×ananassa Duch. cv. ‘Sonata’) grown with different organic fertilizer strategies. J. Agric. Food Chem. 2015, 63, 5578–5586. [Google Scholar] [CrossRef]
- Wu, C.S.; Gao, Q.H.; Kjelgren, R.K.; Guo, X.D.; Wang, M. Yields, phenolic profiles and antioxidant activities of Ziziphus jujube Mill. in response to different fertilization treatments. Molecules 2013, 18, 12029–12040. [Google Scholar] [CrossRef] [PubMed]
- Taghavi, T.; Folta, K.M. A comparison of wild and cultivated strawberries for nitrogen uptake and reduction. Hortic. Environ. Biotechnol. 2014, 55, 196. [Google Scholar] [CrossRef]
- Lester, G.E.; Jifon, J.L.; Makus, D.J. Impact of potassium nutrition on food quality of fruits and vegetables: A condensed and concise review of the literature. Better Crops 2010, 94, 18–21. Available online: http://eeca-en.ipni.net/ipniweb/region/eecaen.nsf/0/69F4F2205C1B59EE8525803E0031DF67/$FILE/K_booklet_ENG_site.pdf#page=12 (accessed on 22 January 2020).
- Prinsloo, G.; Nogemane, N. The effects of season and water availability on chemical composition, secondary metabolites and biological activity in plants. Phytochem. Rev. 2018, 17, 889–902. [Google Scholar] [CrossRef]
- Verma, N.; Shukla, S. Impact of various factors responsible for fluctuation in plant secondary metabolites. J. Appl. Res. Med. Aromat. Plants 2015, 2, 105–113. [Google Scholar] [CrossRef]
- Tripathi, D.; Singh, V.; Chauhan, D.; Prasad, S.; Dubey, N. Role of macronutrients in plant growth and acclimation: Recent advances and future prospective. In Improvement of Crops in the Era of Climatic Changes; Ahmad, P., Wani, M., Azooz, M., Phan Tran, L.S., Eds.; Springer: New York, NY, USA, 2014. [Google Scholar] [CrossRef]
- Magallanes-Quintanar, R.; Valdez-Cepeda, R.D.; Olivares-Sáenz, E.; Pérez-Veyna, O.; García-Hernández, J.L.; López-Martínez, J.D. Compositional nutrient diagnosis in maize grown in calcareous soil. J. Plant Nutr. 2006, 29, 2019–2033. [Google Scholar] [CrossRef]
- Ríos-Plaza, J.L.; Valdez-Cepeda, R.D.; Vázquez-Vázquez, C.; Orona-Castillo, I.; Gallegos-Robles, M.A.; Ramírez-Ibarra, J.A.; García-Hernández, J.L. Preliminary nutrient norms for a native cultivar of Capsicum annuum on the basis of the compositional nutrient diagnosis approach. ITEA 2017, 113, 216–227. [Google Scholar] [CrossRef]
- Hornero-Méndez, D.; Mínguez-Mosquera, M.I. Xanthopyll esterification accompanying carotenoid overaccumulation in chromoplast of Capsicum annuum ripening fruits is a constitutive process and useful for ripeness index. J. Agric. Food Chem. 2000, 48, 1617–1622. [Google Scholar] [CrossRef]
- Percival, D.; Sanderson, K. Main and interactive effects of vegetative-year applications of nitrogen, phosphorus, and potassium fertilizers on the wild blueberry. Small Fruits Rev. 2004, 3, 105–121. [Google Scholar] [CrossRef]
- Boonterm, V.; Silapapun, A.; Boonkerd, N. Effects of nitrogen, potassium fertilizers and clusters per vine on yield and anthocyanin content in Cabernet Sauvignon grape. Suranaree J. Sci. Technol. 2010, 17, 155–163. Available online: http://ird.sut.ac.th/e-journal/Journal/pdf/1002006.pdf (accessed on 17 October 2019). [CrossRef]
- Maggio, A.; De Pascale, S.; Paradiso, R.; Barbieri, G. Quality and nutritional value of vegetables from organic and conventional farming. Sci. Hortic. 2013, 164, 532–539. [Google Scholar] [CrossRef]
- Guzmán-Soria, E.; García-Salazar, J.A.; Mora-Flores, J.S.; Fortis-Hernández, M.; Valdivia-Alcalá, R.; Portillo-Vázquez, M. Demand for water in the Comarca Lagunera, México. Agrociencia 2006, 40, 793–803. Available online: https://www.redalyc.org/pdf/302/30240611.pdf (accessed on 31 October 2019).
- Roussos, P.A.; Denaxa, N.-K.; Damvakaris, T. Strawberry fruit quality attributes after application of plant growth stimulating compounds. Sci. Hortic. 2009, 119, 138–146. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. Available online: https://s3.amazonaws.com/academia.edu.documents/48805019/DPPH-original_LebensWissTechnol_1995-v28-p25.pdf?response-content-disposition=inline%3B%20filename%3DUse_of_a_Free_Radical_Method_to_Evaluate.pdf&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAIWOWYYGZ2Y53UL3A%2F20200211%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20200211T202341Z&X-Amz-Expires=3600&X-Amz-SignedHeaders=host&X-Amz-Signature=7694f527596f1966652b703ec589f60d4dc8bfffde49449b8e3f3363de341ca0 (accessed on 17 February 2020). [CrossRef]
- Rodríguez-Bonilla, P.; Gandía-Herrero, F.; Matencio, A.; García-Carmona, F.; López-Nicolás, J.M. Comparative study of the antioxidant capacity of four stilbenes using ORAC, ABTS+, and FRAP techniques. Food Anal. Meth. 2017, 10, 2994–3000. [Google Scholar] [CrossRef]
- Statistical Analysis System (SAS). SAS/STAT® 9.2. In User’s Guide; SAS Institute Inc.: Cary, NC, USA, 2008; 74p, Available online: http://support.sas.com/rnd/app/stat/procedures/AnalysisOfVariance.html (accessed on 19 September 2019).
