Microbial Lipid Based Biorefinery Concepts: A Review of Status and Prospects
Abstract
:1. Introduction
1.1. Lignocellulosic SCO (Single-Cell Oil)
1.2. Second-Generation Biorefineries
1.3. Potential Markets for Microbial Lipids
2. SCO Microbes and Culture Conditions
3. SCO Production from Lignocellulosic Biomass
3.1. Stages of the Bioconversion of Lignocellulosic Biomass to Lipid
3.2. SCO Production from Lignocellulosic Biomass and Setbacks
3.3. Strain Development
3.4. Lipid Recovery
4. Microbes, Feedstocks and Coproducts for Single-Cell-Oil Biorefineries
5. Microbial Lipid-Based Products
6. Perspectives for Microbial Lipid-Based Products
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Trivedi, J.; Aila, M.; Bangwal, D.P.; Kaul, S.; Garg, M.O. Algae Based Biorefinery—How to Make Sense? Renew. Sustain. Energy Rev. 2015, 47, 295–307. [Google Scholar] [CrossRef]
- Cheng, Y.-S.; Mutrakulcharoen, P.; Chuetor, S.; Cheenkachorn, K.; Tantayotai, P.; Panakkal, E.J.; Sriariyanun, M. Recent Situation and Progress in Biorefining Process of Lignocellulosic biomass: Toward Green Economy. Appl. Sci. Eng. Prog. 2020, 13, 299–311. [Google Scholar] [CrossRef]
- Diwan, B.; Parkhey, P.; Gupta, P. From Agro-Industrial Wastes to Single Cell Oils: A Step towards Prospective Biorefinery. Folia Microbiol. 2018, 63, 547–568. [Google Scholar] [CrossRef] [PubMed]
- Zuccaro, G. Single Cell Oil Production: A New Approach in Biorefinery. Available online: http://www.fedoa.unina.it/11804/ (accessed on 18 November 2022).
- Bettencourt, S.; Miranda, C.; Pozdniakova, T.A.; Sampaio, P.; Franco-Duarte, R.; Pais, C. Single Cell Oil Production by Oleaginous Yeasts Grown in Synthetic and Waste-Derived Volatile Fatty Acids. Microorganisms 2020, 8, 1809. [Google Scholar] [CrossRef]
- Di Fidio, N.; Ragaglini, G.; Dragoni, F.; Antonetti, C.; Raspolli Galletti, A.M. Integrated Cascade Biorefinery Processes for the Production of Single Cell Oil by Lipomyces Starkeyi from Arundo donax L. Hydrolysates. Bioresour. Technol. 2021, 325, 124635. [Google Scholar] [CrossRef]
- Alzagameem, A.; Bergs, M.; Do, X.T.; Klein, S.E.; Rumpf, J.; Larkins, M.; Monakhova, Y.; Pude, R.; Schulze, M. Low-Input Crops as Lignocellulosic Feedstock for Second-Generation Biorefineries and the Potential of Chemometrics in Biomass Quality Control. Appl. Sci. 2019, 9, 2252. [Google Scholar] [CrossRef]
- Huang, C.; Chen, X.; Xiong, L.; Chen, X.; Ma, L.; Chen, Y. Single Cell Oil Production from Low-Cost Substrates: The Possibility and Potential of Its Industrialization. Biotechnol. Adv. 2013, 31, 129–139. [Google Scholar] [CrossRef]
- Zongbao, Z. Toward Cheaper Microbial Oil for Biodiesel Oil. Zhongguo Sheng Wu Gong Cheng Za Zhi J. Chin. Biotechnol. 2005, 25, 8–11. [Google Scholar]
- Liang, Y.; Tang, T.; Umagiliyage, A.L.; Siddaramu, T.; McCarroll, M.; Choudhary, R. Utilization of Sorghum Bagasse Hydrolysates for Producing Microbial Lipids. Appl. Energy 2012, 91, 451–458. [Google Scholar] [CrossRef]
- Jin, M.; Slininger, P.J.; Dien, B.S.; Waghmode, S.; Moser, B.R.; Orjuela, A.; da Costa Sousa, L.; Balan, V. Microbial Lipid-Based Lignocellulosic Biorefinery: Feasibility and Challenges. Trends Biotechnol. 2015, 33, 43–54. [Google Scholar] [CrossRef]
- Ratledge, C.; Cohen, Z. Microbial and Algal Oils: Do They Have a Future for Biodiesel or as Commodity Oils? Lipid Technol. 2008, 20, 155–160. [Google Scholar] [CrossRef]
- Lamers, D.; van Biezen, N.; Martens, D.; Peters, L.; van de Zilver, E.; Jacobs-van Dreumel, N.; Wijffels, R.H.; Lokman, C. Selection of Oleaginous Yeasts for Fatty Acid Production. BMC Biotechnol. 2016, 16, 45. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.; Li, Z.; Zhou, X.; Bao, W.; Cheng, S.; Zheng, L. Enhanced lipid production by Yarrowia lipolytica cultured with synthetic and waste-derived high-content volatile fatty acids under alkaline conditions. Biotechnol. Biofuels 2020, 13, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Michou, S.; Tsouko, E.; Vastaroucha, E.-S.; Diamantopoulou, P.; Papanikolaou, S. Growth Potential of Selected Yeast Strains Cultivated on Xylose-Based Media Mimicking Lignocellulosic Wastewater Streams: High Production of Microbial Lipids by Rhodosporidium toruloides. Fermentation 2022, 8, 713. [Google Scholar] [CrossRef]
- Abomohra, A.E.F.; El-Sheekh, M.; Hanelt, D. Screening of marine microalgae isolated from the hypersaline Bardawil lagoon for biodiesel feedstock. Renew. Energy 2017, 101, 1266–1272. [Google Scholar] [CrossRef]
- Bonturi, N.; Matsakas, L.; Nilsson, R.; Christakopoulos, P.; Miranda, E.A.; Berglund, K.A.; Rova, U. Single cell oil producing yeasts Lipomyces starkeyi and Rhodosporidium toruloides: Selection of extraction strategies and biodiesel property prediction. Energies 2015, 8, 5040–5052. [Google Scholar] [CrossRef]
- Cheng, P.; Ji, B.; Gao, L.; Zhang, W.; Wang, J.; Liu, T. The growth, lipid and hydrocarbon production of Botryococcus braunii with attached cultivation. Bioresour. Technol. 2013, 138, 95–100. [Google Scholar] [CrossRef]
- Patel, A.; Matsakas, L. A comparative study on de novo and ex novo lipid fermentation by oleaginous yeast using glucose and sonicated waste cooking oil. Ultrason. Sonochem. 2018, 52, 364–374. [Google Scholar] [CrossRef]
- Maza, D.D.; Viñarta, S.C.; Su, Y.; Guillamón, J.M.; Aybar, M.J. Growth and lipid production of rhodotorula glutinis r4, in comparison to other oleaginous yeasts. J. Biotechnol. 2020, 310, 21–31. [Google Scholar] [CrossRef]
- Matsakas, L.; Giannakou, M.; Vörös, D. Effect of synthetic and natural media on lipid production from Fusarium oxysporum. Electron. J. Biotechnol. 2017, 30, 95–102. [Google Scholar] [CrossRef]
- Subhash, G.V.; Mohan, S.V. Bioresource Technology Biodiesel production from isolated oleaginous fungi Aspergillus sp. using corncob waste liquor as a substrate. Bioresour. Technol. 2011, 102, 9286–9290. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Gupta, N.; Pakshirajan, K. Simultaneous lipid production and dairy wastewater treatment using Rhodococcus opacus in a batch bioreactor for potential biodiesel application. J. Environ. Chem. Eng. 2015, 3, 1630–1636. [Google Scholar] [CrossRef]
