Innovative Bioscaffolds in Stem Cell and Regenerative Therapies for Corneal Pathologies
Abstract
:1. Introduction
2. Bioscaffolds in Corneal Regeneration
2.1. Materials for Bioscaffolds
2.1.1. Natural Polymers
2.1.2. Synthetic Polymers
3. Fabrication Techniques
3.1. Electrospinning
3.2. Three-Dimensional Bioprinting
3.3. Hydrogel Formulation
3.4. Decellularization
3.5. Nanofabrication
4. Functional Strategies
4.1. Surface Modifications
4.2. Incorporation of Growth Factors
4.3. Integration of Nanoparticles
5. Integration of Stem Cells and Bioscaffolds
5.1. Limbal Stem Cells (LSC)
5.2. Mesenchymal Stem Cells (MSCs)
5.3. Induced Pluripotent Stem Cells (iPSCs)
6. Challenges and Future Directions
6.1. Immunogenicity and Biocompatibility
6.2. Scaffold Design and Customization
6.3. Integration with Advanced Technologies
7. Applications for Corneal Bioscaffolds
7.1. Corneal Neovascularization
7.2. Keratoconus
7.3. Corneal Epithelial Disorders
7.4. Corneal Ulcers
7.5. Corneal Endothelial Dysfunction
7.6. Corneal Transplantation
8. Regulatory and Ethical Considerations
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dawson, D.G.; Geroski, D.H.; Edelhauser, H.F. Corneal Endothelium: Structure and Function in Health and Disease. In Corneal Surgery: Theory Technique and Tissue, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 57–70. [Google Scholar] [CrossRef]
- Meek, K.M.; Knupp, C. Corneal structure and transparency. Prog. Retin. Eye Res. 2015, 49, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Dua, H.S.; Faraj, L.A.; Said, D.G.; Gray, T.; Lowe, J. Human corneal anatomy redefined: A novel pre-descemet’s layer (Dua’s Layer). Ophthalmology 2013, 120, 1778–1785. [Google Scholar] [CrossRef] [PubMed]
- Austin, A.; Lietman, T.; Rose-Nussbaumer, J. Update on the Management of Infectious Keratitis. Ophthalmology 2017, 124, 1678–1689. [Google Scholar] [CrossRef] [PubMed]
- Mohan, R.R.; Kempuraj, D.; D’Souza, S.; Ghosh, A. Corneal stromal repair and regeneration. Prog Retin Eye Res. 2022, 91, 101090. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.C.; Peng, C.H.; Hung, K.H.; Lee, Y.Y.; Lin, T.C.; Jang, S.F.; Liu, J.H.; Chen, Y.T.; Woung, L.C.; Wang, C.Y.; et al. Stem cell therapy for corneal regeneration medicine and contemporary nanomedicine for corneal disorders. Cell Transplant. 2015, 24, 1915–1930. [Google Scholar] [CrossRef]
- Holland, G.; Pandit, A.; Sánchez-Abella, L.; Haiek, A.; Loinaz, I.; Dupin, D.; Gonzalez, M.; Larra, E.; Bidaguren, A.; Lagali, N.; et al. Artificial Cornea: Past, Current, and Future Directions. Front. Med. 2021, 8, 770780. [Google Scholar] [CrossRef]
- Wang, M.; Li, Y.; Wang, H.; Li, M.; Wang, X.; Liu, R.; Zhang, D.; Xu, W. Corneal regeneration strategies: From stem cell therapy to tissue engineered stem cell scaffolds. Biomed. Pharmacother. 2023, 165, 115206. [Google Scholar] [CrossRef]
- Mahdavi, S.S.; Abdekhodaie, M.J.; Mashayekhan, S.; Baradaran-Rafii, A.; Djalilian, A.R. Bioengineering Approaches for Corneal Regenerative Medicine. Tissue Eng. Regen. Med. 2020, 17, 567–593. [Google Scholar] [CrossRef]
- Ahearne, M.; Fernández-Pérez, J.; Masterton, S.; Madden, P.W.; Bhattacharjee, P. Designing Scaffolds for Corneal Regeneration. Adv. Funct. Mater. 2020, 30, 1908996. [Google Scholar] [CrossRef]
- Ahearne, M.; Lynch, A.P. Early Observation of Extracellular Matrix-Derived Hydrogels for Corneal Stroma Regeneration. Tissue Eng Part C Methods 2015, 21, 1059–1069. [Google Scholar] [CrossRef]
