Coffee Silverskin as a Potential Ingredient for Functional Foods: Recent Advances and a Case Study with Chocolate Cake
Abstract
:1. Introduction
2. Coffee Processing Overview
3. Coffee Silverskin
3.1. Composition
3.2. Recent Food-Related Applications
3.3. Case Study: CS as a Potential Functional Ingredient in Chocolate Cake
3.3.1. Materials and Methods
Materials
CS Preparation and Characterization
Cake Preparation and Characterization
Sensory Analysis
Statistical Analysis
3.3.2. Results and Discussion
CS Characterization
Cake Characterization
Sensory Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pan, Z.; Zhang, R.; Zicari, S. Preface. In Integrated Processing Technologies for Food and Agricultural By-Products; Elsevier: Amsterdam, The Netherlands, 2019; pp. ix–x. [Google Scholar] [CrossRef]
- Sisti, L.; Celli, A.; Totaro, G.; Cinelli, P.; Signori, F.; Lazzeri, A.; Bikaki, M.; Corvini, P.; Ferri, M.; Tassoni, A.; et al. Monomers, Materials and Energy from Coffee By-Products: A Review. Sustainability 2021, 13, 6921. [Google Scholar] [CrossRef]
- Klingel, T.; Kremer, J.I.; Gottstein, V.; Rajcic de Rezende, T.; Schwarz, S.; Lachenmeier, D.W. A Review of Coffee By-Products Including Leaf, Flower, Cherry, Husk, Silver Skin, and Spent Grounds as Novel Foods within the European Union. Foods 2020, 9, 665. [Google Scholar] [CrossRef]
- Coffee: World Markets and Trade. 2024. Available online: https://fas.usda.gov/sites/default/files/2024-06/coffee.pdf (accessed on 13 November 2024).
- Franca, A.S.; Oliveira, L.S. Coffee. In Integrated Processing Technologies for Food and Agricultural By-Products; Elsevier: Amsterdam, The Netherlands, 2019; pp. 413–438. [Google Scholar] [CrossRef]
- Oliveira, G.; Passos, C.P.; Ferreira, P.; Coimbra, M.A.; Gonçalves, I. Coffee By-Products and Their Suitability for Developing Active Food Packaging Materials. Foods 2021, 10, 683. [Google Scholar] [CrossRef]
- Bondam, A.F.; Diolinda da Silveira, D.; Pozzada dos Santos, J.; Hoffmann, J.F. Phenolic compounds from coffee by-products: Extraction and application in the food and pharmaceutical industries. Trends Food Sci. Technol. 2022, 123, 172–186. [Google Scholar] [CrossRef]
- Lee, Y.-G.; Cho, E.-J.; Maskey, S.; Nguyen, D.-T.; Bae, H.-J. Value-Added Products from Coffee Waste: A Review. Molecules 2023, 28, 3562. [Google Scholar] [CrossRef]
- Barreto-Peixoto, J.A.; Andrade, N.; Oliveira, M.B.; Martel, F.; Alves, R.C. Coffee silverskin. In Coffee in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2025; pp. 829–840. [Google Scholar] [CrossRef]
- Zengin, G.; Sinan, K.I.; Mahomoodally, M.F.; Angeloni, S.; Mustafa, A.M.; Vittori, S.; Maggi, F.; Caprioli, G. Chemical Composition, Antioxidant and Enzyme Inhibitory Properties of Different Extracts Obtained from Spent Coffee Ground and Coffee Silverskin. Foods 2020, 9, 713. [Google Scholar] [CrossRef]
- Machado, M.; Ferreira, H.; Oliveira, M.B.; Alves, R.C. Coffee by-products: An underexplored source of prebiotic ingredients. Crit. Rev. Food Sci. Nutr. 2023, 64, 7181–7200. [Google Scholar] [CrossRef]
- Rocchetti, G.; Gregorio, R.P.; Lorenzo, J.M.; Barba, F.J.; Oliveira, P.G.; Prieto, M.A.; Simal-Gandara, J.; Mosele, J.I.; Motilva, M.; Tomas, M.; et al. Functional implications of bound phenolic compounds and phenolics–food interaction: A review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 811–842. [Google Scholar] [CrossRef]