- Kosa, M.; Ragauskas, A.J. Bioconversion of lignin model compounds with oleaginous Rhodococci. Appl. Microbiol. Biotechnol. 2011, 93, 891–900. [Google Scholar] [CrossRef]
- Béligon, V.; Christophe, G.; Fontanille, P.; Larroche, C. Microbial Lipids as Potential Source to Food Supplements. Curr. Opin. Food Sci. 2016, 7, 35–42. [Google Scholar] [CrossRef]
- Tomás-Pejó, E.; Morales-Palomo, S.; González-Fernández, C. Microbial Lipids from Organic Wastes: Outlook and Challenges. Bioresour. Technol. 2021, 323, 124–612. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Gao, Z.; Wang, Q.; Liu, Y. Biodiesels from Microbial Oils: Opportunity and Challenges. Bioresour. Technol. 2018, 263, 631–641. [Google Scholar] [CrossRef]
- Ageitos, J.M.; Vallejo, J.A.; Veiga-Crespo, P.; Villa, T.G. Oily Yeasts as Oleaginous Cell Factories. Appl. Microbiol. Biotechnol. 2011, 90, 1219–1227. [Google Scholar] [CrossRef]
- Subramaniam, R.; Dufreche, S.; Zappi, M.; Bajpai, R. Microbial Lipids from Renewable Resources: Production and Characterization. J. Ind. Microbiol. Biotechnol. 2010, 37, 1271–1287. [Google Scholar] [CrossRef]
- Patel, A.; Sarkar, O.; Rova, U.; Christakopoulos, P.; Matsakas, L. Valorization of Volatile Fatty Acids Derived from Low-Cost Organic Waste for Lipogenesis in Oleaginous Microorganisms—A Review. Bioresour. Technol. 2021, 321, 124457. [Google Scholar] [CrossRef]
- Perez-Garcia, O.; Escalante, F.M.E.; de-Bashan, L.E.; Bashan, Y. Heterotrophic Cultures of Microalgae: Metabolism and Potential Products. Water Res. 2011, 45, 11–36. [Google Scholar] [CrossRef]
- Cho, H.U.; Park, J.M. Biodiesel Production by Various Oleaginous Microorganisms from Organic Wastes. Bioresour. Technol. 2018, 256, 502–508. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; Arora, N.; Sartaj, K.; Pruthi, V.; Pruthi, P.A. Sustainable Biodiesel Production from Oleaginous Yeasts Utilizing Hydrolysates of Various Non-Edible Lignocellulosic biomasses. Renew. Sustain. Energy Rev. 2016, 62, 836–855. [Google Scholar] [CrossRef]
- Mu, J.; Li, S.; Chen, D.; Xu, H.; Han, F.; Feng, B.; Li, Y. Enhanced Biomass and Oil Production from Sugarcane bagasse Hydrolysate (SBH) by Heterotrophic Oleaginous Microalga Chlorella Protothecoides. Bioresour. Technol. 2015, 185, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Wynn, J.; Behrens, P.; Sundararajan, A.; Hansen, J.; Apt, K. 6—Production of Single Cell Oils by Dinoflagellates. In Single Cell Oils, 2nd ed.; Cohen, Z., Ratledge, C., Eds.; AOCS Press: Urbana, IL, USA, 2010; pp. 115–129. ISBN 978-1-893997-73-8. [Google Scholar]
- Liu, Z.; Fels, M.; Dragone, G.; Mussatto, S.I. Effects of Inhibitory Compounds Derived from Lignocellulosic biomass on the Growth of the Wild-Type and Evolved Oleaginous Yeast Rhodosporidium Toruloides. Ind. Crops Prod. 2021, 170, 113799. [Google Scholar] [CrossRef]
- Ngamsirisomsakul, M.; Reungsang, A.; Kongkeitkajorn, M.B. Assessing Oleaginous Yeasts for Their Potentials on Microbial Lipid Production from Sugarcane bagasse and the Effects of Physical Changes on Lipid Production. Bioresour. Technol. Rep. 2021, 14, 100650. [Google Scholar] [CrossRef]
- Miazek, K.; Remacle, C.; Richel, A.; Goffin, D. Effect of Lignocellulose Related Compounds on Microalgae Growth and Product Biosynthesis: A Review. Energies 2014, 7, 4446–4481. [Google Scholar] [CrossRef]
- Wang, F.; Gao, B.; Dai, C.; Su, M.; Zhang, C. Comprehensive Utilization of the Filamentous Oleaginous Microalga Tribonema Utriculosum for the Production of Lipids and Chrysolaminarin in a Biorefinery Concept. Algal Res. 2020, 50, 101973. [Google Scholar] [CrossRef]
- Singh, N.; Batghare, A.H.; Choudhury, B.J.; Goyal, A.; Moholkar, V.S. Microalgae Based Biorefinery: Assessment of Wild Fresh Water Microalgal Isolate for Simultaneous Biodiesel and β-Carotene Production. Bioresour. Technol. Rep. 2020, 11, 100440. [Google Scholar] [CrossRef]
- Gonçalves, F.A.G.; Colen, G.; Takahashi, J.A. Yarrowia lipolytica and Its Multiple Applications in the Biotechnological Industry. Sci. World J. 2014, 2014, e476207. [Google Scholar] [CrossRef]
- Osman, M.E.; Abdel-Razik, A.B.; Zaki, K.I.; Mamdouh, N.; El-Sayed, H. Isolation, Molecular Identification of Lipid-Producing Rhodotorula Diobovata: Optimization of Lipid Accumulation for Biodiesel Production. J. Genet. Eng. Biotechnol. 2022, 20, 32. [Google Scholar] [CrossRef]
- Robles-Iglesias, R.; Naveira-Pazos, C.; Fernández-Blanco, C.; Veiga, M.C.; Kennes, C. Factors Affecting the Optimisation and Scale-up of Lipid Accumulation in Oleaginous Yeasts for Sustainable Biofuels Production. Renew. Sustain. Energy Rev. 2023, 171, 113043. [Google Scholar] [CrossRef]
- Ochsenreither, K.; Glück, C.; Stressler, T.; Fischer, L.; Syldatk, C. Production Strategies and Applications of Microbial Single Cell Oils. Front. Microbiol. 2016, 7, 1539. [Google Scholar] [CrossRef] [PubMed]
- Němcová, A.; Gonová, D.; Samek, O.; Sipiczki, M.; Breierová, E.; Márová, I. The Use of Raman Spectroscopy to Monitor Metabolic Changes in Stressed Metschnikowia Sp. Yeasts. Microorganisms 2021, 9, 277. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro, R.S.; Vaz, I.C.D.; Magalhães, S.M.S.; Barbosa, F.A.R. Effects of Nutritional Conditions on Lipid Production by Cyanobacteria. An. Acad. Bras. Ciênc. 2017, 89, 2021–2031. [Google Scholar] [CrossRef]
- Dias, C.; Santos, J.; Reis, A.; Lopes da Silva, T. Yeast and Microalgal Symbiotic Cultures Using Low-Cost Substrates for Lipid Production. Bioresour. Technol. Rep. 2019, 7, 100261. [Google Scholar] [CrossRef]
- Wang, J.; Ledesma-Amaro, R.; Wei, Y.; Ji, B.; Ji, X.-J. Metabolic Engineering for Increased Lipid Accumulation in Yarrowia lipolytica—A Review. Bioresour. Technol. 2020, 313, 123707. [Google Scholar] [CrossRef]
- Su, H.; Feng, J.; Lv, J.; Liu, Q.; Nan, F.; Liu, X.; Xie, S. Molecular Mechanism of Lipid Accumulation and Metabolism of Oleaginous Chlorococcum Sphacosum GD from Soil under Salt Stress. Int. J. Mol. Sci. 2021, 22, 1304. [Google Scholar] [CrossRef]
- Valdés, G.; Mendonça, R.T.; Aggelis, G. Lignocellulosic biomass as a Substrate for Oleaginous Microorganisms: A Review. Appl. Sci. 2020, 10, 7698. [Google Scholar] [CrossRef]