- Mozafari, M.; Sefat, F.; Atala, A. Handbook of Tissue Engineering Scaffolds; Elsevier: Amsterdam, The Netherlands, 2019; Volume 2. [Google Scholar]
- Jameson, J.F.; Pacheco, M.O.; Nguyen, H.H.; Phelps, E.A.; Stoppel, W.L. Recent advances in natural materials for corneal tissue engineering. Bioengineering 2021, 8, 161. [Google Scholar] [CrossRef]
- Luo, X.; He, X.; Zhao, H.; Ma, J.; Tao, J.; Zhao, S.; Yan, Y.; Li, Y.; Zhu, S. Research Progress of Polymer Biomaterials as Scaffolds for Corneal Endothelium Tissue Engineering. Nanomaterials 2023, 13, 1976. [Google Scholar] [CrossRef] [PubMed]
- Chi, M.; Yuan, B.; Xie, Z.; Hong, J. The Innovative Biomaterials and Technologies for Developing Corneal Endothelium Tissue Engineering Scaffolds: A Review and Prospect. Bioengineering 2023, 10, 1284. [Google Scholar] [CrossRef]
- Delaey, J.; De Vos, L.; Koppen, C.; Dubruel, P.; Van Vlierberghe, S.; Van den Bogerd, B. Tissue engineered scaffolds for corneal endothelial regeneration: A material’s perspective. Biomaterials Science. R. Soc. Chem. 2022, 10, 2440–2461. [Google Scholar] [CrossRef]
- Nosrati, H.; Ashrafi-Dehkordi, K.; Alizadeh, Z.; Sanami, S.; Banitalebi-Dehkordi, M. Biopolymer-based scaffolds for corneal stromal regeneration: A review. Polim. W Med. 2020, 50, 57–64. [Google Scholar] [CrossRef]
- Fagerholm, P.; Lagali, N.S.; Carlsson, D.J.; Merrett, K.; Griffith, M. Corneal regeneration following implantation of a biomimetic tissue-engineered substitute. Clin. Transl. Sci. 2009, 2, 162–164. [Google Scholar] [CrossRef]
- Tayebi, T.; Baradaran-Rafii, A.; Hajifathali, A.; Rahimpour, A.; Zali, H.; Shaabani, A.; Niknejad, H. Biofabrication of chitosan/chitosan nanoparticles/polycaprolactone transparent membrane for corneal endothelial tissue engineering. Sci. Rep. 2021, 11, 7060. [Google Scholar] [CrossRef]
- Wang, H.Y.; Wei, R.H.; Zhao, S.Z. Evaluation of corneal cell growth on tissue engineering materials as artifi-cial cornea scaffolds. Int. J. Ophthalmol. 2013, 6, 873–878. [Google Scholar] [CrossRef]
- Yan, B.; Hua, Y.; Wang, J.; Shao, T.; Wang, S.; Gao, X.; Gao, J. Surface Modification Progress for PLGA-Based Cell Scaffolds. Polymers 2024, 16, 165. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, É.R.; Nie, L.; Podstawczyk, D.; Allahbakhsh, A.; Ratnayake, J.; Brasil, D.L.; Shavandi, A. Advances in growth factor delivery for bone tissue engineering. Int. J. Mol. Sci. 2021, 22, 903. [Google Scholar] [CrossRef]
- Teimouri, R.; Abnous, K.; Taghdisi, S.M.; Ramezani, M.; Alibolandi, M. Surface modifications of scaffolds for bone regeneration. J. Mater. Res. Technol. 2023, 24, 7938–7973. [Google Scholar] [CrossRef]
- Wang, P.; Sun, Y.; Shi, X.; Shen, H.; Ning, H.; Liu, H. Bioscaffolds embedded with regulatory modules for cell growth and tissue formation: A review. Bioact. Mater. 2021, 6, 1283–1307. [Google Scholar] [CrossRef] [PubMed]
- Jain, P.; Kathuria, H.; Dubey, N. Advances in 3D bioprinting of tissues/organs for regenerative medicine and in-vitro models. Biomaterials 2022, 287, 121639. [Google Scholar] [CrossRef]
- Eshkalak, S.K.; Ghomi, E.R.; Dai, Y.; Choudhury, D.; Ramakrishna, S. The role of three-dimensional printing in healthcare and medicine. Mater. Des. 2020, 194, 108940. [Google Scholar] [CrossRef]
- Amirazad, H.; Dadashpour, M.; Zarghami, N. Application of decellularized bone matrix as a bioscaffold in bone tissue engineering. J. Biol. Eng. 2022, 16, 1. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, H.; Miao, Y.; Xiong, S.; Hu, Y. Recent strategies of collagen-based biomaterials for cartilage repair: From structure cognition to function endowment. J. Leather Sci. Eng. 2022, 4, 11. [Google Scholar] [CrossRef]