- Pérez-Jiménez, J.; Saura-Calixto, F. Macromolecular antioxidants or non-extractable polyphenols in fruit and vegetables: Intake in four European countries. Food Res. Int. 2015, 74, 315–323. [Google Scholar] [CrossRef]
- Hejna, A. Potential applications of by-products from the coffee industry in polymer technology—Current state and perspectives. Waste Manag. 2021, 121, 296–330. [Google Scholar] [CrossRef]
- Narita, Y.; Inouye, K. Review on utilization and composition of coffee silverskin. Food Res. Int. 2014, 61, 16–22. [Google Scholar] [CrossRef]
- Del Pozo, C.; Bartrolí, J.; Alier, S.; Puy, N.; Fàbregas, E. Production of antioxidants and other value-added compounds from coffee silverskin via pyrolysis under a biorefinery approach. Waste Manag. 2020, 109, 19–27. [Google Scholar] [CrossRef]
- Kumar, K.S.; Gairola, S.; Singh, I. Waste Coffee Silverskin as a potential filler in sustainable composites: Mechanical, thermal, and microstructural analysis. Ind. Crop. Prod. 2024, 210, 118088. [Google Scholar] [CrossRef]
- Renaudie, M.; Dumas, C.; Vuilleumier, S.; Ernst, B. New way of valorization of raw coffee silverskin: Biohydrogen and acetate production by dark fermentation without exogenous inoculum. Bioresour. Technol. Rep. 2022, 17, 100918. [Google Scholar] [CrossRef]
- Del Pozo, C.; Rego, F.; Yang, Y.; Puy, N.; Bartrolí, J.; Fàbregas, E.; Bridgwater, A.V. Converting coffee silverskin to value-added products by a slow pyrolysis-based biorefinery process. Fuel Process. Technol. 2021, 214, 106708. [Google Scholar] [CrossRef]
- Tommasini Vieira Ramos, F.J.; Vieira Marques, M.d.; de Oliveira Aguiar, V.; Fabbri Gondim, F.; dos Santos Gomes, L.; de Oliveira Gomes, P.H. Geopolymer composites reinforced with silverskin fibers from the coffee industry waste. J. Mater. Res. Technol. 2024, 31, 3287–3300. [Google Scholar] [CrossRef]
- Petaloti, A.-I.; Valtopoulou, A.; Gkogkou, C.; Achilias, D.S. An Evaluation of the Use of Coffee Silverskin Particles and Extracts as Additives in Wheat Flour/Glucose Mixtures to Produce Bioactive Films for Food Packaging. Appl. Sci. 2024, 14, 7563. [Google Scholar] [CrossRef]
- Petaloti, A.-I.; Achilias, D.S. The Development of Sustainable Biocomposite Materials Based on Poly(lactic acid) and Silverskin, a Coffee Industry By-Product, for Food Packaging Applications. Sustainability 2024, 16, 5075. [Google Scholar] [CrossRef]
- Loryuenyong, V.; Khamsawat, J.; Danwong, P.; Buasri, A.; Pattananuwat, P. Application of Coffee Silverskin Cellulose/Polyacrylamide Gel Polymer Electrolytes for Rechargeable Zinc-Ion Batteries. Sci 2024, 6, 50. [Google Scholar] [CrossRef]
- Grigolon, G.; Nowak, K.; Poigny, S.; Hubert, J.; Kotland, A.; Waldschütz, L.; Wandrey, F. From Coffee Waste to Active Ingredient for Cosmetic Applications. Int. J. Mol. Sci. 2023, 24, 8516. [Google Scholar] [CrossRef]
- Fernández-Ferreras, J.; Llano, T.; Kochaniec, M.K.; Coz, A. Slow Pyrolysis of Specialty Coffee Residues towards the Circular Economy in Rural Areas. Energies 2023, 16, 2300. [Google Scholar] [CrossRef]
- Ruschioni, S.; Duca, D.; Tulli, F.; Zarantoniello, M.; Cardinaletti, G.; Corsi, L.; Olivotto, I.; Basili, D.; Naspetti, S.; Truzzi, C.; et al. Evaluation of Growth Performance and Environmental Impact of Hermetia illucens Larvae Reared on Coffee Silverskins Enriched with Schizochytrium limacinum or Isochrysis galbana Microalgae. Animals 2024, 14, 609. [Google Scholar] [CrossRef]