- Chebbi, H.; Leiva-Candia, D.; Carmona-Cabello, M.; Jaouani, A.; Dorado, M.P. Biodiesel Production from Microbial Oil Provided by Oleaginous Yeasts from Olive Oil Mill Wastewater Growing on Industrial Glycerol. Ind. Crops Prod. 2019, 139, 111535. [Google Scholar] [CrossRef]
- Deeba, F.; Pruthi, V.; Negi, Y.S. Converting Paper Mill Sludge into Neutral Lipids by Oleaginous Yeast Cryptococcus Vishniaccii for Biodiesel Production. Bioresour. Technol. 2016, 213, 96–102. [Google Scholar] [CrossRef]
- Kommoji, S.; Gopinath, M.; Satya Sagar, P.; Yuvaraj, D.; Iyyappan, J.; Jaya Varsha, A.; Sunil, V. Lipid Bioproduction from Delignified Native Grass (Cyperus distans) Hydrolysate by Yarrowia lipolytica. Bioresour. Technol. 2021, 324, 124659. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Wang, Y.; Yu, Z.; Bao, J. Simultaneous Saccharification and Microbial Lipid Fermentation of Corn Stover by Oleaginous Yeast Trichosporon Cutaneum. Bioresour. Technol. 2012, 118, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Miao, Z.; Tian, X.; Liang, W.; He, Y.; Wang, G. Bioconversion of Corncob Hydrolysate into Microbial Lipid by an Oleaginous Yeast Rhodotorula Taiwanensis AM2352 for Biodiesel Production. Renew. Energy 2020, 161, 91–97. [Google Scholar] [CrossRef]
- Palazzolo, M.A.; Garcia-Perez, M. Microbial Lipid Biosynthesis from Lignocellulosic biomass Pyrolysis Products. Biotechnol. Adv. 2022, 54, 107791. [Google Scholar] [CrossRef]
- Lee, J.Y.; Li, P.; Lee, J.; Ryu, H.J.; Oh, K.K. Ethanol Production from Saccharina Japonica Using an Optimized Extremely Low Acid Pretreatment Followed by Simultaneous Saccharification and Fermentation. Bioresour. Technol. 2013, 127, 119–125. [Google Scholar] [CrossRef]
- Singh, J.; Suhag, M.; Dhaka, A. Augmented Digestion of Lignocellulose by Steam Explosion, Acid and Alkaline Pretreatment Methods: A Review. Carbohydr. Polym. 2015, 117, 624–631. [Google Scholar] [CrossRef]
- Singh, A.; Bishnoi, N.R. Ethanol Production from Pretreated Wheat Straw Hydrolyzate by Saccharomyces cerevisiae via Sequential Statistical Optimization. Ind. Crops Prod. 2013, 41, 221–226. [Google Scholar] [CrossRef]
- Varga, E.; Szengyel, Z.; Réczey, K. Chemical Pretreatments of Corn Stover for Enhancing Enzymatic Digestibility. In Biotechnology for Fuels and Chemicals: The Twenty–Third Symposium; Finkelstein, M., McMillan, J.D., Davison, B.H., Eds.; Applied Biochemistry and Biotechnology; Humana Press: Totowa, NJ, USA, 2002; pp. 73–87. ISBN 978-1-4612-0119-9. [Google Scholar]
- Lee, J.W.; Kim, J.Y.; Jang, H.M.; Lee, M.W.; Park, J.M. Sequential Dilute Acid and Alkali Pretreatment of Corn Stover: Sugar Recovery Efficiency and Structural Characterization. Bioresour. Technol. 2015, 182, 296–301. [Google Scholar] [CrossRef]
- Woiciechowski, A.L.; Neto, C.J.D.; de Souza Vandenberghe, L.P.; de Carvalho Neto, D.P.; Sydney, A.C.N.; Letti, L.A.J.; Karp, S.G.; Torres, L.A.Z.; Soccol, C.R. Lignocellulosic biomass: Acid and Alkaline Pretreatments and Their Effects on Biomass Recalcitrance—Conventional Processing and Recent Advances. Bioresour. Technol. 2020, 304, 122848. [Google Scholar] [CrossRef]
- Ninomiya, K.; Abe, M.; Tsukegi, T.; Kuroda, K.; Omichi, M.; Takada, K.; Noguchi, M.; Tsuge, Y.; Ogino, C.; Taki, K.; et al. Ionic Liquid Pretreatment of Bagasse Improves Mechanical Property of Bagasse/Polypropylene Composites. Ind. Crops Prod. 2017, 109, 158–162. [Google Scholar] [CrossRef]
- Li, J.; Wei, X.; Wang, Q.; Chen, J.; Chang, G.; Kong, L.; Su, J.; Liu, Y. Homogeneous Isolation of Nanocellulose from Sugarcane bagasse by High Pressure Homogenization. Carbohydr. Polym. 2012, 90, 1609–1613. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Singh, B.; Korstad, J. Utilization of Lignocellulosic biomass by Oleaginous Yeast and Bacteria for Production of Biodiesel and Renewable Diesel. Renew. Sustain. Energy Rev. 2017, 73, 654–671. [Google Scholar] [CrossRef]
- Borand, M.N.; Karaosmanoğlu, F. Effects of Organosolv Pretreatment Conditions for Lignocellulosic biomass in Biorefinery Applications: A Review. J. Renew. Sustain. Energy 2018, 10, 033104. [Google Scholar] [CrossRef]
- Chu, Q.; Tong, W.; Chen, J.; Wu, S.; Jin, Y.; Hu, J.; Song, K. Organosolv Pretreatment Assisted by Carbocation Scavenger to Mitigate Surface Barrier Effect of Lignin for Improving Biomass Saccharification and Utilization. Biotechnol. Biofuels 2021, 14, 136. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.-S.; Lee, Y.-G.; Cho, E.J.; Song, Y.; Bae, H.-J. Hydrolysis Pattern Analysis of Xylem Tissues of Woody Plants Pretreated with Hydrogen Peroxide and Acetic Acid: Rapid Saccharification of Softwood for Economical Bioconversion. Biotechnol. Biofuels 2021, 14, 37. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Zhang, W.; Liu, X.; Xu, N.; Xiong, P. Optimization of Prehydrolysis Time and Substrate Feeding to Improve Ethanol Production by Simultaneous Saccharification and Fermentation of Furfural Process Residue. J. Biosci. Bioeng. 2016, 122, 563–569. [Google Scholar] [CrossRef]
- Jin, M.; Gunawan, C.; Balan, V.; Lau, M.W.; Dale, B.E. Simultaneous Saccharification and Co-Fermentation (SSCF) of AFEXTM Pretreated Corn Stover for Ethanol Production Using Commercial Enzymes and Saccharomyces cerevisiae 424A(LNH-ST). Bioresour. Technol. 2012, 110, 587–594. [Google Scholar] [CrossRef] [PubMed]
- Ntimbani, R.N.; Farzad, S.; Görgens, J.F. Furfural Production from Sugarcane bagasse along with Co-Production of Ethanol from Furfural Residues. Biomass Convers. Biorefinery 2021, 12, 5257–5267. [Google Scholar] [CrossRef]
- Ishak, M.Z.; Kuan, M.L.; Ismail, K.S.K. Optimization of Upstream Processing for the Production of Bioethanol from Leucaena leucocephala Seeds Using Kluyveromyces Marxianus UniMAP 1-1. IOP Conf. Ser. Earth Environ. Sci. 2021, 765, 012053. [Google Scholar] [CrossRef]
- Sukhang, S.; Choojit, S.; Reungpeerakul, T.; Sangwichien, C. Bioethanol Production from Oil Palm Empty Fruit Bunch with SSF and SHF Processes Using Kluyveromyces Marxianus Yeast. Cellulose 2019, 27, 301–314. [Google Scholar] [CrossRef]
- Tomás-Pejó, E.; Oliva, J.M.; González, A.; Ballesteros, I.; Ballesteros, M. Bioethanol Production from Wheat Straw by the Thermotolerant Yeast Kluyveromyces Marxianus CECT 10875 in a Simultaneous Saccharification and Fermentation Fed-Batch Process. Fuel 2009, 88, 2142–2147. [Google Scholar] [CrossRef]
