Design and Evaluation of Regenerated Landscapes of Factory Sites Based on Evaluation Factors
Abstract
:1. Introduction
2. Review of the Literature
3. Landscape Design and Evaluation Methods for Regeneration of Factory Sites
3.1. Landscape Design Scheme for the Regeneration of the Factory Site
3.2. Evaluation Factor Method for Regenerative Landscape Design of Factory Sites
4. Results of the Evaluation of the Regenerative Landscape Design of the Factory Site
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wuni, I.Y.; Shen, G.Q.; Osei-Kyei, R. Quantitative evaluation and ranking of the critical success factors for modular integrated construction projects. Int. J. Constr. Manag. 2022, 22, 2108–2120. [Google Scholar] [CrossRef]
- El-Abidi, K.M.A.; Ofori, G.; Zakaria, S.A.S.; Mannan, M.; Abas, N.F. Identifying and evaluating critical success factors for industrialized building systems implementation: Malaysia study. Arab. J. Sci. Eng. 2019, 44, 8761–8777. [Google Scholar] [CrossRef]
- Chen, I.C.; Chuo, Y.Y.; Ma, H.W. Uncertainty analysis of remediation cost and damaged land value for brownfield investment. Chemosphere 2019, 220, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Gong, Q.; Chen, B.Z.; Zhi, P.P.; Li, Y.H. Comprehensive evaluation for design for design scheme of metro auxiliary power supply system based on FAHP. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1043, 022014–022024. [Google Scholar] [CrossRef]
- Xu, Y. Ecological research on the cognitive and visual features of regional culture in landscape design. Ekoloji 2019, 28, 1487–1493. [Google Scholar]
- Marchi, L.; Antonini, E.; Orioli, V.; Evans, S. Mitigating the impact of factories on the landscape: An assessment and design support tool. Int. J. Sustain. Dev. Plan. 2020, 15, 309–318. [Google Scholar] [CrossRef]
- Consuelo, N. Advanced design for manufacturing of integrated sustainability “Off-Shore” and “Off-Site” Prototype-MVP “S2_HOME”. Civ. Eng. J. 2020, 6, 1752–1764. [Google Scholar] [CrossRef]
- Bai, Y. Research on rural landscape planning and design based on BIM. J. Phys. Conf. Ser. 2021, 1992, 032023–032027. [Google Scholar] [CrossRef]
- Chen, J.; Judd, B. Relationality and territoriality: Rethinking policy circulation of industrial heritage reuse in Chongqing, China. Int. J. Herit. Stud. 2021, 27, 16–38. [Google Scholar] [CrossRef]
- Guneroglu, N.; Bekar, M. A methodology of transformation from concept to form in landscape design. J. Hist. Cult. Art Res. 2019, 8, 243–253. [Google Scholar] [CrossRef]
- Hautamäki, R.; Donner, J. Modern living in a forest–landscape architecture of Finnish forest suburbs in the 1940s–1960s. Geogr. Ann. Ser. B Hum. Geogr. 2022, 104, 250–268. [Google Scholar] [CrossRef]
- Kaiser, A.; Larsson, M.; Girhammar, U.A. From file to factory: Innovative design solutions for multi-storey timber buildings applied to project Zembla in Kalmar, Sweden. Front. Archit. Res. 2019, 8, 1–16. [Google Scholar] [CrossRef]
- Wu, H.; Qian, Q.K.; Straub, A.; Visscher, H. Exploring transaction costs in the prefabricated housing supply chain in China. J. Clean. Prod. 2019, 226, 550–563. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Cenci, J.; Becue, V. A preliminary study on industrial landscape planning and spatial layout in Belgium. Heritage 2021, 4, 1375–1387. [Google Scholar] [CrossRef]
- Zeng, Y.; Wang, L.; Li, X. A study on regional ecological design of overseas Chinese wetland-taking the design of Fenghewan wetland park-taking Kaiping city as an example. Ekoloji 2019, 28, 3177–3182. [Google Scholar]
- Taleb, T.; Afolabi, I.; Bagaa, M. Orchestrating 5G network slices to support industrial internet and to shape next-generation smart factories. IEEE Netw. 2019, 33, 146–154. [Google Scholar] [CrossRef] [Green Version]
- Cao, C. Analysis on the measures of integrating ecological concept into landscape design and construction based on big data. J. Phys. Conf. Ser. 2021, 1992, 022188–0221993. [Google Scholar] [CrossRef]
- Han, Y.; Yan, X.; Piroozfar, P. An overall review of research on prefabricated construction supply chain management. Eng. Constr. Archit. Manag. 2022. ahead of print. [Google Scholar] [CrossRef]
- Han, Y.; Wang, L.; Kang, R. Influence of consumer preference and government subsidy on prefabricated building developer’s decision-making: A three-stage game model. J. Civ. Eng. Manag. 2023, 29, 35–49. [Google Scholar] [CrossRef]
- Wu, J.; Long, J.; Liu, M. Evolving RBF neural networks for rainfall prediction using hybrid particle swarm optimization and genetic algorithm. Neurocomputing 2015, 148, 136–142. [Google Scholar] [CrossRef]