- Picca, G.; Plaza, C.; Madejón, E.; Panettieri, M. Compositing of Coffee Silverskin with Carbon Rich Materials Leads to High Quality Soil Amendments. Waste Biomass Valorization 2023, 14, 297–307. [Google Scholar] [CrossRef]
- Di Maso, M.; Boffetta, P.; Negri, E.; La Vecchia, C.; Bravi, F. Caffeinated Coffee Consumption and Health Outcomes in the US Population: A Dose–Response Meta-Analysis and Estimation of Disease Cases and Deaths Avoided. Adv. Nutr. 2021, 12, 1160–1176. [Google Scholar] [CrossRef]
- Preedy, V.R. (Ed.) Coffee in Health and Disease Prevention, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar] [CrossRef]
- Socała, K.; Szopa, A.; Serefko, A.; Poleszak, E.; Wlaź, P. Neuroprotective Effects of Coffee Bioactive Compounds: A Review. Int. J. Mol. Sci. 2021, 22, 107. [Google Scholar] [CrossRef]
- Franca, A.S.; Oliveira, L.S. Potential Uses of Spent Coffee Grounds in the Food Industry. Foods 2022, 11, 2064. [Google Scholar] [CrossRef]
- Hayes, C.; Nurkolis, F.; Laksemi, D.A.A.S.; Chung, S.; Park, M.N.; Choi, M.; Choi, J.; Darmaputra, I.G.N.; Gunawan, W.B.; Lele, J.A.J.M.N.; et al. Coffee Silverskin Phytocompounds as a Novel Anti-Aging Functional Food: A Pharmacoinformatic Approach Combined with In Vitro Study. Molecules 2023, 28, 7037. [Google Scholar] [CrossRef]
- Ziemah, J.; Ullrich, M.S.; Kuhnert, N. Antibacterial Activity Potential of Industrial Food Production Waste Extracts against Pathogenic Bacteria: Comparative Analysis and Characterization. Foods 2024, 13, 1902. [Google Scholar] [CrossRef] [PubMed]
- Peixoto, J.A.B.; Andrade, N.; Machado, S.; Costa, A.S.G.; Puga, H.; Oliveira, M.B.P.P.; Martel, F.; Alves, R.C. Valorizing Coffee Silverskin Based on Its Phytochemicals and Antidiabetic Potential: From Lab to a Pilot Scale. Foods 2022, 11, 1671. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Kim, J.H.; Jang, J.-P.; Jang, J.-H.; Jin, D.-H.; Kim, Y.S.; Jin, H.-J. Identification of Molecules from Coffee Silverskin That Suppresses Myostatin Activity and Improves Muscle Mass and Strength in Mice. Molecules 2021, 26, 2676. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Jiménez, J. Dietary fiber: Still alive. Food Chem. 2024, 439, 138076. [Google Scholar] [CrossRef]
- Gottstein, V.; Bernhardt, M.; Dilger, E.; Keller, J.; Breitling-Utzmann, C.M.; Schwarz, S.; Kuballa, T.; Lachenmeier, D.W.; Bunzel, M. Coffee Silver Skin: Chemical Characterization with Special Consideration of Dietary Fiber and Heat-Induced Contaminants. Foods 2021, 10, 1705. [Google Scholar] [CrossRef] [PubMed]
- Nzekoue, F.K.; Borsetta, G.; Navarini, L.; Abouelenein, D.; Xiao, J.; Sagratini, G.; Vittori, S.; Caprioli, G.; Angeloni, S. Coffee silverskin: Characterization of B-vitamins, macronutrients, minerals and phytosterols. Food Chem. 2022, 372, 131188. [Google Scholar] [CrossRef] [PubMed]
- Nolasco, A.; Squillante, J.; Velotto, S.; D’Auria, G.; Ferranti, P.; Mamone, G.; Errico, M.E.; Avolio, R.; Castaldo, R.; Cirillo, T.; et al. Valorization of coffee industry wastes: Comprehensive physicochemical characterization of coffee silverskin and multipurpose recycling applications. J. Clean. Prod. 2022, 370, 133520. [Google Scholar] [CrossRef]
