Hydrogen Peroxide-Assisted Hydrothermal Synthesis of BiFeO3 Microspheres and Their Dielectric Behavior
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Method
2.3. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ma, Y.; Lv, P.; Duan, F.; Sheng, J.; Lu, S.; Zhu, H.; Du, M.; Chen, M. Direct Z-scheme Bi2S3/BiFeO3 heterojunction nanofibers with enhanced photocatalytic activity. J. Alloys Compd. 2020, 834, 155158. [Google Scholar] [CrossRef]
- Carvalho, T.T.; Manjunath, B.; Pérez de la Cruz, J.; Amaral, V.S.; Fernandes, J.R.A.; Almeida, A.; Moreira, J.A.; Vilarinho, R.; Tavares, P.B. Enhancement of resistivity and magnetization of Bi1-xLaxFe1-yMnyO3 ceramics by composition optimization. J. Alloys Compd. 2020, 835, 155404. [Google Scholar] [CrossRef]
- Liu, J.; Niu, M.; Wang, L.; Peng, C.; Xu, D. Effect of tuning A/B substitutions on multiferroic characteristics of BiFeO3-based ternary system ceramics. J. Mag. Mag. Mater. 2020, 510, 166928–166937. [Google Scholar] [CrossRef]
- Wang, J.; Neaton, J.B.; Zheng, H.; Nagarajan, V.; Ogale, S.B.; Liu, B.; Viehland, D.; Vaithyanathan, V.; Schlom, D.G.; Waghmare, U.V.; et al. Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures. Science 2003, 299, 1719–1722. [Google Scholar] [CrossRef] [PubMed]
- Lou, J.; Maggard, P.A. Hydrothermal Synthesis and Photocatalytic Activities of SrTiO3-Coated Fe2O3 and BiFeO3. Adv. Mater. 2006, 18, 514–517. [Google Scholar]
- Li, S.; Lin, Y.H.; Zhang, B.P.; Li, J.F.; Nan, C.W.J. BiFeO3/TiO2 core-shell structured nanocomposites as visible-active photocatalysts and their optical response mechanism. Appl. Phys. 2009, 105, 054310. [Google Scholar] [CrossRef]
- Gao, F.; Yuan, Y.; Wang, K.F.; Chen, X.Y.; Chen, F.; Liu, J.M.; Ren, Z.F. Preparation and photoabsorption characterization of nanowires. Appl. Phys. Lett. 2006, 89, 102506. [Google Scholar] [CrossRef]
- Joshi, U.A.; Jang, J.S.; Borse, P.H.; Lee, J.S. Microwave synthesis of single-crystalline perovskite BiFeO3 nanocubes for photoelectrode and photocatalytic applications. Appl, Phys. Lett. 2008, 92, 242106. [Google Scholar] [CrossRef]
- Tahir, M.; Riaz, S.; Khan, U.; Hussain, S.S.; Nairan, A.; Akbar, A.; Saleem, M.; Atiq, S.; Naseem, S. Enhanced structural and magnetic ordering in as-synthesized Ca doped bismuth iron oxide nanoceramics. J. Alloys Compd. 2020, 832, 154725. [Google Scholar] [CrossRef]
- Auromun, K.; Choudhary, R.N.P. Structural, Dielectric and Electrical investigation of Zirconium and Tin modified 0.5BFO-0.5BST. Mater. Chem. Phys. 2020, 250, 123033. [Google Scholar] [CrossRef]
- Selbach, M.; Einarsrud, M.-A.; Grande, T. On the Thermodynamic Stability of BiFeO3. Chem. Mater. 2009, 21, 169–173. [Google Scholar] [CrossRef]
- Achenbach, G.D.; James, W.J.; Gerson, R. Preparation of Single-Phase Polycrystalline BiFeO3. J. Am. Ceram. Soc. 1967, 50, 437. [Google Scholar] [CrossRef]
- Valant, M.; Axelsson, A.K.; Alford, N. Peculiarities of a Solid-State Synthesis of Multiferroic Polycrystalline BiFeO3. Chem. Mater. 2007, 19, 5431–5436. [Google Scholar] [CrossRef]
- Shetty, S.; Palkar, V.R.; Pinto, R. Size effect study in magnetoelectric BiFeO3 system. J. Phys. 2002, 58, 1027–1030. [Google Scholar] [CrossRef]
- Kim, J.K.; Kim, S.S.; Kim, W.J. Sol–Gel synthesis and properties of multiferroic BiFeO3. Mater. Lett. 2005, 59, 4006–4009. [Google Scholar] [CrossRef]