- Caporusso, A.; De Bari, I.; Giuliano, A.; Liuzzi, F.; Albergo, R.; Pietrafesa, R.; Siesto, G.; Romanelli, A.; Braccio, G.; Capece, A. Optimization of Wheat Straw Conversion into Microbial Lipids by Lipomyces Tetrasporus DSM 70314 from Bench to Pilot Scale. Fermentation 2023, 9, 180. [Google Scholar] [CrossRef]
- Kosa, M.; Ragauskas, A.J. Lignin to Lipid Bioconversion by Oleaginous Rhodococci. Green Chem. 2013, 15, 2070–2074. [Google Scholar] [CrossRef]
- Kurosawa, K.; Wewetzer, S.J.; Sinskey, A.J. Engineering Xylose Metabolism in Triacylglycerol-Producing Rhodococcus Opacusfor Lignocellulosic Fuel Production. Biotechnol. Biofuels 2013, 6, 134. [Google Scholar] [CrossRef]
- Le, R.K.; Das, P.; Mahan, K.M.; Anderson, S.A.; Wells, T.; Yuan, J.S.; Ragauskas, A.J. Utilization of Simultaneous Saccharification and Fermentation Residues as Feedstock for Lipid Accumulation in Rhodococcus opacus. AMB Express 2017, 7, 185. [Google Scholar] [CrossRef]
- Patel, A.; Matsakas, L.; Rova, U.; Christakopoulos, P. Heterotrophic Cultivation of Auxenochlorella Protothecoides Using Forest Biomass as a Feedstock for Sustainable Biodiesel Production. Biotechnol. Biofuels 2018, 11, 169. [Google Scholar] [CrossRef]
- Tang, S.; Dong, Q.; Fang, Z.; Cong, W.; Zhang, H. Microbial Lipid Production from Rice Straw Hydrolysates and Recycled Pretreated Glycerol. Bioresour. Technol. 2020, 312, 123580. [Google Scholar] [CrossRef]
- Wei, Z.; Zeng, G.; Huang, F.; Kosa, M.; Huang, D.; Ragauskas, A.J. Bioconversion of Oxygen-Pretreated Kraft Lignin to Microbial Lipid with Oleaginous Rhodococcus Opacus DSM 1069. Green Chem. 2015, 17, 2784–2789. [Google Scholar] [CrossRef]
- Wells, T.; Wei, Z.; Ragauskas, A. Bioconversion of Lignocellulosic Pretreatment Effluent via Oleaginous Rhodococcus Opacus DSM 1069. Biomass Bioenergy 2015, 72, 200–205. [Google Scholar] [CrossRef]
- Ananthi, V.; Siva Prakash, G.; Chang, S.W.; Ravindran, B.; Nguyen, D.D.; Vo, D.-V.N.; La, D.D.; Bach, Q.-V.; Wong, J.W.C.; Kumar Gupta, S.; et al. Enhanced Microbial Biodiesel Production from Lignocellulosic Hydrolysates Using Yeast Isolates. Fuel 2019, 256, 115932. [Google Scholar] [CrossRef]
- Yu, Y.; Xu, Z.; Chen, S.; Jin, M. Microbial Lipid Production from Dilute Acid and Dilute Alkali Pretreated Corn Stover via Trichosporon Dermatis. Bioresour. Technol. 2020, 295, 122253. [Google Scholar] [CrossRef] [PubMed]
- Matsakas, L.; Sterioti, A.-A.; Rova, U.; Christakopoulos, P. Use of Dried Sweet Sorghum for the Efficient Production of Lipids by the Yeast Lipomyces Starkeyi CBS 1807. Ind. Crops Prod. 2014, 62, 367–372. [Google Scholar] [CrossRef]
- Huang, X.; Wang, Y.; Liu, W.; Bao, J. Biological Removal of Inhibitors Leads to the Improved Lipid Production in the Lipid Fermentation of Corn Stover Hydrolysate by Trichosporon Cutaneum. Bioresour. Technol. 2011, 102, 9705–9709. [Google Scholar] [CrossRef] [PubMed]
- Palmqvist, E.; Hahn-Hägerdal, B. Fermentation of Lignocellulosic Hydrolysates. II: Inhibitors and Mechanisms of Inhibition. Bioresour. Technol. 2000, 74, 25–33. [Google Scholar] [CrossRef]
- Singh, P.; Kumari, S.; Guldhe, A.; Misra, R.; Rawat, I.; Bux, F. Trends and Novel Strategies for Enhancing Lipid Accumulation and Quality in Microalgae. Renew. Sustain. Energy Rev. 2016, 55, 1–16. [Google Scholar] [CrossRef]
- Guerfali, M.; Ayadi, I.; Belhassen, A.; Gargouri, A.; Belghith, H. Single Cell Oil Production by Trichosporon cutaneum and Lignocellulosic Residues Bioconversion for Biodiesel Synthesis. Process Saf. Environ. Prot. 2018, 113, 292–304. [Google Scholar] [CrossRef]
- Je, S.; Yamaoka, Y. Biotechnol. Approaches Biomass Lipid Prod. Using Microalgae Chlorella Its Future Perspectives. J. Microbiol. Biotechnol. 2022, 32, 1357–1372. [Google Scholar] [CrossRef]
- Guldhe, A.; Ansari, F.A.; Singh, P.; Bux, F. Heterotrophic cultivation of microalgae using aquaculture wastewater: A biorefinery concept for biomass production and nutrient remediation. Ecol. Eng. 2017, 99, 47–53. [Google Scholar] [CrossRef]
- Cheng, P.; Okada, S.; Zhou, C.; Chen, P.; Huo, S.; Li, K.; Addy, M.; Yan, X.; Ruan, R.R. High-value chemicals from Botryococcus braunii and their current applications: A review. Bioresour. Technol. 2019, 291, 121–911. [Google Scholar] [CrossRef]
- Patel, A.; Hrůzová, K.; Rova, U.; Christakopoulos, P.; Matsakas, L. Sustainable biorefinery concept for biofuel production through holistic volarization of food waste. Bioresour. Technol. 2019, 294, 122–247. [Google Scholar] [CrossRef]
- Feng, P.; Xu, Z.; Qin, L.; Alam, M.A.; Wang, Z.; Zhu, S. Effects of different nitrogen sources and light paths of flat plate photobioreactors on the growth and lipid accumulation of Chlorella sp. GN1 outdoors. Bioresour. Technol. 2020, 301, 122–762. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Kim, G.-Y.; Han, J.-I. Biodiesel production from oleaginous yeast, Cryptococcus sp. by using banana peel as carbon source. Energy Rep. 2019, 5, 1077–1081. [Google Scholar] [CrossRef]
- Carsanba, E.; Papanikolaou, S.; Erten, H. Production of oils and fats by oleaginous microorganisms with an emphasis given to the potential of the nonconventional yeast Yarrowia lipolytica. Crit. Rev. Biotechnol. 2018, 38, 1230–1243. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; Mikes, F.; Bühler, S.; Matsakas, L. Valorization of Brewers’ Spent Grain for the Production of Lipids by Oleaginous Yeast. Molecules 2018, 23, 3052. [Google Scholar] [CrossRef] [PubMed]
- Rakicka, M.; Lazar, Z.; Dulermo, T.; Fickers, P.; Nicaud, J.M. Lipid Production by the Oleaginous Yeast Yarrowia lipolytica Using Industrial By-Products under Different Culture Conditions. Biotechnol. Biofuels 2015, 8, 104. [Google Scholar] [CrossRef] [PubMed]
- Zainuddin, M.F.; Fai, C.K.; Mohamed, M.S.; Rahman, N.; Aini, A.; Halim, M. Production of Single Cell Oil by Yarrowia lipolytica JCM 2320 Using Detoxified Desiccated Coconut Residue Hydrolysate. PeerJ 2022, 10, e12833. [Google Scholar] [CrossRef]
- Chang, L.; Lu, H.; Chen, H.; Tang, X.; Zhao, J.; Zhang, H.; Chen, Y.Q.; Chen, W. Lipid Metabolism Research in Oleaginous Fungus Mortierella Alpina: Current Progress and Future Prospects. Biotechnol. Adv. 2022, 54, 107794. [Google Scholar] [CrossRef]