- Wang, X.; Hong, D.-F.; Hu, G.-L.; Li, Z.-R.; Peng, X.-R.; Shi, Q.-Q.; Qiu, M.-H. Morphological Changes and Component Characterization of Coffee Silverskin. Molecules 2021, 26, 4914. [Google Scholar] [CrossRef] [PubMed]
- Reddy, V.S.; Shiva, S.; Manikantan, S.; Ramakrishna, S. Pharmacology of caffeine and its effects on the human body. Eur. J. Med. Chem. Rep. 2024, 10, 100138. [Google Scholar] [CrossRef]
- Naveed, M.; Hejazi, V.; Abbas, M.; Kamboh, A.A.; Khan, G.J.; Shumzaid, M.; Ahmad, F.; Babazadeh, D.; FangFang, X.; Modarresi-Ghazani, F.; et al. Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomed. pharmacother. 2018, 97, 67–74. [Google Scholar] [CrossRef]
- Özhamamcı, İ. Coffee Silverskin as a Fat Replacer in Chicken Patty Formulation and Its Effect on Physicochemical, Textural, and Sensory Properties. Appl. Sci. 2024, 14, 6442. [Google Scholar] [CrossRef]
- Bertolino, M.; Barbosa-Pereira, L.; Ghirardello, D.; Botta, C.; Rolle, L.; Guglielmetti, A.; Borotto Dalla Vecchia, S.; Zeppa, G. Coffee silverskin as nutraceutical ingredient in yogurt: Its effect on functional properties and its bioaccessibility. J. Sci. Food Agric. 2019, 99, 4267–4275. [Google Scholar] [CrossRef]
- Guglielmetti, A.; Fernandez-Gomez, B.; Zeppa, G.; Del Castillo, M.D. Nutritional Quality, Potential Health Promoting Properties and Sensory Perception of an Improved Gluten-Free Bread Formulation Containing Inulin, Rice Protein and Bioactive Compounds Extracted from Coffee Byproducts. Pol. J. Food Nutr. Sci. 2019, 69, 157–166. [Google Scholar] [CrossRef]
- Boninsegna, M.A.; Cilea, I.; Piscopo, A.; De Bruno, A.; Poiana, M. Sustainable use of coffee roasting by-products: Development of high value-added gummy candies. J. Food Meas. Charact. 2024, 18, 9519–9531. [Google Scholar] [CrossRef]
- Gocmen, D.; Sahan, Y.; Yildiz, E.; Coskun, M.; Aroufai, İ.A. Use of coffee silverskin to improve the functional properties of cookies. J. Food Sci. Technol. 2019, 56, 2979–2988. [Google Scholar] [CrossRef]
- Dauber, C.; Romero, M.; Chaparro, C.; Ureta, C.; Ferrari, C.; Lans, R.; Frugoni, L.; Echeverry, M.V.; Calvo, B.S.; Trostchansky, A.; et al. Cookies enriched with coffee silverskin powder and coffee silverskin ultrasound extract to enhance fiber content and antioxidant properties. Appl. Food Res. 2024, 4, 100373. [Google Scholar] [CrossRef]
- Beltrán-Medina, E.A.; Guatemala-Morales, G.M.; Padilla-Camberos, E.; Corona-González, R.I.; Mondragón-Cortez, P.M.; Arriola-Guevara, E. Evaluation of the Use of a Coffee Industry By-Product in a Cereal-Based Extruded Food Product. Foods 2020, 9, 1008. [Google Scholar] [CrossRef] [PubMed]
- Ateş, G.; Elmacı, Y. Coffee silverskin as fat replacer in cake formulations and its effect on physical, chemical and sensory attributes of cakes. LWT 2018, 90, 519–525. [Google Scholar] [CrossRef]
- Horwitz, W.; Latimer, G.W., Jr. (Eds.) Official Methods of Analysis of the AOAC International, 18th ed.; AOAC International: Rockville, MD, USA, 2007. [Google Scholar]
- Asp, N.G.; Johansson, C.G.; Hallmer, H.; Siljestroem, M. Rapid enzymic assay of insoluble and soluble dietary fiber. J. Agric. Food Chem. 1983, 31, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Resende, L.M.; Franca, A.S.; Oliveira, L.S. Buriti (Mauritia flexuosa L. f.) fruit by-products flours: Evaluation as source of dietary fibers and natural antioxidants. Food Chem. 2019, 270, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Ballesteros, L.F.; Teixeira, J.A.; Mussatto, S.I. Selection of the Solvent and Extraction Conditions for Maximum Recovery of Antioxidant Phenolic Compounds from Coffee Silverskin. Food Bioproc. Technol. 2013, 7, 1322–1332. [Google Scholar] [CrossRef]