- Chen, C.; Cheng, J.; Yu, S.; Che, L.; Meng, Z. Hydrothermal synthesis of perovskite bismuth ferrite crystallites. J. Cryst. Growth 2006, 291, 135–139. [Google Scholar] [CrossRef]
- Tabares-Munoz, C.; Rivera, J.P.; Monnier, A.; Schmid, H. Measurement of the quadratic magnetoelectric effect on single crystalline BiFeO3. J. Appl. Phys. Suppl. 1985, 24, 1051–1053. [Google Scholar] [CrossRef] [Green Version]
- Palkar, V.R.; John, J.; Pinto, R. Observation of saturated polarization and dielectric anomaly in magnetoelectric thin films. Appl. Phys. Lett. 2002, 80, 1628–1631. [Google Scholar] [CrossRef]
- Iakovlev, S.; Solterbeck, C.H.; Kuhnke, M.; Es-Souni, M. Multiferroic thin films processed via chemical solution deposition: Structural and electrical characterization. J. Appl. Phys. 2005, 97, 094901. [Google Scholar] [CrossRef]
- Fabienne, R.; Michael, T.; Thorsten, B.; Hans, H.; Peter, D.J.; Josef, R.; Juan, C.; Miguel, F. Particle density determination of pellets and briquettes. Biomass Bioenergy 2006, 30, 954–963. [Google Scholar]
- Mazumder, R.; Chakravarty, D.; Bhattacharya, D.; Sen, A. Spark plasma sintering of BiFeO3. Mater. Res. Bull. 2009, 44, 555–559. [Google Scholar] [CrossRef]
- Fang, T.T.; Ting, C.C.; Miao, J.H. A Template-Free Synthesis of the One-Dimensional Nanostructure of Multiferroic BiFeO3. J. Am. Ceram. Soc. 2009, 92, 3065–3069. [Google Scholar] [CrossRef]
- Xiaobo, H.; Lian, G. Synthesis of pure phase BiFeO3 powders in molten alkali metal nitrates. Ceram. Int. 2009, 35, 975–978. [Google Scholar]
- Bondioli, F.; Bonamartini, C.A.; Leonelli, C.; Manfredini, T. Nanosized CeO2 powders obtained by flux method. Mater. Res. Bull. 1999, 34, 2159–2166. [Google Scholar] [CrossRef]
- Du, Y.; Cheng, Z.X.; Dou, S.X.; Shahbazi, M.; Wang, X.L. Enhancement of magnetization and dielectric properties of chromium-doped BiFeO3 with tunable morphologies. Thin Solid Film. 2010, 518, e5–e8. [Google Scholar] [CrossRef]
- Chang, F.; Zhang, N.; Yang, F.; Wang, S.; Song, G. Effect of Cr substitution on the structure and electrical properties of BiFeO3 ceramics. J. Phys. D 2007, 40, 7799–7803. [Google Scholar] [CrossRef]
- Liu, H.; Liu, Z.; Liu, Q.; Yao, K. Ferroelectric properties of BiFeO3 films grown by sol–gel process. Thin Solid Films 2006, 500, 105–109. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Syed, A.; Siddaramanna, A.; Elgorban, A.M.; Hakeem, D.A.; Nagaraju, G. Hydrogen Peroxide-Assisted Hydrothermal Synthesis of BiFeO3 Microspheres and Their Dielectric Behavior. Magnetochemistry 2020, 6, 42. https://doi.org/10.3390/magnetochemistry6030042
Syed A, Siddaramanna A, Elgorban AM, Hakeem DA, Nagaraju G. Hydrogen Peroxide-Assisted Hydrothermal Synthesis of BiFeO3 Microspheres and Their Dielectric Behavior. Magnetochemistry. 2020; 6(3):42. https://doi.org/10.3390/magnetochemistry6030042
Chicago/Turabian StyleSyed, Asad, Ashoka Siddaramanna, Abdallah M. Elgorban, D. A. Hakeem, and G. Nagaraju. 2020. "Hydrogen Peroxide-Assisted Hydrothermal Synthesis of BiFeO3 Microspheres and Their Dielectric Behavior" Magnetochemistry 6, no. 3: 42. https://doi.org/10.3390/magnetochemistry6030042
APA StyleSyed, A., Siddaramanna, A., Elgorban, A. M., Hakeem, D. A., & Nagaraju, G. (2020). Hydrogen Peroxide-Assisted Hydrothermal Synthesis of BiFeO3 Microspheres and Their Dielectric Behavior. Magnetochemistry, 6(3), 42. https://doi.org/10.3390/magnetochemistry6030042