Nutrient Composition and Quality Assessment of Royal Jelly Samples Relative to Feed Supplements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Moisture Content and Carbohydrate Composition
2.3. Radioactive Carbon Estimation by IRMS
2.4. Amino Acid Analysis
2.5. 10-Hydroxy-2-Decenoic Acid (10-HDA) Analysis
2.6. Mineral Analysis
2.7. Statistical Analysis
3. Results
3.1. Moisture Content
3.2. Carbohydrate Content
3.3. 10-Hydroxy 2-Decenoic Acid
3.4. Radioactive Carbon Estimation
3.5. Amino Acid Composition
3.6. Minerals Content
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zheng, G.; Chen, Y.; Wu, Y.; Wang, S.; Zheng, H.; Hu, F. The effect of nutritional status on the synthesis ability, protein content and gene expression of mandibular glands in honey bee (Apis mellifera) workers. J. Apic. Res. 2022, 2022, 1–10. [Google Scholar] [CrossRef]
- Kucharski, R.; Maleszka, J.; Foret, S.; Maleszka, R. Nutritional control of reproductive status in Honeybees via DNA methylation. Science 2008, 319, 1827–1830. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.-C.; Chou, W.-M.; Widowati, D.A.; Lin, I.-P.; Peng, C.-C. 10-hydroxy-2-decenoic acid of royal jelly exhibits bacteriocide and anti-inflammatory activity in human colon cancer cells. BMC Complement. Altern. Med. 2018, 18, 202. [Google Scholar] [CrossRef]
- Vucevic, D.; Melliou, E.; Vasilijic, S.; Gasic, S.; Ivanovski, P.; Chinou, I.; Colic, M. Fatty acids isolated from royal jelly modulate dendritic cell-mediated immune response in vitro. Int. Immunopharmacol. 2007, 7, 1211–1220. [Google Scholar] [CrossRef] [PubMed]
- Gasic, S.; Vucevic, D.; Vasilijic, S.; Antunovic, M.; Chinou, I.; Colic, M. Evaluation of the immunomodulatory activities of royal jelly components in vitro. Immunopharmacol. Immunotoxicol. 2007, 29, 521–536. [Google Scholar] [CrossRef] [PubMed]
- Sabatini, A.G.; Marcazzan, G.L.; Caboni, M.F.; Bogdanov, S.; de Almeida-Muradian, L.B. Quality and standardisation of royal jelly. J. ApiProd. ApiMed. Sci. 2009, 1, 1–6. [Google Scholar] [CrossRef]
- Ramadan, M.F.; Al-Ghamdi, A. Bioactive compounds and health-promoting properties of royal jelly: A review. J. Funct. Foods 2012, 4, 39–52. [Google Scholar] [CrossRef]
- Peng, C.-C.; Sun, H.-T.; Lin, I.-P.; Kuo, P.-C.; Li, J.-C. The functional property of royal jelly 10-hydroxy-2-decenoic acid as a melanogenesis inhibitor. BMC Complement. Altern. Med. 2017, 17, 392. [Google Scholar] [CrossRef]
- Guo, J.; Wang, Z.; Chen, Y.; Cao, J.; Tian, W.; Ma, B.; Dong, Y. Active components and biological functions of royal jelly. J. Funct. Foods 2021, 82, 104514. [Google Scholar] [CrossRef]
- Collazo, N.; Carpena, M.; Nuñez-Estevez, B.; Otero, P.; Simal-Gandara, J.; Prirto, M.A. Health promoting properties of bee royal jelly: Food of the queen. Nutrients 2021, 13, 543. [Google Scholar] [CrossRef]
- Frantini, F.; Cilia, G.; Mancini, S.; Felicioli, A. Royal jelly: An ancient remedy with remarkable antibacterial properties. Microbiol. Res. 2016, 192, 130–141. [Google Scholar] [CrossRef]