- Dave, K.; Gomes, V.G. Interactions at scaffold interfaces: Effect of surface chemistry, structural attributes and bioaffinity. Mater. Sci. Eng. C 2019, 105, 110078. [Google Scholar] [CrossRef]
- Cui, H.; Nowicki, M.; Fisher, J.P.; Zhang, L.G. 3D Bioprinting for Organ Regeneration. Adv. Healthc. Mater. 2017, 6, 1601118. [Google Scholar] [CrossRef]
- Ghiasi, M.; Jadidi, K.; Hashemi, M.; Zare, H.; Salimi, A.; Aghamollaei, H. Application of mesenchymal stem cells in corneal regeneration. Tissue Cell 2021, 73, 101600. [Google Scholar] [CrossRef]
- Mahmood, N.; Suh, T.C.; Ali, K.M.; Sefat, E.; Jahan, U.M.; Huang, Y.; Gilger, B.C.; Gluck, J.M. Induced Pluripotent Stem Cell-Derived Corneal Cells: Current Status and Application. Stem. Cell Rev. Rep. 2022, 18, 2817–2832. [Google Scholar] [CrossRef]
- Zhou, J.; Shi, Y. Mesenchymal stem/stromal cells (MSCs): Origin, immune regulation, and clinical applications. Cell. Mol. Immunol. 2023, 20, 555–557. [Google Scholar] [CrossRef] [PubMed]
- Vattulainen, M.; Ilmarinen, T.; Viheriälä, T.; Jokinen, V.; Skottman, H. Corneal epithelial differentiation of human pluripotent stem cells generates ABCB5+ and ∆Np63α+ cells with limbal cell characteristics and high wound healing capacity. Stem. Cell Res. Ther. 2021, 12, 609. [Google Scholar] [CrossRef] [PubMed]
- Moradi, S.; Mahdizadeh, H.; Šarić, T.; Kim, J.; Harati, J.; Shahsavarani, H.; Greber, B.; Moore, J.B., 4th. Research and therapy with induced pluripotent stem cells (iPSCs): Social, legal, and ethical considerations. Stem. Cell Res.Ther. 2019, 10, 341. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Shan, J.; Chen, X.; Cui, H.; Wen, G.; Yu, Y. Immunogenicity of decellularized extracellular matrix scaffolds: A bottleneck in tissue engineer-ing and regenerative medicine. Biomater. Res. 2023, 27, e399. [Google Scholar] [CrossRef]
- Ansari, A.I.; Sheikh, N.A. Biocompatible Scaffold Based on Silk Fibroin for Tissue Engineering Applications. J. Inst. Eng. Ser. C 2023, 104, 201–217. [Google Scholar] [CrossRef]
- Bhattacharjee, P.; Ahearne, M. Fabrication and biocompatibility of electroconductive silk fibroin/pedot: Pss composites for corneal epithelial regeneration. Polymers 2020, 12, 3028. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Ham, H.W.; Sonh, J.; Gunbayar, M.; Jeffy, R.; Nagarajan, R.; Khatun, M.R.; Noh, I. 3D bioprinting of complex tissue scaffolds with in situ homogeneously mixed algi-nate-chitosan-kaolin bioink using advanced portable biopen. Carbohydr Polym 2023, 317, 121046. [Google Scholar] [CrossRef]
- King, N.M.; Perrin, J. Ethical issues in stem cell research and therapy. Stem Cell Res. Ther. 2014, 5, 85. [Google Scholar] [CrossRef]
- Ghasroldasht, M.M.; Seok, J.; Park, H.S.; Ali, F.B.L.; Al-Hendy, A. Stem Cell Therapy: From Idea to Clinical Practice. Int. J. Mol. Sci. 2022, 23, 2850. [Google Scholar] [CrossRef]
- Hunckler, M.D.; Levine, A.D. Navigating ethical challenges in the development and translation of biomaterials research. Front Bioeng Biotechnol 2022, 10, 949280. [Google Scholar] [CrossRef]
- Bhujel, B.; Oh, S.-H.; Kim, C.-M.; Yoon, Y.-J.; Kim, Y.-J.; Chung, H.-S.; Ye, E.-A.; Lee, H.; Kim, J.-Y. Mesenchymal Stem Cells and Exosomes: A Novel Therapeutic Approach for Corneal Diseases. Int. J. Mol. Sci. 2023, 24, 10917. [Google Scholar] [CrossRef] [PubMed]