- Abou-Zeid, A.M.; Abd El-Zaher, E.H.F.; Saad-Allah, K.M.; Ahmed, R.U. Screening and optimization of some Egyptian soil-born fungi for lipids production as possible source for biofuel. Egypt. J. Exp. Biol. 2019, 15, 243–250. [Google Scholar] [CrossRef]
- Gaykawad, S.S.; Ramanand, S.S.; Blomqvist, J.; Zimmermann, B.; Shapaval, V.; Kohler, A.; Oostindjer, M.; Boccadoro, C. Submerged Fermentation of Animal Fat By-Products by Oleaginous Filamentous Fungi for the Production of Unsaturated Single Cell Oil. Fermentation 2021, 7, 300. [Google Scholar] [CrossRef]
- Li, S.; Yu, H.; Liu, Y.; Zhang, X.; Ma, F. The lipid strategies in Cunninghamella echinulata for an allostatic response to temperature changes. Process Biochem. 2018, 76, 85–94. [Google Scholar] [CrossRef]
- Alvarez, H.M.; Hernández, M.A.; Lanfranconi, M.P.; Silva, R.A.; Villalba, M.S. Rhodococcus as Biofactories for Microbial Oil Production. Molecules 2021, 26, 4871. [Google Scholar] [CrossRef] [PubMed]
- Goswami, L.; Tejas Namboodiri, M.M.; Vinoth Kumar, R.; Pakshirajan, K.; Pugazhenthi, G. Biodiesel production potential of oleaginous Rhodococcus opacus grown on biomass gasification wastewater. Renew. Energy 2017, 105, 400–406. [Google Scholar] [CrossRef]
- Babu, M.V.; Murthy, K.M.; Rao, G.A.P. Production process optimization of SterculiaFoetida Methyl Esters (Biodiesel) using response surface methodology. Int. J. Ambient. Energy 2020, 43, 1837–1846. [Google Scholar] [CrossRef]
- Rottig, A.; Zurek, P.J.; Steinbuchel, A. Assessment of bacterial acyltransferases for an efficient lipid production in metabolically engineered strains of E. coli. Metab Eng. 2015, 32, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Salcedo-Vite, K.; Sigala, J.-C.; Segura, D.; Gosset, G.; Martinez, A. Acinetobacter baylyi ADP1 growth performance and lipid accumulation on different carbon sources. Appl. Microbiol. Biotechnol. 2019, 103, 6217–6229. [Google Scholar] [CrossRef] [PubMed]
- Bharathiraja, B.; Sridharan, S.; Sowmya, V.; Yuvaraj, D.; Praveenkumar, R. Microbial Oil—A Plausible Alternate Resource for Food and Fuel Application. Bioresour. Technol. 2017, 233, 423–432. [Google Scholar] [CrossRef]
- Arora, N.; Yen, H.-W.; Philippidis, G.P. Harnessing the Power of Mutagenesis and Adaptive Laboratory Evolution for High Lipid Production by Oleaginous Microalgae and Yeasts. Sustainability 2020, 12, 5125. [Google Scholar] [CrossRef]
- Bruder, S.; Hackenschmidt, S.; Moldenhauer, E.J.; Kabisch, J. Chapter 12—Conventional and Oleaginous Yeasts as Platforms for Lipid Modification and Production. In Lipid Modification by Enzymes and Engineered Microbes; Bornscheuer, U.T., Ed.; AOCS Press: Urbana, IL, USA, 2018; pp. 257–292. ISBN 978-0-12-813167-1. [Google Scholar]
- Görner, C.; Redai, V.; Bracharz, F.; Schrepfer, P.; Garbe, D.; Brück, T. Genetic Engineering and Production of Modified Fatty Acids by the Non-Conventional Oleaginous Yeast Trichosporon Oleaginosus ATCC 20509. Green Chem. 2016, 18, 2037–2046. [Google Scholar] [CrossRef]
- Dourou, M.; Aggeli, D.; Papanikolaou, S.; Aggelis, G. Critical Steps in Carbon Metabolism Affecting Lipid Accumulation and Their Regulation in Oleaginous Microorganisms. Appl. Microbiol. Biotechnol. 2018, 102, 2509–2523. [Google Scholar] [CrossRef]
- Kolouchová, I.; Maťátková, O.; Sigler, K.; Masák, J.; Řezanka, T. Lipid Accumulation by Oleaginous and Non-Oleaginous Yeast Strains in Nitrogen and Phosphate Limitation. Folia Microbiol. 2016, 61, 431–438. [Google Scholar] [CrossRef]
- Shen, H.; Zhang, X.; Gong, Z.; Wang, Y.; Yu, X.; Yang, X.; Zhao, Z.K. Compositional Profiles of Rhodosporidium Toruloides Cells under Nutrient Limitation. Appl. Microbiol. Biotechnol. 2017, 101, 3801–3809. [Google Scholar] [CrossRef] [PubMed]
- Bandhu, S.; Bansal, N.; Dasgupta, D.; Junghare, V.; Sidana, A.; Kalyan, G.; Hazra, S.; Ghosh, D. Overproduction of Single Cell Oil from Xylose Rich Sugarcane bagasse Hydrolysate by an Engineered Oleaginous Yeast Rhodotorula Mucilaginosa IIPL32. Fuel 2019, 254, 115653. [Google Scholar] [CrossRef]
- Gálvez-López, D.; Chávez-Meléndez, B.; Vázquez-Ovando, A.; Rosas-Quijano, R. The Metabolism and Genetic Regulation of Lipids in the Oleaginous Yeast Yarrowia lipolytica. Braz. J. Microbiol. 2019, 50, 23–31. [Google Scholar] [CrossRef]
- Park, B.G.; Kim, M.; Kim, J.; Yoo, H.; Kim, B.-G. Systems Biology for Understanding and Engineering of Heterotrophic Oleaginous Microorganisms. Biotechnol. J. 2017, 12, 1600104. [Google Scholar] [CrossRef]
- Blazeck, J.; Hill, A.; Liu, L.; Knight, R.; Miller, J.; Pan, A.; Otoupal, P.; Alper, H.S. Harnessing Yarrowia lipolytica Lipogenesis to Create a Platform for Lipid and Biofuel Production. Nat. Commun. 2014, 5, 3131. [Google Scholar] [CrossRef] [PubMed]
- Chopra, I.; Roberts, M. Tetracycline Antibiotics: Mode of Action, Applications, Molecular Biology, and Epidemiology of Bacterial Resistance. Microbiol. Mol. Biol. Rev. 2001, 65, 232–260. [Google Scholar] [CrossRef] [PubMed]
- Serero, A.; Bedrat, A.; Baulande, S.; Bastianelli, G.; Colavizza, D.; Desfougères, T.; Pignède, G.; Quipourt-Isnard, A.-D.; Nicolas, A. Recombination in a Sterile Polyploid Hybrid Yeast upon Meiotic Return-To-Growth. Microbiol. Res. 2021, 250, 126789. [Google Scholar] [CrossRef]
- Hayat, S.; Christias, C. Isolation and Fusion of Protoplasts from the Phytopathogenic Fungus Sclerotium rolfsii (Sacc.). Braz. J. Microbiol. 2010, 41, 253–263. [Google Scholar] [CrossRef]
- Liang, Z.; Zhi, H.; Fang, Z.; Zhang, P. Genetic Engineering of Yeast, Filamentous Fungi and Bacteria for Terpene Production and Applications in Food Industry. Food Res. Int. 2021, 147, 110487. [Google Scholar] [CrossRef]
- Koubaa, M.; Imatoukene, N.; Drévillon, L.; Vorobiev, E. Current Insights in Yeast Cell Disruption Technologies for Oil Recovery: A Review. Chem. Eng. Process.-Process. Intensif. 2020, 150, 107868. [Google Scholar] [CrossRef]
- Wang, C.; Chen, L.; Rakesh, B.; Qin, Y.; Lv, R. Technologies for Extracting Lipids from Oleaginous Microorganisms for Biodiesel Production. Front. Energy 2012, 6, 266–274. [Google Scholar] [CrossRef]