- Kamakura, M.; Suenobu, N.; Fukushima, M. Fifty-seven-kDa protein in royal jelly enhances proliferation of primary cultured rat hepatocytes and increases albumin production in the absence of serum. Biochem. Biophys. Res. Commun. 2001, 282, 865–874. [Google Scholar] [CrossRef] [PubMed]
- Ramanathan, A.N.K.G.; Nair, A.J.; Sugunan, V.S. A review on royal jelly properties and peptides. J. Funct. Foods 2018, 44, 255–264. [Google Scholar] [CrossRef]
- Kohno, K.; Okamoto, I.; Sano, O.; Arai, N.; Iwaki, K.; Ikeda, M.; Kurimoto, M. Royal jelly inhibits the production of proinflammatory cytokines by activated macrophages. Biosci. Biotechnol. Biochem. 2004, 68, 138–145. [Google Scholar] [CrossRef]
- Tamura, S.; Kono, T.; Harada, C.; Yamaguchi, K.; Moriyama, T. Estimation and characterization of major royal jelly proteins obtained from the honeybee Apis mellifera. Food Chem. 2009, 114, 1491–1497. [Google Scholar] [CrossRef]
- Schmitzová, J.; Klaudiny, J.; Albert, Š.; Schröder, W.; Schreckengost, W.; Hanes, J.; Júdová, J.; Šimúth, J. A family of major royal jelly proteins of the honeybee Apis mellifera L. Cell. Mol. Life Sci. 1998, 54, 1020–1030. [Google Scholar] [CrossRef]
- Scarselli, R.; Donadio, E.; Giuffrida, M.G.; Fortunato, D.; Conti, A.; Balestreri, E.; Felicioli, R.; Pinzauti, M.; Sabatini, A.G.; Feliciolo, A. Towards royal jelly proteome. Proteomics 2005, 5, 769–776. [Google Scholar] [CrossRef]
- Bogdanov, S.; Bieri, K.; Gremaud, G.; Iff, D.; Känzig, A.; Seiler, K.; Stöckli, H.; Zürcher, K. Swiss Food Manual: Gelée Royale; Bienenprodukte, BAG (Swiss Federal Office for Public Health): Berne, Switzerland, 2004. [Google Scholar]
- Chen, S.; Su, S.; Lin, X. An introduction to high-yielding royal jelly production methods in China. Bee World 2002, 83, 69–77. [Google Scholar] [CrossRef]
- Cao, L.-F.; Zheng, H.-Q.; Pirk, C.W.W.; Hu, F.-L.; Xu, Z.-W. High royal jelly-producing honeybees (Apis mellifera ligustica) (Hymenoptera: Apidae) in China. J. Econ. Entomol. 2016, 109, 510–514. [Google Scholar] [CrossRef]
- Lu, M.-C. Beekeeping in Taiwan island. In Asian Beekeeping in the 21st Century; Chantawannakul, P., Williams, G., Neumann, P., Eds.; Springer: Singapore, 2018; pp. 159–173. [Google Scholar]
- ISO 12824: 2016 (en); Royal Jelly—Specification. ISO: Geneva, Switzerland, 2016. Available online: https://www.iso.org/obp/ui/en/#iso:std:iso:12824:ed-1:v1:en (accessed on 12 June 2024).
- Ghosh, S.; Jung, C. Chemical composition and nutritional value of royal jelly samples obtained from honey bee (Apis mellifera) hives fed on oak and rapeseed pollen patties. Insects 2024, 15, 141. [Google Scholar] [CrossRef]
- Hu, F.-L.; Bílikova, K.; Casabianca, H.; Daniele, G.; Espindola, F.S.; Feng, M.; Guan, C.; Han, B.; Kraková, T.K.; Li, J.-K.; et al. Standard methods for Apis mellifera royal jelly research. J. Apic. Res. 2019, 58, 1–68. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1990. [Google Scholar]
- CODEX Stan. 12-1981; Revised CODEX Standard for Honey. CODEX: Rome, Italy, 2001.