FACTOR | Conc | YIELD | NF | DE | DP | AFW | ° BRIX | FIRM |
---|---|---|---|---|---|---|---|---|
mol m−3 | g | - - - - - - - - mm - - - - - - - - | g | Newton | ||||
9 | 89.3 b | 7.03 b | 27.4 | 36.9 | 13.4 | 10.5 a§ | 2.99 | |
NO3− | 12 | 108 a | 8.08 b | 26.9 | 36.3 | 13.3 | 10.0 ab | 3.34 |
15 | 111 a | 9.37 a | 26.2 | 34.6 | 12.2 | 9.51 b | 3.56 | |
5 | 90.8 b | 7.94 | 26.9 | 36.2 | 13.1 | 9.30 b | 3.04 | |
K+ | 7 | 102 ab | 8.55 | 26.6 | 35.0 | 12.5 | 9.69 b | 3.56 |
9 | 103 ab | 7.44 | 27.1 | 35.5 | 12.5 | 9.73 ab | 3.38 | |
11 | 114 a | 8.66 | 26.9 | 37.1 | 13.6 | 10.6 a | 3.31 | |
N*K | * | * | ns | ns | ns | ns | ns |
Factor | Levels mol m−3 | Antioxidant Capacity meqTrolox/100 g BF | Phenolic Compounds mg equiv AG/g BF |
---|---|---|---|
9 | 6090 ab§ | 1078 | |
NO3− | 12 | 6305 a | 1081 |
15 | 5650 b | 1065 | |
5 | 6103 | 1073 ab | |
K+ | 7 | 5822 | 1130 a |
9 | 6140 | 994 b | |
11 | 5996 | 1102 ab | |
N*K | * | * |
Treatments | NO3− | H2PO4− | S042− | K+ | Ca2+ | Mg2+ |
---|---|---|---|---|---|---|
--------------------------------------- mol m−3 ----------------------------------------- | ||||||
1 (9 NO3−, 5 K+) | 9.75 | 1.49 | 10.4 | 5.41 | 11.2 | 4.99 |
2 (9 NO3−, 7 K+) | 9.41 | 1.43 | 10.1 | 7.32 | 9.41 | 4.18 |
3 (9 NO3−, 9 K+) | 9.09 | 1.38 | 9.72 | 9.09 | 7.69 | 3.41 |
4 (9 NO3−, 11 K+) | 8.79 | 1.34 | 9.41 | 10.8 | 6.09 | 2.69 |
5 (12 NO3−, 5 K+) | 12.4 | 1.03 | 7.24 | 5.17 | 10.7 | 4.76 |
6 (12 NO3−, 7 K+) | 12.0 | 1.00 | 7.00 | 7.00 | 9.00 | 4.00 |
7 (12 NO3−, 9 K+) | 11.6 | 0.96 | 6.77 | 8.71 | 7.36 | 3.27 |
8 (12 NO3−, 11 K+) | 11.3 | 0.93 | 6.56 | 10.3 | 5.84 | 2.58 |
9 (15 NO3−, 5 K+) | 14.8 | 0.61 | 4.33 | 4.94 | 10.3 | 4.56 |
10 (15 NO3−, 7 K+) | 14.4 | 0.59 | 4.19 | 6.70 | 8.62 | 3.83 |
11 (15 NO3−, 9 K+) | 13.9 | 0.58 | 4.06 | 8.35 | 7.06 | 3.13 |
12 (15 NO3−, 11 K+) | 13.5 | 0.56 | 3.94 | 9.90 | 5.61 | 2.48 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Preciado-Rangel, P.; Troyo-Diéguez, E.; Valdez-Aguilar, L.A.; García-Hernández, J.L.; Luna-Ortega, J.G. Interactive Effects of the Potassium and Nitrogen Relationship on Yield and Quality of Strawberry Grown Under Soilless Conditions. Plants 2020, 9, 441. https://doi.org/10.3390/plants9040441
Preciado-Rangel P, Troyo-Diéguez E, Valdez-Aguilar LA, García-Hernández JL, Luna-Ortega JG. Interactive Effects of the Potassium and Nitrogen Relationship on Yield and Quality of Strawberry Grown Under Soilless Conditions. Plants. 2020; 9(4):441. https://doi.org/10.3390/plants9040441
Chicago/Turabian StylePreciado-Rangel, Pablo, Enrique Troyo-Diéguez, Luis Alonso Valdez-Aguilar, José Luis García-Hernández, and José Guadalupe Luna-Ortega. 2020. "Interactive Effects of the Potassium and Nitrogen Relationship on Yield and Quality of Strawberry Grown Under Soilless Conditions" Plants 9, no. 4: 441. https://doi.org/10.3390/plants9040441
APA StylePreciado-Rangel, P., Troyo-Diéguez, E., Valdez-Aguilar, L. A., García-Hernández, J. L., & Luna-Ortega, J. G. (2020). Interactive Effects of the Potassium and Nitrogen Relationship on Yield and Quality of Strawberry Grown Under Soilless Conditions. Plants, 9(4), 441. https://doi.org/10.3390/plants9040441