- Senanayake, S.P.J.N.; Fichtali, J. Single-Cell Oils as Sources of Nutraceutical and Specialty Lipids: Processing Technologies and Applications. In Nutraceutical and Specialty Lipids and Their Co-Products; CRC Press: Boca Raton, FL, USA, 2006; ISBN 978-0-429-13540-8. [Google Scholar]
- Lee, A.K.; Lewis, D.M.; Ashman, P.J. Disruption of Microalgal Cells for the Extraction of Lipids for Biofuels: Processes and Specific Energy Requirements. Biomass Bioenergy 2012, 46, 89–101. [Google Scholar] [CrossRef]
- Meullemiestre, A.; Breil, C.; Abert-Vian, M.; Chemat, F. Microwave, Ultrasound, Thermal Treatments, and Bead Milling as Intensification Techniques for Extraction of Lipids from Oleaginous Yarrowia lipolytica Yeast for a Biojetfuel Application. Bioresour. Technol. 2016, 211, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Schneiter, R.; Daum, G. Extraction of Yeast Lipids. In Yeast Protocol; Xiao, W., Ed.; Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2006; pp. 41–45. ISBN 978-1-59259-958-5. [Google Scholar]
- Alavijeh, R.S.; Karimi, K.; Wijffels, R.H.; van den Berg, C.; Eppink, M. Combined Bead Milling and Enzymatic Hydrolysis for Efficient Fractionation of Lipids, Proteins, and Carbohydrates of Chlorella Vulgaris Microalgae. Bioresour. Technol. 2020, 309, 123321. [Google Scholar] [CrossRef]
- Drévillon, L.; Koubaa, M.; Nicaud, J.-M.; Vorobiev, E. Cell Disruption Pre-Treatments towards an Effective Recovery of Oil from Yarrowia lipolytica Oleaginous Yeast. Biomass Bioenergy 2019, 128, 105320. [Google Scholar] [CrossRef]
- Imatoukene, N.; Koubaa, M.; Perdrix, E.; Benali, M.; Vorobiev, E. Combination of Cell Disruption Technologies for Lipid Recovery from Dry and Wet Biomass of Yarrowia lipolytica and Using Green Solvents. Process Biochem. 2020, 90, 139–147. [Google Scholar] [CrossRef]
- Balasubramanian, S.; Allen, J.D.; Kanitkar, A.; Boldor, D. Oil Extraction from Scenedesmus Obliquus Using a Continuous Microwave System—Design, Optimization, and Quality Characterization. Bioresour. Technol. 2011, 102, 3396–3403. [Google Scholar] [CrossRef]
- Jin, G.; Yang, F.; Hu, C.; Shen, H.; Zhao, Z.K. Enzyme-Assisted Extraction of Lipids Directly from the Culture of the Oleaginous Yeast Rhodosporidium Toruloides. Bioresour. Technol. 2012, 111, 378–382. [Google Scholar] [CrossRef]
- Zhou, C.; Sun, D.; Sun, X.; Zhu, C.; Wang, Q. Combining Ultrasound and Microwave to Improve the Yield and Quality of Single-Cell Oil from Mortierella Isabellina NTG1−121. J. Am. Oil Chem. Soc. 2018, 95, 1535–1547. [Google Scholar] [CrossRef]
- Zainuddin, M.F.; Fai, C.K.; Ariff, A.B.; Rios-Solis, L.; Halim, M. Current Pretreatment/Cell Disruption and Extraction Methods Used to Improve Intracellular Lipid Recovery from Oleaginous Yeasts. Microorganisms 2021, 9, 251. [Google Scholar] [CrossRef]
- Nisha, A.; Udaya Sankar, K.; Venkateswaran, G. Supercritical CO2 Extraction of Mortierella Alpina Single Cell Oil: Comparison with Organic Solvent Extraction. Food Chem. 2012, 133, 220–226. [Google Scholar] [CrossRef]
- Parsons, S.; Allen, M.J.; Chuck, C.J. Coproducts of Algae and Yeast-Derived Single Cell Oils: A Critical Review of Their Role in Improving Biorefinery Sustainability. Bioresour. Technol. 2020, 303, 122862. [Google Scholar] [CrossRef] [PubMed]
- Di Fidio, N.; Dragoni, F.; Antonetti, C.; De Bari, I.; Raspolli Galletti, A.M.; Ragaglini, G. From Paper Mill Waste to Single Cell Oil: Enzymatic Hydrolysis to Sugars and Their Fermentation into Microbial Oil by the Yeast Lipomyces Starkeyi. Bioresour. Technol. 2020, 315, 123790. [Google Scholar] [CrossRef]
- Patel, A.; Karageorgou, D.; Rova, E.; Katapodis, P.; Rova, U.; Christakopoulos, P.; Matsakas, L. An Overview of Potential Oleaginous Microorganisms and Their Role in Biodiesel and Omega-3 Fatty Acid-Based Industries. Microorganisms 2020, 8, 434. [Google Scholar] [CrossRef] [PubMed]
- Zuccaro, G.; del Mondo, A.; Pinto, G.; Pollio, A.; De Natale, A. Biorefinery-Based Approach to Exploit Mixed Cultures of Lipomyces Starkeyi and Chloroidium Saccharophilum for Single Cell Oil Production. Energies 2021, 14, 1340. [Google Scholar] [CrossRef]
- Probst, K.V.; Vadlani, P.V. Production of Single Cell Oil from Lipomyces Starkeyi ATCC 56304 Using Biorefinery By-Products. Bioresour. Technol. 2015, 198, 268–275. [Google Scholar] [CrossRef]
- Zhang, Y.; Nielsen, J.; Liu, Z. Yeast Based Biorefineries for Oleochemical Production. Curr. Opin. Biotechnol. 2021, 67, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.M.; Mohamed, H.; Zhang, Z.; Song, Y. Isolation, Characterization and Fatty Acid Analysis of Gilbertella Persicaria DSR1: A Potential New Source of High Value Single-Cell Oil. Biomass Bioenergy 2021, 151, 106156. [Google Scholar] [CrossRef]
- Zhao, H.; Lv, M.; Liu, Z.; Zhang, M.; Wang, Y.; Ju, X.; Song, Z.; Ren, L.; Jia, B.; Qiao, M.; et al. High-yield oleaginous fungi and high-value microbial lipid resources from Mucoromycota. BioEnergy Res. 2020, 14, 1196–1206. [Google Scholar] [CrossRef]
- Elrayies, G.M. Microalgae: Prospects for Greener Future Buildings. Renew. Sustain. Energy Rev. 2018, 81, 1175–1191. [Google Scholar] [CrossRef]
- Ahmad, F.B.; Zhang, Z.; Doherty, W.O.S.; O’Hara, I.M. The Prospect of Microbial Oil Production and Applications from Oil Palm Biomass. Biochem. Eng. J. 2019, 143, 9–23. [Google Scholar] [CrossRef]
- Du, Z.-Y.; Alvaro, J.; Hyden, B.; Zienkiewicz, K.; Benning, N.; Zienkiewicz, A.; Bonito, G.; Benning, C. Enhancing Oil Production and Harvest by Combining the Marine Alga Nannochloropsis Oceanica and the Oleaginous Fungus Mortierella Elongata. Biotechnol. Biofuels 2018, 11, 174. [Google Scholar] [CrossRef] [PubMed]
- Koutinas, A.A.; Chatzifragkou, A.; Kopsahelis, N.; Papanikolaou, S.; Kookos, I.K. Design and Techno-Economic Evaluation of Microbial Oil Production as a Renewable Resource for Biodiesel and Oleochemical Production. Fuel 2014, 116, 566–577. [Google Scholar] [CrossRef]
- Chuppa-Tostain, G.; Hoarau, J.; Watson, M.; Adelard, L.; Shum Cheong Sing, A.; Caro, Y.; Grondin, I.; Bourven, I.; Francois, J.-M.; Girbal-Neuhauser, E.; et al. Production of Aspergillus Niger Biomass on Sugarcane Distillery Wastewater: Physiological Aspects and Potential for Biodiesel Production. Fungal Biol. Biotechnol. 2018, 5, 1. [Google Scholar] [CrossRef] [PubMed]