- Zhou, J.; Xue, X.; Li, Y.; Zhang, J.; Zhao, J. Optimized determination method for trans-10-Hydroxy-2-Decenoic Acid content in Royal Jelly by High-Performance Liquid Chromatography with an internal standard. J. AOAC Int. 2007, 90, 244–249. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Food and Drug Safety. Korean Food Standard Codex; Ministry of Food and Drug Safety: Cheongju, Republic of Korea, 2010. [Google Scholar]
- Zheng, H.-Q.; Hu, F.-L.; Dietemain, V. Changes in composition of royal jelly harvested at different times: Consequences for quality sandards. Apidologie 2011, 42, 39–47. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, L.; Zhang, W.; Cui, X.; Wang, H.; Xu, B. Comparison of the nutrient composition of royal jelly and worker jelly of honey bees (Apis mellifera). Apidologie 2016, 47, 48–56. [Google Scholar] [CrossRef]
- Melampy, R.M.; Jones, D.B. Chemical composition and vitamin content of Royal Jelly. Exp. Biol. Med. 1939, 41, 382–388. [Google Scholar] [CrossRef]
- Howe, S.R.; Dimick, P.S.; Benton, A.W. Composition of freshly harvested and commercial Royal Jelly. J. Apic. Res. 1985, 24, 52–61. [Google Scholar] [CrossRef]
- Buawangpong, N.; Burgett, M. Capped honey moisture content from four honey bee species; Apis dorsata F., Apis florea F., Apis cerana F., and Apis mellifera L. (Hymenoptera: Apidae) in Northern Thailand. J. Apic. 2019, 34, 157–160. [Google Scholar] [CrossRef]
- Wytrychowski, M.; Chenavas, S.; Daniele, G.; Casabianca, H.; Batteau, M.; Guibert, S.; Brion, B. Physicochemical characterization of French royal jelly: Comparison with commercial royal jellies and royal jellies produced through artificial bee-feeding. J. Food Compos. Anal. 2013, 29, 126–133. [Google Scholar] [CrossRef]
- Kamal, M.M.; Rashid, M.H.U.; Mondal, S.C.; Taj, H.F.E.; Jung, C. Physicochemical and microbiological characteristics of honey obtained through sugar feeding of bees. J. Food Sci. Technol. 2019, 56, 2267–2277. [Google Scholar] [CrossRef]
- Daniele, G.; Casabianca, H. Sugar composition of French royal jelly for comparison with commercial and artificial sugar samples. Food Chem. 2012, 134, 1025–1029. [Google Scholar] [CrossRef]
- Sesta, G. Determination of sugars in royal jelly by HPLC. Apidologie 2006, 37, 84–90. [Google Scholar] [CrossRef]
- Sesta, G.; Oddo, L.P.; Nisi, F.; Ricci, L. Effects of artificial sugar feeding on sugar composition of royal jelly. Apiacta 2006, 41, 60. [Google Scholar]