- Dou, S.; Liu, X.; Shi, W.; Gao, H. New dawn for keratoconus treatment: Potential strategies for corneal stromal regeneration. Stem Cell Res. Ther. 2023, 14, 317. [Google Scholar] [CrossRef] [PubMed]
- Mansoor, H.; Ong, H.S.; Riau, A.K.; Stanzel, T.P.; Mehta, J.S.; Yam, G.H.F. Current trends and future perspective of mesenchymal stem cells and exosomes in corneal diseases. Int. J. Mol. Sci. 2019, 20, 2853. [Google Scholar] [CrossRef] [PubMed]
- Hatou, S.; Shimmura, S. Advances in corneal regenerative medicine with iPS cells. Jpn J Ophthalmol 2023, 67, 541–545. [Google Scholar] [CrossRef] [PubMed]
- Galindo, S.; de la Mata, A.; López-Paniagua, M.; Herreras, J.M.; Pérez, I.; Calonge, M.; Nieto-Miguel, T. Subconjunctival injection of mesenchymal stem cells for corneal failure due to limbal stem cell deficiency: State of the art. Stem Cell Res. Ther. 2021, 12, 60. [Google Scholar] [CrossRef]
- Lam, E.H.Y.; Yu, F.; Zhu, S.; Wang, Z. 3D Bioprinting for Next-Generation Personalized Medicine. Int. J. Mol. Sci. 2023, 24, 6357. [Google Scholar] [CrossRef]
- Jamieson, C.; Keenan, P.; Kirkwood, D.; Oji, S.; Webster, C.; Russell, K.A.; Koch, T.G. A Review of Recent Advances in 3D Bioprinting with an Eye on Future Regenerative Therapies in Veterinary Medicine. Front. Vet. Sci. 2021, 7, 584193. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, Y.; Zhang, S.; He, F.; Shi, T.; Li, J.; Wang, Z.; Jia, J. Exosome-based bioinks for 3D bioprinting applications in tissue engineering and regenerative medicine. Int. J. Bioprinting 2023, 9, 110–131. [Google Scholar] [CrossRef]
- Zhang, B.; Xue, Q.; Li, J.; Ma, L.; Yao, Y.; Ye, H.; Cui, Z.; Yang, H. 3D bioprinting for artificial cornea: Challenges and perspectives. Med. Eng. Phys. 2019, 71, 68–78. [Google Scholar] [CrossRef]
Material | Biocompatibility | Mechanical Strength | Transparency | Degradation Rate |
---|---|---|---|---|
Collagen | High | Moderate | High | Moderate |
Gelatin | High | Moderate | High | High |
Chitosan | Moderate | High | Moderate | Moderate |
Hyaluronic Acid | High | Low | High | High |
Fibrin | High | Moderate | High | High |
Silk Fibroin | High | High | Moderate | Moderate |
Alginate | High | Low | Moderate | High |
PCL | High | High | Moderate | Low |
PEG | High | Low | High | High |
PGA | High | High | Low | High |
PLGA | High | High | Moderate | High |
Technique | Advantages | Limitations |
---|---|---|
Electrospinning | Mimics ECM structure [29,31] | Difficulty in producing thick, 3D scaffolds [29,31] |
High surface area and porosity, enhances cell adhesion/proliferation [29,31] | Limited mechanical strength [30,32] | |
Incorporates bioactive molecules, antimicrobial properties [8,30] | Potential for bead formation affecting uniformity [8] | |
3D Bioprinting | Precise cell/biomaterial arrangement, mimics natural tissue [30,31] | High cost and complexity [30,31] |
Creates multilayered structures, multiple cell types [30,31] | Limited resolution for fine structures [29] | |
Incorporates growth factors/bioactive molecules [29] | Slow printing speed [29] | |
Hydrogel | High water content, supports cell encapsulation/delivery [8,30] | Poor mechanical properties [30,31] |
Flexible design with natural/synthetic polymers [30] | Rapid degradation rates [31] | |
Injectable, forms robust scaffold in situ [8,29] | Swelling/contraction affecting stability [29] | |
Decellularization | Produces natural ECM scaffolds, reduced immunogenicity [29,30] | Variability in tissue quality [29,30] |