- Hoarau, J.; Grondin, I.; Caro, Y.; Petit, T. Sugarcane Distillery Spent Wash, a New Resource for Third-Generation Biodiesel Production. Water 2018, 10, 1623. [Google Scholar] [CrossRef]
- Qin, L.; Liu, L.; Zeng, A.-P.; Wei, D. From Low-Cost Substrates to Single Cell Oils Synthesized by Oleaginous Yeasts. Bioresour. Technol. 2017, 245, 1507–1519. [Google Scholar] [CrossRef]
- Qian, X.; Gorte, O.; Chen, L.; Zhang, W.; Dong, W.; Ma, J.; Jiang, M.; Xin, F.; Ochsenreither, K. Co-Production of Single Cell Oil and Gluconic Acid Using Oleaginous Cryptococcus Podzolicus DSM 27192. Biotechnol. Biofuels 2019, 12, 127. [Google Scholar] [CrossRef]
- Gao, C.; Yang, X.; Wang, H.; Rivero, C.P.; Li, C.; Cui, Z.; Qi, Q.; Lin, C.S.K. Robust Succinic Acid Production from Crude Glycerol Using Engineered Yarrowia lipolytica. Biotechnol. Biofuels 2016, 9, 179. [Google Scholar] [CrossRef]
- Hernández-Almanza, A.; Cesar Montanez, J.; Aguilar-González, M.A.; Martínez-Ávila, C.; Rodríguez-Herrera, R.; Aguilar, C.N. Rhodotorula Glutinis as Source of Pigments and Metabolites for Food Industry. Food Biosci. 2014, 5, 64–72. [Google Scholar] [CrossRef]
- Kopsahelis, N.; Dimou, C.; Papadaki, A.; Xenopoulos, E.; Kyraleou, M.; Kallithraka, S.; Kotseridis, Y.; Papanikolaou, S.; Koutinas, A.A. Refining of Wine Lees and Cheese Whey for the Production of Microbial Oil, Polyphenol-Rich Extracts and Value-Added Co-Products. J. Chem. Technol. Biotechnol. 2018, 93, 257–268. [Google Scholar] [CrossRef]
- Leiva-Candia, D.E.; Tsakona, S.; Kopsahelis, N.; García, I.L.; Papanikolaou, S.; Dorado, M.P.; Koutinas, A.A. Biorefining of By-Product Streams from Sunflower-Based Biodiesel Production Plants for Integrated Synthesis of Microbial Oil and Value-Added Co-Products. Bioresour. Technol. 2015, 190, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Guerrand, D. Lipases Industrial Applications: Focus on Food and Agroindustries. OCL 2017, 24, D403. [Google Scholar] [CrossRef]
- Khan, M.I.; Shin, J.H.; Kim, J.D. The Promising Future of Microalgae: Current Status, Challenges, and Optimization of a Sustainable and Renewable Industry for Biofuels, Feed, and Other Products. Microb. Cell Factories 2018, 17, 36. [Google Scholar] [CrossRef] [PubMed]
- Saini, R.; Osorio-Gonzalez, C.S.; Hegde, K.; Kaur Brar, S.; Vezina, P. A Co-Fermentation Strategy with Wood Hydrolysate and Crude Glycerol to Enhance the Lipid Accumulation in Rhodosporidium Toruloides-1588. Bioresour. Technol. 2022, 364, 127821. [Google Scholar] [CrossRef]
- Papadaki, A.; Mallouchos, A.; Efthymiou, M.-N.; Gardeli, C.; Kopsahelis, N.; Aguieiras, E.C.G.; Freire, D.M.G.; Papanikolaou, S.; Koutinas, A.A. Production of Wax Esters via Microbial Oil Synthesis from Food Industry Waste and By-Product Streams. Bioresour. Technol. 2017, 245, 274–282. [Google Scholar] [CrossRef]
- Bhadoriya, S.S.; Madoriya, N. Biosurfactants: A New Pharmaceutical Additive for Solubility Enhancement and Pharmaceutical Development. Biochem. Pharmacol. 2013, 2, 5. [Google Scholar] [CrossRef]
- Shah, V.; Doncel, G.F.; Seyoum, T.; Eaton, K.M.; Zalenskaya, I.; Hagver, R.; Azim, A.; Gross, R. Sophorolipids, Microbial Glycolipids with Anti-Human Immunodeficiency Virus and Sperm-Immobilizing Activities. Antimicrob. Agents Chemother. 2005, 49, 4093–4100. [Google Scholar] [CrossRef]
- Cameotra, S.S.; Makkar, R.S. Recent Applications of Biosurfactants as Biological and Immunological Molecules. Curr. Opin. Microbiol. 2004, 7, 262–266. [Google Scholar] [CrossRef]
- Chen, J.; Song, X.; Zhang, H.; Qu, Y. Production, Structure Elucidation and Anticancer Properties of Sophorolipid from Wickerhamiella Domercqiae. Enzyme Microb. Technol. 2006, 39, 501–506. [Google Scholar] [CrossRef]
- McClements, D.J.; Gumus, C.E. Natural Emulsifiers—Biosurfactants, Phospholipids, Biopolymers, and Colloidal Particles: Molecular and Physicochemical Basis of Functional Performance. Adv. Colloid Interface Sci. 2016, 234, 3–26. [Google Scholar] [CrossRef]
- Traversier, M.; Gaslondes, T.; Milesi, S.; Michel, S.; Delannay, E. Polar Lipids in Cosmetics: Recent Trends in Extraction, Separation, Analysis and Main Applications. Phytochem. Rev. 2018, 17, 1179–1210. [Google Scholar] [CrossRef]
- van Smeden, J.; Janssens, M.; Gooris, G.S.; Bouwstra, J.A. The Important Role of Stratum Corneum Lipids for the Cutaneous Barrier Function. Biochim. Biophys. Acta BBA-Mol. Cell Biol. Lipids 2014, 1841, 295–313. [Google Scholar] [CrossRef] [PubMed]
- Katiyar, R.; Arora, A. Health Promoting Functional Lipids from Microalgae Pool: A Review. Algal Res. 2020, 46, 101800. [Google Scholar] [CrossRef]
- Kikukawa, H.; Sakuradani, E.; Ando, A.; Shimizu, S.; Ogawa, J. Arachidonic Acid Production by the Oleaginous Fungus Mortierella Alpina 1S-4: A Review. J. Adv. Res. 2018, 11, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Caporusso, A.; Capece, A.; De Bari, I. Oleaginous Yeasts as Cell Factories for the Sustainable Production of Microbial Lipids by the Valorization of Agri-Food Wastes. Fermentation 2021, 7, 50. [Google Scholar] [CrossRef]
- McClements, D.J.; Öztürk, B. Utilization of Nanotechnology to Improve the Application and Bioavailability of Phytochemicals Derived from Waste Streams. J. Agric. Food Chem. 2022, 70, 6884–6900. [Google Scholar] [CrossRef]
- Wynn, J.P.; Ratledge, C. Oils from Microorganisms. In Bailey’s Industrial Oil and Fat Products; Shahidi, F., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Yeiser, M.; Harris, C.L.; Kirchoff, A.L.; Patterson, A.C.; Wampler, J.L.; Zissman, E.N.; Berseth, C.L. Growth and tolerance of infants fed formula with a new algal source of docosahexaenoic acid: Double-blind, randomized, controlled trial. Prostaglandins Leukot. Essent. Fat. Acids (PLEFA) 2016, 115, 89–96. [Google Scholar] [CrossRef]
- Yamada, R.; Kashihara, T.; Ogino, H. Improvement of lipid production by the oleaginous yeast Rhodosporidium toruloides through UV mutagenesis. World J. Microbiol. Biotechnol. 2017, 33, 99. [Google Scholar] [CrossRef]
- Xue, Z.; Sharpe, P.L.; Hong, S.-P.; Yadav, N.S.; Xie, D.; Short, D.R.; Zhu, Q. Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica. Nat. Biotechnol. 2013, 31, 734–740. [Google Scholar] [CrossRef]