- Xue, X.; Wu, L.; Wang, K. Chemical composition of royal jelly. In Bee Products—Chemical and Biological Properties; Alvarez-Suarez, J.M., Ed.; Springer International Publishing: Cham, Switzerland, 2008; pp. 181–189. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, Y.; Wang, J.; Li, X.; Wang, W.; Huang, Z. Characterization of sugar composition in Chinese royal jelly by ion chromatography with pulsed amperometric detection. J. Food Compos. Anal. 2019, 78, 101–107. [Google Scholar] [CrossRef]
- Wei, W.-T.; Hu, Y.-Q.; Zheng, H.-Q.; Cao, L.-F.; Hu, F.-L.; Hepburn, H.R. Geographical influences on content of 10-Hydroxy-trans-2-Decenoic acid in riyal jelly in China. J. Econ. Entomol. 2013, 106, 1958–1963. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-F.; Wang, K.; Zhang, Y.-Z.; Zheng, Y.-F.; Hu, F.-L. In vitro anti-inflammatory effects of three fatty acids from royal jelly. Mediat. Inflamm. 2016, 2016, 3583684. [Google Scholar] [CrossRef]
- Gismondi, A.; Trionfera, E.; Canuti, L.; Marco, G.D.; Canini, A. Royal jelly lipophilic fraction induces antiproliferative effects on SH-SY5Y human neuroblastoma cells. Oncol. Rep. 2017, 38, 1833–1844. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Lee, D.G.; Jung, C. A comparative study on the two different methods IRMS and CRDS for estimation of δ13 C (‰) of honey samples. J. Apic. 2018, 33, 99–105. [Google Scholar] [CrossRef]
- Jonas-Levi, A.; Martinez, J.-J.I. The high level of protein content reported in sects for food and feed in overestimated. J. Food Compos. Anal. 2017, 62, 184–188. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, L.; Wang, H.; Liu, Z.; Chi, X.; Xu, B. Effects of sucrose on the quality of royal jelly produced by honeybee Apis mellifera L. Insects 2023, 14, 742. [Google Scholar] [CrossRef]
- Karaali, A.; Meydanoğlu, F.; Eke, D. Studies on composition, freeze-drying and storage of Turkish Royal Jelly. J. Apic. Res. 1988, 27, 182–185. [Google Scholar] [CrossRef]
- Jansen, G.R. Lysine in human nutrition. J. Nutr. 1962, 76, 1–35. [Google Scholar] [CrossRef] [PubMed]
- Dwight, E.M. Review of lysine metabolism with a focus on humans. J. Nutr. 2020, 150, 2548S–2555S. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, R.R. Branched-chain amino acids and muscle protein synthesis in humans: Myth or reality? J. Int. Soc. Sports Nutr. 2017, 14, 30. [Google Scholar] [CrossRef] [PubMed]
- Negro, M.; Giardina, S.; Marzani, B.; Marzatico, F. Branched-chain amino acid supplementation does not enhance athletic performance but affects muscle recovery and the immune system. J. Sports Med. Phys. Fit. 2008, 48, 347–351. [Google Scholar]