- Zurita, J.; Díaz-Rubio, M.E.; Saura-Calixto, F. Improved procedure to determine non-extractable polymeric proanthocyanidins in plant foods. Int. J. Food Sci. Nutr. 2012, 63, 936–939. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Taweekayujan, S.; Somngam, S.; Pinnarat, T. Optimization and kinetics modeling of phenolics extraction from coffee silverskin in deep eutectic solvent using ultrasound-assisted extraction. Heliyon 2023, 9, e17942. [Google Scholar] [CrossRef]
- ANVISA. Resolução–RDC No 54, de 12 de Novembro de 2012. (In Portuguese). Available online: https://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2012/rdc0054_12_11_2012.html (accessed on 13 November 2024).
- Minin, V.P. Análise Sensorial: Estudos Com Consumidores, 2nd ed.; UFV: Viçosa, MG, Brazil, 2022. (In Portuguese) [Google Scholar]
- Martuscelli, M.; Esposito, L.; Di Mattia, C.D.; Ricci, A.; Mastrocola, D. Characterization of Coffee Silver Skin as Potential Food-Safe Ingredient. Foods 2021, 10, 1367. [Google Scholar] [CrossRef]
- Nzekoue, F.K.; Angeloni, S.; Navarini, L.; Angeloni, C.; Freschi, M.; Hrelia, S.; Vitali, L.A.; Sagratini, G.; Vittori, S.; Caprioli, G. Coffee silverskin extracts: Quantification of 30 bioactive compounds by a new HPLC-MS/MS method and evaluation of their antioxidant and antibacterial activities. Food Res. Int. 2020, 133, 109128. [Google Scholar] [CrossRef]
- Tores de la Cruz, S.; Iriondo-DeHond, A.; Herrera, T.; Lopez-Tofiño, Y.; Galvez-Robleño, C.; Prodanov, M.; Velazquez-Escobar, F.; Abalo, R.; del Castillo, M.D. An Assessment of the Bioactivity of Coffee Silverskin Melanoidins. Foods 2019, 8, 68. [Google Scholar] [CrossRef]
- Pérez-Jiménez, J.; Saura-Calixto, F. Fruit peels as sources of non-extractable polyphenols or macromolecular antioxidants: Analysis and nutritional implications. Food Res. Int. 2018, 111, 148–152. [Google Scholar] [CrossRef]
- Narita, Y.; Inouye, K. High antioxidant activity of coffee silverskin extracts obtained by the treatment of coffee silverskin with subcritical water. Food Chem. 2012, 135, 943–949. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.S.; Alves, R.C.; Vinha, A.F.; Costa, E.; Costa, C.S.; Nunes, M.A.; Almeida, A.A.; Santos-Silva, A.; Oliveira, M.B.P. Nutritional, chemical and antioxidant/pro-oxidant profiles of silverskin, a coffee roasting by-product. Food Chem. 2018, 267, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.M.; Qureshi, T.M.; Mushtaq, M.; Aqib, A.I.; Mushtaq, U.; Ibrahim, S.A.; Rehman, A.; Iqbal, M.W.; Imran, T.; Siddiqui, S.A.; et al. Influence of baking and frying conditions on acrylamide formation in various prepared bakery, snack, and fried products. Front Nutr. 2022, 9, 1011384. [Google Scholar] [CrossRef] [PubMed]
- Commission Regulation (EU) 2017/2158 of 20 November 2017 Establishing Mitigation Measures and Benchmark Levels for the Reduction of the Presence of Acrylamide in Food. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32017R2158&qid=1732554172065 (accessed on 27 November 2024).