- Bellou, S.; Triantaphyllidou, I.-E.; Aggeli, D.; Elazzazy, A.M.; Baeshen, M.N.; Aggelis, G. Microbial oils as food additives: Recent approaches for improving microbial oil production and its polyunsaturated fatty acid content. Curr. Opin. Biotechnol. 2016, 37, 24–35. [Google Scholar] [CrossRef]
- Ren, Y.; Deng, J.; Huang, J.; Wu, Z.; Yi, L.; Bi, Y.; Chen, F. Using green alga Haematococcus pluvialis for astaxanthin and lipid co-production: Advances and outlook. Bioresour. Technol. 2021, 340, 125736. [Google Scholar] [CrossRef] [PubMed]
Microorganisms with High Potential | Microorganisms with Low Potential |
---|---|
S. occidentalis [13] | P. Silvicola [13] |
M. pulcherrima [13] | C. intermedia [13] |
L. elongisporus [13] | P. pertersonii [13] |
W. lipofer [13] | C. lusitaniae [13] |
Y. lipolytica [14] | K. phaffii [13] |
H. californica [13] | S. roseus [13] |
P. anomala [13] | P. augusta [13] |
T. delbrueckii [13] | C. bombicola [13] |
H. beyerinckii [13] | K. apiculate [13] |
C. tropicalis [13] | C. glabatra [13] |
R. toruloides [15] | T. elliptica [16] |
L. starkeyi [17] | B. braunii [18] |
C. curvatus [19] | R. glutinis [20] |
F. oxysporum [21] | Microsphaeropsis sp. [22] |
R. opacus PD630 [23] | R. opacus DSM 1069 [24] |
Source of SCO Production | Microorganism Used | Substrate Used | Yield of SCO Production (g/L) | Advantages | Disadvantages | References |
---|---|---|---|---|---|---|
Algae | Chlorella vulgaris, Chlorella sorokiniana, Botryococcus braunii, A. protothecoides SAG 211-7a, Chlorella sp. | Glucose or CO2 | 10–100 | Fast growth rate, high lipid-content | High production cost, contamination issues | [90,91,92,93,94] |
Yeast | Yarrowia lipolytica, Cryptococcus sp., Cryptococcus curvatus, | Glucose or agro-industrial waste | 30–60 | Can utilize a variety of substrates, easy to manipulate | Low lipid content | [95,96,97,98,99] |
Fungi | Mortierella alpina, Mucor circinelloides, Mortierella alpina, Aspergillus, Penicillium, Fusarium and Alternaria, Cunninghamella echinulata | Glucose or plant oil | 60–80 | High lipid content, can produce polyunsaturated fatty acids | Slow growth rate | [100,101,102,103] |
Bacteria | Rhodococcus opacus, Sterculia foetida, E. coli and Acinetobacter baylyi | Plant oil or glucose | 40–80 | High lipid content, can utilize a variety of substrates | Slow growth rate, low lipid productivity | [104,105,106,107,108] |
Strategies | Realization Mechanism | Example | Bibliography |
---|---|---|---|
Mutation | By creating a mutant strain with the use of physical and chemical mutagens, strain improvement is achieved. | An important commercial version of tetracycline is 6-methyl tetracycline, which is produced by a mutant strain of Streptomyces aureofaciens. | [120] |
Recombination | The process that combines two genotypes to create a new genotype is known as genetic recombination. Effective strain improvement requires careful mutagenesis to maintain genetic diversity as well as the employment of sister strains, divergent strains, and ancestor crosses at predetermined intervals. | Recombination after meiotic Return-To-Growth in a sterile polyploid hybrid yeast. | [121] |
Protoplast fusion | Protoplast transformation or protoplast fusion is one of the most significant developments in recent years. Protoplast has a very strong negative charge on its surface, making fusion difficult. | Sclerotium rolfsii, a phytopathogenic fungus, protoplast isolation and fusion (sacc.) | [122] |
Gene technology | In vitro recombination and gene manipulation are both part of gene technology. These techniques allow for the replication of specified DNA sequences inside prokaryote or eukaryote organisms. | Genetically modified filamentous fungus, bacteria, and yeast are being used in the food business to produce terpenes. | [123] |
Product | Source | Company/Country | Applications | Reference |
---|---|---|---|---|
Javanicus oil | Mucor javanicus | J & E Sturge, North Yorkshire, UK | Oil rich in linolenic fatty acid, used as a substitute for evening primrose oil | [173] |
DHASCO-B | microalgae Crypthecodinium cohnii | DSM, Grenzach, Switzerland | Benefits for the optimal development of the child’s brain, eyes and nervous system. Support a healthy pregnancy | [174] |
SUNTGA40S in Japan and Cabio oil in China | Produced by Crypthecodinium cohnii and various strains and species of thrautochyrids | Produced by Suntory, Osaka, Japan and sold in China by Cargill | Enrichment of infant formulas | [175] |
life’s OMEGA | Crypthecodinium cohnii and Schizochytrium sp. | DSM, Grenzach Switzerland | Prevention of cardiovascular diseases | [171] |
Eicooil | microalgae Y. lipolytica genetically modified | Qualitas Health Ltd., Jerusalem, Israel | Benefits for blood pressure, platelet aggregation and various inflammatory process | [176] |
Simris Algae ômega-3 | Chlorella vulgaris | Simris, Simrishamn, Sweden | Prevention of cardiovascular diseases | [177] |
BioAstin SCE5 and BioAstin SCE10 | Haematococcus pluvialis | Parry Nutraceuticals, Chennai, India | antioxidant effects | [178] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, J.d.M.e.; Martins, L.H.d.S.; Moreira, D.K.T.; Silva, L.d.P.; Barbosa, P.d.P.M.; Komesu, A.; Ferreira, N.R.; Oliveira, J.A.R.d. Microbial Lipid Based Biorefinery Concepts: A Review of Status and Prospects. Foods 2023, 12, 2074. https://doi.org/10.3390/foods12102074
Silva JdMe, Martins LHdS, Moreira DKT, Silva LdP, Barbosa PdPM, Komesu A, Ferreira NR, Oliveira JARd. Microbial Lipid Based Biorefinery Concepts: A Review of Status and Prospects. Foods. 2023; 12(10):2074. https://doi.org/10.3390/foods12102074
Chicago/Turabian StyleSilva, Jonilson de Melo e, Luiza Helena da Silva Martins, Débora Kono Taketa Moreira, Leonardo do Prado Silva, Paula de Paula Menezes Barbosa, Andrea Komesu, Nelson Rosa Ferreira, and Johnatt Allan Rocha de Oliveira. 2023. "Microbial Lipid Based Biorefinery Concepts: A Review of Status and Prospects" Foods 12, no. 10: 2074. https://doi.org/10.3390/foods12102074
APA StyleSilva, J. d. M. e., Martins, L. H. d. S., Moreira, D. K. T., Silva, L. d. P., Barbosa, P. d. P. M., Komesu, A., Ferreira, N. R., & Oliveira, J. A. R. d. (2023). Microbial Lipid Based Biorefinery Concepts: A Review of Status and Prospects. Foods, 12(10), 2074. https://doi.org/10.3390/foods12102074