Sample | Sampling Address | Geographical Location | Temperature (°C) | Relative Humidity (%) | Stable Radioisotope Ratio (13C) | Feed | Reassigned Sample No. | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Longitude (°E) | Latitude (°N) | Max. | Min. | Avg. | Min. | Avg. | |||||
1 | Gyeonggi, Anseong | 37.085 | 127.425 | 32.9 | 11 | 22 | 27 | 70 | −16.4420 ± 0.061 | Sugar | S1 |
2 | Gyeongbuk, Sangju | 36.465 | 128.093 | 33.4 | 12.5 | 22 | 27 | 73 | −24.5570 ± 0.294 | Honey | H1 |
3 | JeonBuk, Namwon | 35.384 | 127.585 | 32.5 | 11.2 | 21.7 | 19 | 73 | −17.6085 ± 0.232 | Sugar | S2 |
4 | Daegu, Namgu | 35.834 | 128.572 | 35.7 | 14.5 | 22.8 | 16 | 65 | −20.7902 ± 0.671 | Honey | H2 |
5 | Gangwon, Yeongwol | 37.214 | 128.333 | 32.5 | 9 | 20.9 | 19 | 69 | −22.0152 ± 0.3836 | Honey | H3 |
6 | Gyeonggi, Pyeongtaek | 36.935 | 126.958 | 33.1 | 12.1 | 21.9 | 24 | 70 | −15.2247 ± 0.1136 | Sugar | S3 |
7 | Gyeonggi, Yeoju | 37.364 | 127.591 | 31.4 | 10.4 | 21.1 | 27 | 70 | −16.0297 ± 0.642 | Sugar | S4 |
8 | Gyeongbuk, Yeongcheon 1 | 35.895 | 129.007 | 35.5 | 11.8 | 21.9 | 16 | 65 | −20.2528 ± 1.6891 | Honey | H4 |
9 | Gyeongbuk, Andong | 36.530 | 128.750 | 32.7 | 10.5 | 21.5 | 21 | 67 | −19.7995 ± 0.4675 | Honey | H5 |
10 | Gyeongbuk, Yeongcheon 2 | 35.894 | 129.009 | 35.5 | 11.8 | 21.9 | 16 | 65 | −16.9992 ± 0.209 | Sugar | S5 |
11 | Gyeongbuk, Pohang | 36.232 | 129.282 | 32.4 | 14.6 | 21.6 | 25 | 75 | −24.1677 ± 0.355 | Honey | H6 |
Feed Supplement | Sample | Moisture Content |
---|---|---|
Sugar syrup | S1 | 57.3 ± 1.73 a |
S2 | 58.0 ± 0.92 ab | |
S3 | 58.6 ± 1.08 ab | |
S4 | 60.9 ± 0.78 cde | |
S5 | 60.7 ± 1.08 cde | |
Honey | H1 | 58.9 ± 0.17 abc |
H2 | 61.0 ± 0.59 cde | |
H3 | 59.4 ± 1.10 bcd | |
H4 | 61.0 ± 1.49 de | |
H5 | 62.0 ± 1.48 e | |
H6 | 61.2 ± 0.98 de | |
Mean (sugar syrup) | 59.1 ± 1.62 | |
Mean (honey) | 60.6 ± 1.18 | |
p * | 0.132 |
Feed Supplement | Sample | Fructose | Glucose | Sucrose | Total | F:G |
---|---|---|---|---|---|---|
Sugar syrup | S1 | 3.3 ± 0.43 cd | 7.4 ± 1.53 bcd | 9.7 ± 1.37 e | 20.4 | 0.45 |
S2 | 2.3 ± 1.00 ab | 5.9 ± 3.19 abc | 7.8 ± 0.30 d | 16.0 | 0.39 | |
S3 | 2.1 ± 0.02 ab | 3.7 ± 0.91 a | 6.8 ± 1.30 d | 12.6 | 0.57 | |
S4 | 1.7 ± 0.64 a | 3.6 ± 0.76 a | 7.1 ± 1.20 d | 12.4 | 0.47 | |
S5 | 3.4 ± 0.36 cd | 5.4 ± 0.42 ab | 6.0 ± 1.44 d | 14.8 | 0.63 | |
Honey | H1 | 4.7 ± 0.64 ef | 8.2 ± 2.08 cd | 2.0 ± 0.35 ab | 14.9 | 0.57 |
H2 | 3.6 ± 0.87 cd | 5.8 ± 0.60 abc | 3.0 ± 0.57 abc | 12.4 | 0.62 | |
H3 | 3.9 ± 0.46 de | 6.7 ± 1.62 bcd | 2.7 ± 1.13 ab | 13.3 | 0.58 | |
H4 | 3.9 ± 0.29 de | 5.6 ± 0.48 ab | 3.3 ± 1.63 bc | 12.8 | 0.70 | |