Maintains key ECM components for cell adhesion/function [30] | Risk of incomplete cell removal [31] | |
Potential for repopulation with patient-derived cells [8,30] | Complex, time-consuming process [30] | |
Nanofabrication | Nanoscale structures enhance cell interactions/nutrient diffusion [31] | High cost, technical complexity [30] |
Techniques like soft lithography, solvent casting for controlled porosity [8,31] | Potential for contaminants during fabrication [31] | |
Advanced materials like graphene enhance properties [8] | Limited by material availability and specialized equipment [8] |
Study | Scaffold Type | Functionalization Methods | Cell Type(s) Used | Key Findings |
---|---|---|---|---|
Fagerholm P. et al. [18] | Collagen-based | None | Human corneal epithelial cells | Restored vision in animal models, good integration with host tissue |
Nosrati H. et al. [17] | Gelatin-based | RGD peptides | Corneal epithelial cells | Improved cell adhesion and proliferation |
Fagerholm P. et al. [18] | Decellularized porcine | Optimized SDS protocol | None | Maintained mechanical properties and transparency of decellularized corneal scaffolds |
Tayebi, T et al. [19] | Decellularized porcine | Enzymatic (trypsin and dispase) | None | Retained critical ECM components essential for cell attachment and function |
Yan, B et al. [21] | Collagen-based | None | MSCs | Improved wound healing and reduced scarring in a model of corneal alkali burn |
Yu, X et al. [28] | Collagen-based | Combined chemical and enzymatic approach | None | Improved decellularization, retaining critical ECM components for tissue engineering |
Teimouri, R et al. [23] | Poly(ethylene glycol)-based | None | Human corneal endothelial cells | Biodegradable and biocompatible hydrogel films for regeneration of corneal endothelium |
Fagerholm P. et al. [18] | Amniotic membrane-based | None | Keratocytes | A novel tissue-engineered corneal stromal equivalent |
Ahearne, M. et al. [10] | Silk fibroin-based | None | Human corneal endothelial cells | Human corneal endothelial cell growth on a silk fibroin membrane |
Tayebi et al. [19] | Chitosan-based | None | Various cell types | Supports cell attachment, proliferation, and bone regeneration |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Visalli, F.; Fava, F.; Capobianco, M.; Musa, M.; D’Esposito, F.; Russo, A.; Scollo, D.; Longo, A.; Gagliano, C.; Zeppieri, M. Innovative Bioscaffolds in Stem Cell and Regenerative Therapies for Corneal Pathologies. Bioengineering 2024, 11, 859. https://doi.org/10.3390/bioengineering11090859
Visalli F, Fava F, Capobianco M, Musa M, D’Esposito F, Russo A, Scollo D, Longo A, Gagliano C, Zeppieri M. Innovative Bioscaffolds in Stem Cell and Regenerative Therapies for Corneal Pathologies. Bioengineering. 2024; 11(9):859. https://doi.org/10.3390/bioengineering11090859
Chicago/Turabian StyleVisalli, Federico, Federico Fava, Matteo Capobianco, Mutali Musa, Fabiana D’Esposito, Andrea Russo, Davide Scollo, Antonio Longo, Caterina Gagliano, and Marco Zeppieri. 2024. "Innovative Bioscaffolds in Stem Cell and Regenerative Therapies for Corneal Pathologies" Bioengineering 11, no. 9: 859. https://doi.org/10.3390/bioengineering11090859
APA StyleVisalli, F., Fava, F., Capobianco, M., Musa, M., D’Esposito, F., Russo, A., Scollo, D., Longo, A., Gagliano, C., & Zeppieri, M. (2024). Innovative Bioscaffolds in Stem Cell and Regenerative Therapies for Corneal Pathologies. Bioengineering, 11(9), 859. https://doi.org/10.3390/bioengineering11090859