Previous Issue
Volume 9, February
 
 

ChemEngineering, Volume 9, Issue 2 (April 2025) – 2 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
15 pages, 2449 KiB  
Article
Improvement of Malagasy Traditional Earth Bricks by Using a Derivative of CNSL as a Binding Agent
by Volana Mifelana Holiarinala, Fenia Diane Ramiharimanana, Hermann Rafanoela, Stephanoel Randriatsarazaka, Raymond Razafimahatratra, Estelle Metay, Voahangy Vestalys Ramanandraibe and Marc Lemaire
ChemEngineering 2025, 9(2), 22; https://doi.org/10.3390/chemengineering9020022 - 21 Feb 2025
Abstract
Traditional bricks are still the most widely used building material in Madagascar. Bricks are made from clay that is fired for weeks in open-air kilns (600–750 °C) by using rice husks, peat, charcoal, coal, and wood as fuels. This process contributes significantly to [...] Read more.
Traditional bricks are still the most widely used building material in Madagascar. Bricks are made from clay that is fired for weeks in open-air kilns (600–750 °C) by using rice husks, peat, charcoal, coal, and wood as fuels. This process contributes significantly to environmental pollution by emitting CO2 and particles. In addition, the intensive use of wood and charcoal is partly responsible for the deforestation that still taking place on the “Red Island”. The development of sustainable building materials is therefore of global interest. This research provided a solution by implementing the oxyacetic acid derivative of cashew nut shell liquid (CNSL) as a binder to reduce energy consumption in the preparation of earthen materials. This product was obtained from cashew nut waste and was used in a proportion of 5 to 15% with the red soil of Madagascar. The materials were formulated at a much lower temperature (60 °C) compared to the traditional process for 24 to 48 hours in a custom-designed mold. The material with 10% oxyacetic binder from CNSL was a compact, hard solid with higher mechanical properties, including a twice higher compressive strength (5.6 MPa compared to 2.2 MPa) and a higher tensile strength (2.2 MPa compared to 1.6 MPa). This material also had better water resistance after 2 months of immersion; traditional clay bricks absorbed 36.65% of the water, and the material with binder only absorbed 12.62%. This research demonstrates that the utilization of local agricultural waste as a binder is a viable strategy for reducing the carbon footprint of traditional building materials while significantly improving their physico-mechanical properties. Full article
(This article belongs to the Special Issue New Advances in Chemical Engineering)
Show Figures

Figure 1

27 pages, 3377 KiB  
Article
Operative Improvement in the Naphtha Catalytic Reforming Process to Reduce the Environmental Impact of Benzene Fugitive Emissions from Gasoline
by Fabiola Velázquez-Alonso, César Abelardo González-Ramírez, José Roberto Villagómez-Ibarra, Elena María Otazo-Sánchez, Martín Hernández-Juárez, Fernando Pérez-Villaseñor, Ángel Castro-Agüero, Laura Olivia Alemán-Vázquez, César Camacho-López and Claudia Romo-Gómez
ChemEngineering 2025, 9(2), 21; https://doi.org/10.3390/chemengineering9020021 - 21 Feb 2025
Abstract
A challenge for the oil refinement industry is the production of high-octane gasoline with a low benzene content. This work reports the calculation of the atmospheric benzene emissions generated from gasoline storage, transfer, and transport operations in Mexico, estimating 1.48 KBPD of environmental [...] Read more.
A challenge for the oil refinement industry is the production of high-octane gasoline with a low benzene content. This work reports the calculation of the atmospheric benzene emissions generated from gasoline storage, transfer, and transport operations in Mexico, estimating 1.48 KBPD of environmental release. The aim was to estimate the minimum benzene emissions through operative improvements in refineries, initially by performing simulations of the Naphtha Catalytic Reforming (NCR) process using ASPEN HYSYS® ver. 8.8 (34.0.08909) and then by optimizing the operative conditions to improve the reformate quality while reducing the benzene content. The operative ranges comprised hydrogen/hydrocarbon (H2/HC) feedstock molar ratios from 2.0 to 6.0 and reaction temperatures from 450 to 525 °C, which were used as independent variables to assess the benzene content and the Research Octane Number (RON) of the produced gasoline. The Surface Response Method (SRM) and multi-objective optimization analysis were applied. The improved operative conditions were 491 °C and a H2/HC ratio of 2.0, which allowed us to obtain a RON value of 89.87, an aromatics value of 37.39% (v/v), and a benzene value of 1.48% (v/v), with an estimated 16.44% drop in atmospheric benzene emissions, meaning a reduction in greenhouse gas emissions and climate change, thus favorably impacting public health by improving refinery operations. The simulation outcomes were compared with industrial-scale data and the experimental results, with significant similitudes being observed. Full article
Show Figures

Graphical abstract

Previous Issue
Back to TopTop