H5 | 2.8 ± 0.16 bc | 6.1 ± 0.57 abcd | 4.0 ± 0.20 c | 12.9 | 0.46 | |
H6 | 5.4 ± 0.78 f | 8.6 ± 1.28 d | 1.0 ± 0.50 a | 15.0 | 0.63 | |
Mean (sugar syrup) | 2.6 ± 0.75 B | 5.2 ± 1.60 | 7.5 ± 1.40 A | 14.8 ± 3.26 | 0.5 ± 0.10 | |
Mean (honey) | 4.1 ± 0.90 A | 6.8 ± 1.28 | 2.7 ± 1.05 B | 13.6 ± 1.12 | 0.6 ± 0.08 | |
p * | 0.015 | 0.102 | 0.000 | 0.319 | 0.130 |
Feed Supplement | Sample | 10-HDA | Stable Radioisotope (13C) |
---|---|---|---|
Sugar syrup | S1 | 1.9 ± 0.12 a | −16.4420 ± 0.061 def |
S2 | 1.9 ± 0.25 a | −17.6085 ± 0.232 d | |
S3 | 2.5 ± 0.17 bc | −15.2247 ± 0.1136 f | |
S4 | 2.8 ± 0.07 c | −16.0297 ± 0.642 ef | |
S5 | 1.9 ± 0.10 a | −16.9992 ± 0.209 de | |
Honey | H1 | 2.6 ± 0.14 bc | −24.5570 ± 0.294 a |
H2 | 2.6 ± 0.29 bc | −20.7902 ± 0.671 bc | |
H3 | 2.0 ± 0.35 a | −22.0152 ± 0.3836 b | |
H4 | 2.4 ± 0.19 b | −20.2528 ± 1.6891 c | |
H5 | 2.2 ± 0.27 ab | −19.7995 ± 0.4675 c | |
H6 | 1.9 ± 0.09 a | −24.1677 ± 0.355 a | |
Mean (sugar syrup) | 2.2 ± 0.42 | −16.4608 ± 0.911 B | |
Mean (honey) | 2.3 ± 0.30 | −21.9304 ± 2.028 A | |
p * | 0.723 | 0.001 |
Feed Supplement | Sugar Syrup | Honey | p ** | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Amino Acid | S1 | S2 | S3 | S4 | S5 | Mean (Sugar Syrup) | H1 | H2 | H3 | H4 | H5 | H6 | Mean (Honey) | |
Val * | 0.6 ± 0.03 | 0.7 ± 0.02 | 0.7 ± 0.04 | 0.6 ± 0.09 | 0.7 ± 0.05 | 0.66 ± 0.05 | 0.6 ± 0.06 | 0.7 ± 0.02 | 0.7 ± 0.02 | 0.7 ± 0.06 | 0.8 ± 0.07 | 0.7 ± 0.04 | 0.70 ± 0.06 | 0.290 |
Thr * | 0.6 ± 0.08 | 0.7 ± 0.05 | 0.6 ± 0.05 | 0.4 ± 0.14 | 0.5 ± 0.04 | 0.56 ± 0.11 | 0.5 ± 0.10 | 0.6 ± 0.13 | 0.7 ± 0.04 | 0.6 ± 0.10 | 0.7 ± 0.13 | 0.6 ± 0.07 | 0.62 ± 0.08 | 0.373 |
Leu * | 0.9 ± 0.06 | 1.0 ± 0.02 | 1.0 ± 0.01 | 0.9 ± 0.09 | 1.0 ± 0.05 | 0.96 ± 0.05 | 1.0 ± 0.07 | 1.0 ± 0.05 | 1.0 ± 0.03 | 0.9 ± 0.08 | 1.1 ± 0.10 | 1.0 ± 0.05 | 1.00 ± 0.06 | 0.290 |
Ile * | 0.6 ± 0.05 | 0.6 ± 0.01 | 0.6 ± 0.00 | 0.6 ± 0.31 | 0.6 ± 0.03 | 0.60 ± 0.00 | 0.6 ± 0.04 | 0.6 ± 0.04 | 0.6 ± 0.02 | 0.6 ± 0.04 | 0.7 ± 0.06 | 0.6 ± 0.04 | 0.62 ± 0.04 | 0.363 |
Lys * | 0.8 ± 0.03 | 1.0 ± 0.01 | 1.3 ± 0.06 | 0.9 ± 0.18 | 1.0 ± 0.03 | 1.00 ± 0.19 | 0.9 ± 0.06 | 0.9 ± 0.07 | 1.1 ± 0.18 | 0.8 ± 0.05 | 1.0 ± 0.08 | 1.0 ± 0.07 | 0.95 ± 0.10 | 0.614 |
Phe * | 0.6 ± 0.04 | 0.6 ± 0.04 | 0.5 ± 0.02 | 0.6 ± 0.17 | 0.6 ± 0.03 | 0.58 ± 0.04 | 0.6 ± 0.03 | 0.6 ± 0.03 | 0.6 ± 0.02 | 0.5 ± 0.05 | 0.6 ± 0.06 | 0.6 ± 0.03 | 0.58 ± 0.04 | 0.901 |
His * | 0.3 ± 0.02 | 0.4 ± 0.14 | 0.3 ± 0.01 | 0.4 ± 0.49 | 0.3 ± 0.01 | 0.34 ± 0.05 | 0.3 ± 0.02 | 0.3 ± 0.02 | 0.3 ± 0.01 | 0.3 ± 0.02 | 0.3 ± 0.02 | 0.3 ± 0.01 | 0.30 ± 0.00 | 0.178 |