- Chemat, A.; Schweiger, M.; Touraud, D.; Müller, R.; Lajoie, L.; Mazzitelli, J.B.; Cravotto, C.; Kunz, W.; Fabiano-Tixier, A.-S. Cascade extractions of coffee silverskin: Towards zero solid waste valorization of a byproduct. Sustain. Chem. Pharm. 2024, 42, 101779. [Google Scholar] [CrossRef]
- Cardello, H.M.; Faria, J.B. Análise da aceitação de aguardentes de cana por testes afetivos e mapa de preferência interno. Food Sci. Technol. 2000, 20, 32–36. [Google Scholar] [CrossRef]
- Ansanelli, G.; Fiorentino, G.; Chifari, R.; Meisterl, K.; Leccisi, E.; Zucaro, A. Sustainability assessment of coffee silverskin waste management in the metropolitan city of Naples (Italy): A life cycle perspective. Sustainability 2023, 15, 16281. [Google Scholar] [CrossRef]
Area | CS Treatment | Application | Main Results | Ref. |
---|---|---|---|---|
Polymers | Alkaline treatment followed by steam explosion | Reinforcement fibers in geopolymer composites | Enhancement of mechanical and thermal properties of geopolymer composites. | [20] |
Milling and drying followed by dispersion in warm aqueous solution | Additive in wheat flour/glucose-based polymeric films | Increase in surface hydrophobicity, improvement in antioxidant capacity, enhancement of mechanical resistance but decrease in elongation at break. | [21] | |
Milling and drying followed by alkali treatment and bleaching | Biocomposite films based on polylactic acid (PLA) | Improvement in mechanical properties and antioxidant capacity | [22] | |
Alkaline treatment followed by bleaching | Gel polymer electrolytes for rechargeable zinc-ion batteries | Improvement in mechanical properties of the polymer electrolytes without affecting electrochemical stability. | [23] | |
Cosmetics | Supercritical CO2 extraction | Active ingredient in skin cream | Upregulation of genes involved in oxidative stress responses and skin-barrier functionality; protection of the skin and against Sodium Lauryl Sulfate-induced irritation; improvement in perceived skin hydration. | [24] |
Energy | Slow pyrolysis | Biochar | Increased calorific value in comparison to the raw material. Pyrolysis liquid contains caffeine, acetic acid, levulinic acid and formic acid, and thus could serve as a platform for the synthesis of chemicals | [25] |
Animal Feed | Grinding followed by mixture with other feed ingredients | Insect larvae feed | CS-based feed enriched with microalgae provided increases in protein and lipid contents of insect (Hermetia illucens) larvae | [26] |
Soil amendment | Moistening and pressing before storage in sealed plastic bags | Co-composting with gardening prune and biochar | Employment of a 1:1 ratio of CS–co-substrate with extra CS doses added during composting provided the best results; addition of biochar provided adequate porosity conditions for aerobic digestion. | [27] |