- Li, P. Intelligent landscape design and land planning based on neural network and wireless sensor network. J. Intell. Fuzzy Syst. 2021, 40, 2055–2067. [Google Scholar]
- Wang, R. Analysis of the influence of environmental technology factors on landscape design and construction. J. Phys. Conf. Ser. 2020, 1649, 012010–012015. [Google Scholar] [CrossRef]
- Park, J.-M.; Hong, Y.-S. Poe research on the role and effect of landscape design supervision in the creation of large parks: Gwanggyo Lake Park. Int. Rev. Spat. Plan. Sustain. Dev. 2019, 7, 4–17. [Google Scholar]
- Meng, Y.; Wu, N.; Li, Y.; Zhu, C.; Kong, L. BIM impact assessment of landscape architecture design. J. Phys. Conf. Ser. 2020, 1533, 042093–042098. [Google Scholar] [CrossRef]
- Atasoy, M. Geophytoscape: A new insight into the landscape design process and implementation model for case study. Int. J. Soc. Humanit. Sci. Res. (JSHSR) 2020, 7, 214–223. [Google Scholar] [CrossRef]
- Mo, C.; Wang, L.; Rao, F. Typology, preservation, and regeneration of the post-1949 industrial heritage in China: A case study of Shanghai. Land 2022, 11, 1527. [Google Scholar] [CrossRef]
- Andrioti, N.; Kanetaki, E.; Drinia, H.; Kanetaki, Z.; Stefanis, A. Identifying the industrial cultural heritage of Athens, Greece, through digital applications. Heritage 2021, 4, 3113–3125. [Google Scholar] [CrossRef]
- Li, X.; Zhang, X.; Jia, T. Humanization of nature: Testing the influences of urban park characteristics and psychological factors on collegers’ perceived restoration. Urban For. Urban Green. 2023, 79, 127806. [Google Scholar] [CrossRef]
- Zhao, L.; Du, M.; Du, W.; Guo, J.; Liao, Z.; Kang, X.; Liu, Q. Evaluation of the carbon sink capacity of the proposed Kunlun Mountain National Park. Int. J. Environ. Res. Public Health 2022, 19, 9887. [Google Scholar] [CrossRef]
- He, M.; Wang, Y.; Wang, W.J.; Xie, Z. Therapeutic plant landscape design of urban forest parks based on the Five Senses Theory: A case study of Stanley Park in Canada. Int. J. Geoheritage Park. 2022, 10, 97–112. [Google Scholar] [CrossRef]
- Swensen, G.; Stafseng, V.E.; Simon Nielsen, V.K. Visionscapes: Combining heritage and urban gardening to enhance areas requiring regeneration. Int. J. Herit. Stud. 2022, 28, 511–537. [Google Scholar] [CrossRef]
- Han, Y.; Xu, X.; Zhao, Y.; Wang, X.; Chen, Z.; Liu, J. Impact of consumer preference on the decision-making of prefabricated building developers. J. Civ. Eng. Manag. 2022, 28, 166–176. [Google Scholar] [CrossRef]
- Shen, X.; Handel, S.N.; Kirkwood, N.G.; Huang, Y.; Padua, M.G. Locating the responsive plants for landscape recovery: A toolkit for designers and planners. Ecol. Restor. 2022, 40, 33–35. [Google Scholar] [CrossRef]
Evaluating Indicator | Threshold | Actual Value | Evaluation Value |
---|---|---|---|
A | 17.34 | 30 | 0.57 |
B | 29.18 | 40 | 0.72 |
C | 16.84 | 27 | 0.61 |
D | 36.68 | 57 | 0.64 |
A1 | 21.18 | 30 | 0.70 |
A2 | 14.17 | .20 | 0.70 |
A3 | 13.34 | 15 | 0.64 |
A4 | 13.67 | 16 | 0.67 |
B1 | 16.34 | 28 | 0.58 |
B2 | 10.18 | 15 | 0.67 |
B3 | 13.00 | 18 | 0.72 |
B4 | 16.00 | 21 | 0.76 |
B5 | 14.00 | 24 | 0.57 |
B6 | 11.67 | 15 | 0.78 |
B7 | 11.67 | 20 | 0.57 |
B8 | 7.18 | 10 | 0.72 |
C1 | 31.67 | 42 | 0.74 |
C2 | 28.00 | 38 | 0.73 |
C3 | 19.34 | 29 | 0.67 |
C4 | 21.00 | 37 | 0.57 |
D1 | 18.87 | 41 | 0.45 |
D2 | 14.17 | 19 | 0.75 |
D3 | 14.35 | 20 | 0.72 |
D4 | 16.17 | 25 | 0.65 |
D5 | 11.50 | 19 | 0.61 |
D6 | 18.34 | 25 | 0.73 |
D7 | 6.67 | 15 | 0.44 |
Evaluating Indicator | Evaluation Value | Standard Deviation | Discrete Coefficient | Weight |
---|---|---|---|---|
A | 17.34 | 8.98 | 0.52 | 0.35 |
B | 29.17 | 7.56 | 0.26 | 0.17 |
C | 16.83 | 5.59 | 0.33 | 0.22 |
D | 36.68 | 13.67 | 0.37 | 0.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Han, Y.; Chai, T.; Xu, Y.; Wang, H. Design and Evaluation of Regenerated Landscapes of Factory Sites Based on Evaluation Factors. Processes 2023, 11, 681. https://doi.org/10.3390/pr11030681
Zhang K, Han Y, Chai T, Xu Y, Wang H. Design and Evaluation of Regenerated Landscapes of Factory Sites Based on Evaluation Factors. Processes. 2023; 11(3):681. https://doi.org/10.3390/pr11030681
Chicago/Turabian StyleZhang, Kejia, Yue Han, Tianlong Chai, Yanyan Xu, and Hao Wang. 2023. "Design and Evaluation of Regenerated Landscapes of Factory Sites Based on Evaluation Factors" Processes 11, no. 3: 681. https://doi.org/10.3390/pr11030681
APA StyleZhang, K., Han, Y., Chai, T., Xu, Y., & Wang, H. (2023). Design and Evaluation of Regenerated Landscapes of Factory Sites Based on Evaluation Factors. Processes, 11(3), 681. https://doi.org/10.3390/pr11030681