Met * | 0.1 ± 0.04 | 0.1 ± 0.05 | 0.1 ± 0.03 | 0.1 ± 0.05 | 0.1 ± 0.03 | 0.10 ± 0.00 | 0.1 ± 0.02 | 0.1 ± 0.01 | 0.1 ± 0.03 | 0.1 ± 0.02 | 0.1 ± 0.04 | 0.1 ± 0.04 | 0.10 ± 0.00 | 0.076 |
Tyr | 0.5 ± 0.04 | 0.5 ± 0.03 | 0.5 ± 0.01 | 0.5 ± 0.01 | 0.5 ± 0.04 | 0.50 ± 0.00 | 0.5 ± 0.04 | 0.5 ± 0.04 | 0.5 ± 0.03 | 0.4 ± 0.07 | 0.5 ± 0.07 | 0.5 ± 0.02 | 0.48 ± 0.04 | 0.363 |
Asp | 1.6 ± 0.11 | 1.7 ± 0.10 | 1.6 ± 0.01 | 1.4 ± 0.16 | 1.7 ± 0.08 | 1.60 ± 0.12 | 1.6 ± 0.09 | 1.6 ± 0.07 | 1.7 ± 0.06 | 1.6 ± 0.12 | 1.9 ± 0.17 | 1.7 ± 0.26 | 1.68 ± 0.12 | 0.284 |
Ser | 0.8 ± 0.04 | 0.8 ± 0.02 | 0.8 ± 0.03 | 0.7 ± 0.09 | 0.8 ± 0.18 | 0.78 ± 0.04 | 0.7 ± 0.11 | 0.8 ± 0.08 | 0.8 ± 0.03 | 0.8 ± 0.08 | 1.0 ± 0.16 | 0.8 ± 0.10 | 0.82 ± 0.10 | 0.441 |
Glu | 1.2 ± 0.07 | 1.4 ± 0.03 | 1.3 ± 0.02 | 1.1 ± 0.10 | 1.3 ± 0.03 | 1.26 ± 0.11 | 1.2 ± 0.09 | 1.2 ± 0.07 | 1.3 ± 0.04 | 1.4 ± 0.11 | 1.6 ± 0.13 | 1.3 ± 0.06 | 1.33 ± 0.15 | 0.382 |
Pro | 0.8 ± 0.08 | 0.6 ± 0.05 | 0.9 ± 0.03 | 0.7 ± 0.08 | 0.9 ± 0.08 | 0.78 ± 0.13 | 0.8 ± 0.12 | 0.5 ± 0.03 | 1.0 ± 0.04 | 0.7 ± 0.06 | 0.9 ± 0.10 | 0.9 ± 0.07 | 0.80 ± 0.18 | 0.835 |
Gly | 0.4 ± 0.03 | 0.4 ± 0.06 | 0.4 ± 0.02 | 0.4 ± 0.04 | 0.4 ± 0.01 | 0.40 ± 0.00 | 0.4 ± 0.03 | 0.4 ± 0.02 | 0.4 ± 0.02 | 0.4 ± 0.04 | 0.5 ± 0.03 | 0.4 ± 0.02 | 0.42 ± 0.04 | 0.363 |
Ala | 0.4 ± 0.03 | 0.4 ± 0.04 | 0.4 ± 0.03 | 0.3 ± 0.05 | 0.4 ± 0.01 | 0.38 ± 0.04 | 0.4 ± 0.03 | 0.4 ± 0.02 | 0.4 ± 0.03 | 0.4 ± 0.03 | 0.5 ± 0.04 | 0.4 ± 0.03 | 0.42 ± 0.04 | 0.197 |
Cys | 0.1 ± 0.01 | 0.1 ± 0.06 | 0.1 ± 0.01 | 0.1 ± 0.08 | 0.2 ± 0.03 | 0.12 ± 0.04 | 0.1 ± 0.01 | 0.1 ± 0.03 | 0.1 ± 0.01 | 0.1 ± 0.05 | 0.2 ± 0.03 | 0.1 ± 0.03 | 0.12 ± 0.04 | 0.901 |
Arg | 0.6 ± 0.04 | 0.9 ± 0.37 | 0.7 ± 0.01 | 0.8 ± 0.05 | 0.7 ± 0.02 | 0.74 ± 0.11 | 0.6 ± 0.03 | 0.7 ± 0.04 | 0.7 ± 0.02 | 0.6 ± 0.06 | 0.7 ± 0.06 | 0.7 ± 0.03 | 0.67 ± 0.05 | 0.241 |
Total | 10.7 | 11.9 | 11.8 | 10.4 | 11.8 | 11.32 ± 0.71 | 11.0 | 11.1 | 12.0 | 11.0 | 13.0 | 11.6 | 11.62 ± 0.79 | 0.528 |
Feed Supplement | Sample No. | Calcium | Magnesium | Potassium | Sodium | Phosphorus | Iron | Zinc | Copper | Manganese |
---|---|---|---|---|---|---|---|---|---|---|
Sugar syrup | S1 | 12.7 ± 0.40 ab | 28.4 ± 0.90 a | 283.6 ± 13.25 ab | 1.9 ± 0.06 bcd | 212.0 ± 11.25 a | 1.1 ± 0.04 abcd | 2.4 ± 0.11 ab | 0.4 ± 0.02 a | 0.1 ± 0.01 ab |
S2 | 15.0 ± 0.08 cd | 36.2 ± 0.65 bc | 334.1 ± 11.40 de | 1.7 ± 0.04 ab | 263.1 ± 4.05 bc | 1.1 ± 0.08 abcd | 2.7 ± 0.01 b | 0.6 ± 0.04 de | 0.1 ± 0.01 abc | |
S3 | 13.9 ± 0.24 bc | 33.4 ± 0.78 b | 303.7 ± 2.56 bc | 1.7 ± 0.07 a | 243.5 ± 5.25 b | 0.9 ± 0.05 a | 2.4 ± 0.09 ab | 0.5 ± 0.02 abc | 0.1 ± 0.00 abc | |