Ingredient | F0 (Control) | F1 (2.6% CS) | F2 (3.6% CS) | F3 (4.6% CS) |
---|---|---|---|---|
Chocolate cake mixture (g) | 400 | 380 | 372.5 | 365 |
Whole-milk (g) | 220 | 220 | 220 | 220 |
Eggs (g) | 145 | 145 | 145 | 145 |
Coffee silverskin (g) | 0 | 20 | 27.5 | 35 |
TEP (mg GAE/100 g) | NEPA (mg/100 g) | DPPH IC50 (g/g DPPH) | FRAP (µmol Fe2SO4/g) |
---|---|---|---|
783 ± 84 a (MeAc) 469 ± 17 b (Eth 60%) | 236 ± 4 b (MeAc) 309 ± 0 a (Eth) | 1727.59 ± 112.06 a (MeAc) 251.15 ± 13.24 b (Eth) | 170.64 ± 2.98 a (MeAc) 98.37 ± 1.41 b (Eth) |
Cake Formulation | Dietary Fiber (Dry Matter Basis) (g/100 g) | ||
---|---|---|---|
IDF | SDF | TDF | |
F0 | 1.91 ± 0.18 c | 0.83 ± 0.14 a | 2.74 |
F1 | 4.30 ± 0.13 b | 1.13 ± 0.16 a | 5.43 |
F3 | 5.37 ± 0.02 a | 0.92 ± 0.34 a | 6.29 |
Cake Formulation | TEPs (mg GAE/100 g) (MeAc) | NEPA * (mg/100 g) (MeAc) | DPPH IC50 (g/g DPPH) (MeAc) | FRAP (µmol Fe2SO4/g) (Eth) |
---|---|---|---|---|
F0 | 87 ± 2 c | 8.89 ± 0.12 b | 50,384.9 ± 9302.4 b | 2.84 ± 0.19 b |
F1 | 119 ± 3 a | 16.96 ± 0.12 a | 21,649.8 ± 1892.0 a | 6.12 ± 0.56 a |
F3 | 100 ± 2 b | 16.11 ± 0.12 a | 27,501.2 ± 3935.1 a | 6.49 ± 0.11 a |
Cake Formulation | Color | Smell | Taste | Texture | Overall Impression |
---|---|---|---|---|---|
F0 | 7.83 ± 1.10 a | 7.4 ± 1.40 a | 7.91 ± 0.99 a | 7.24 ± 1.55 a | 7.61 ± 1.22 a |
F1 | 7.74 ± 1.10 a | 7.27 ± 1.36 a | 6.58 ± 1.75 b | 6.68 ± 1.88 b | 6.75 ± 1.56 b |
F2 | 7.71 ± 1.47 a | 7.45 ± 1.37 a | 6.51 ± 1.91 b | 7.14 ± 1.69 ab | 6.74 ± 1.72 b |
F3 | 7.61 ± 1.25 a | 7.02 ± 1.55 a | 5.81 ± 2.21 c | 6.89 ± 1.92 ab | 6.35 ± 1.84 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franca, A.S.; Basílio, E.P.; Resende, L.M.; Fante, C.A.; Oliveira, L.S. Coffee Silverskin as a Potential Ingredient for Functional Foods: Recent Advances and a Case Study with Chocolate Cake. Foods 2024, 13, 3935. https://doi.org/10.3390/foods13233935
Franca AS, Basílio EP, Resende LM, Fante CA, Oliveira LS. Coffee Silverskin as a Potential Ingredient for Functional Foods: Recent Advances and a Case Study with Chocolate Cake. Foods. 2024; 13(23):3935. https://doi.org/10.3390/foods13233935
Chicago/Turabian StyleFranca, Adriana S., Emiliana P. Basílio, Laís M. Resende, Camila A. Fante, and Leandro S. Oliveira. 2024. "Coffee Silverskin as a Potential Ingredient for Functional Foods: Recent Advances and a Case Study with Chocolate Cake" Foods 13, no. 23: 3935. https://doi.org/10.3390/foods13233935
APA StyleFranca, A. S., Basílio, E. P., Resende, L. M., Fante, C. A., & Oliveira, L. S. (2024). Coffee Silverskin as a Potential Ingredient for Functional Foods: Recent Advances and a Case Study with Chocolate Cake. Foods, 13(23), 3935. https://doi.org/10.3390/foods13233935