S4 | 11.5 ± 0.35 a | 27.0 ± 1.65 a | 261.9 ± 28.79 a | 1.7 ± 0.28 a | 204.9 ± 9.09 a | 1.0 ± 0.05 ab | 2.3 ± 0.15 ab | 0.4 ± 0.07 ab | 0.1 ± 0.01 abc | |
S5 | 12.3 ± 0.93 ab | 29.3 ± 2.03 a | 273.7 ± 18.21 a | 2.0 ± 0.25 cd | 209.8 ± 18.03 a | 1.0 ± 0.14 ab | 2.3 ± 0.34 a | 0.5 ± 0.07 bcd | 0.1 ± 0.01 a | |
Honey | H1 | 13.5 ± 0.65 bc | 33.0 ± 0.89 b | 337.6 ± 8.69 de | 1.7 ± 0.01 a | 245.4 ± 3.28 b | 1.2 ± 0.09 d | 2.6 ± 0.11 ab | 0.6 ± 0.02 de | 0.2 ± 0.02 cd |
H2 | 13.7 ± 0.60 bc | 33.3 ± 1.94 b | 313.4 ± 20.03 cd | 2.1 ± 0.07 d | 239.9 ± 16.68 b | 1.0 ± 0.12 abc | 2.4 ± 0.12 ab | 0.5 ± 0.06 cde | 0.1 ± 0.02 abcd | |
H3 | 14.9 ± 1.47 cd | 33.7 ± 3.81 b | 350.1 ± 14.13 e | 1.9 ± 0.08 abc | 245.8 ± 19.73 b | 1.2 ± 0.11 bcd | 2.6 ± 0.15 ab | 0.5 ± 0.08 de | 0.1 ± 0.04 abcd | |
H4 | 14.6 ± 1.36 cd | 34.4 ± 2.21 b | 335.5 ± 12.44 de | 1.8 ± 0.11 abc | 245.5 ± 17.99 b | 1.2 ± 0.15 cd | 2.5 ± 0.26 ab | 0.5 ± 0.04 cde | 0.2 ± 0.10 d | |
H5 | 15.5 ± 0.45 d | 38.4 ± 1.01 c | 362.0 ± 12.82 e | 2.6 ± 0.16 e | 280.1 ± 5.85 c | 1.1 ± 0.05 abcd | 2.6 ± 0.13 b | 0.6 ± 0.04 e | 0.1 ± 0.01 abc | |
H6 | 13.7 ± 0.43 bc | 35.2 ± 0.97 bc | 338.1 ± 13.29 de | 2.1 ± 0.18 cd | 254.6 ± 10.53 b | 1.1 ± 0.15 bcd | 2.4 ± 0.11 ab | 0.6 ± 0.03 de | 0.2 ± 0.03 bcd | |
Mean (sugar syrup) | 13.1 ± 1.38 | 31.5 ± 3.82 | 291.4 ± 28.37 B | 1.8 ± 0.14 | 226.7 ± 25.42 | 1.0 ± 0.08 | 2.4 ± 0.16 | 0.5 ± 0.08 | 0.1 ± 0.00 | |
Mean (honey) | 14.3 ± 0.81 | 34.7 ± 1.99 | 339.5 ± 16.26 A | 2.0 ± 0.32 | 251.9 ± 14.61 | 1.1 ± 0.08 | 2.5 ± 0.10 | 0.6 ± 0.05 | 0.2 ± 0.05 | |
p * | 0.127 | 0.090 | 0.015 | 0.152 | 0.097 | 0.050 | 0.292 | 0.152 | 0.076 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghosh, S.; Jang, H.; Sun, S.; Jung, C. Nutrient Composition and Quality Assessment of Royal Jelly Samples Relative to Feed Supplements. Foods 2024, 13, 1942. https://doi.org/10.3390/foods13121942
Ghosh S, Jang H, Sun S, Jung C. Nutrient Composition and Quality Assessment of Royal Jelly Samples Relative to Feed Supplements. Foods. 2024; 13(12):1942. https://doi.org/10.3390/foods13121942
Chicago/Turabian StyleGhosh, Sampat, Hyeonjeong Jang, Sukjun Sun, and Chuleui Jung. 2024. "Nutrient Composition and Quality Assessment of Royal Jelly Samples Relative to Feed Supplements" Foods 13, no. 12: 1942. https://doi.org/10.3390/foods13121942
APA StyleGhosh, S., Jang, H., Sun, S., & Jung, C. (2024). Nutrient Composition and Quality Assessment of Royal Jelly Samples Relative to Feed Supplements. Foods, 13(12), 1942. https://doi.org/10.3390/foods13121942