Previous Issue
Volume 7, March
 
 

Ceramics, Volume 7, Issue 2 (June 2024) – 18 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
9 pages, 1139 KiB  
Article
Effect of Acid Surface Treatments on the Shear Bond Strength of Metal Bracket to Zirconia Ceramics
by Punchanit Wongrachit, Bancha Samruajbenjakun, Boonlert Kukiattrakoon, Tanapat Jearanai, Supontep Teerakanok and Pannapat Chanmanee
Ceramics 2024, 7(2), 689-697; https://doi.org/10.3390/ceramics7020045 - 14 May 2024
Viewed by 237
Abstract
The surface treatment of zirconia prior to bonding remains controversial and unclear. This study aimed to compare the shear bond strength (SBS) of metal brackets to zirconia under surface treatments with either 4% HF or 37% PA in both immediate loading (IML) and [...] Read more.
The surface treatment of zirconia prior to bonding remains controversial and unclear. This study aimed to compare the shear bond strength (SBS) of metal brackets to zirconia under surface treatments with either 4% HF or 37% PA in both immediate loading (IML) and artificial aging by thermocycling (TMC). Methods: Eighty-four zirconia were randomly assigned to six groups based on the surface treatment and artificial aging by TMC: (1) No surface treatment (NT); (2) NT + TMC; (3) HF (4% HF for 2 min); (4) HF + TMC; (5) PA (37% PA for 2 min); and (6) PA + TMC. After bracket bonding, only the TMC groups were thermocycled for 5000 cycles. The SBS and adhesive remnant index (ARI) of all groups were analyzed (p < 0.01). Results: TMC significantly lowered the SBS more than the IML in all acid surface treatment groups (p < 0.01). The ARI score after TMC was significantly higher than the IML in all acid surface treatment groups (p < 0.001). No significant differences in the SBS values or ARI scores were observed among the surface treatments (p > 0.01). Conclusions: Two-minute simple etching methods, using either 4% HF or 37% PA, showed an insufficient SBS of metal orthodontic brackets to zirconia after TMC. Full article
Show Figures

Figure 1

9 pages, 3570 KiB  
Article
Nanosized Tungsten Powder Synthesized Using the Nitridation–Decomposition Method
by Qing-Yin He, Ben-Li Zhao and Shi-Kuan Sun
Ceramics 2024, 7(2), 680-688; https://doi.org/10.3390/ceramics7020044 - 11 May 2024
Viewed by 254
Abstract
A facile, one-step nitridation–decomposition method was developed for the synthesis of nanosized tungsten powder with a high surface area. This approach involved the nitridation of WO3 in NH3 to form mesoporous tungsten nitride (W2N), followed by in situ decomposition [...] Read more.
A facile, one-step nitridation–decomposition method was developed for the synthesis of nanosized tungsten powder with a high surface area. This approach involved the nitridation of WO3 in NH3 to form mesoporous tungsten nitride (W2N), followed by in situ decomposition of W2N to directly yield single-phase W particles. The phase and morphology evolution during the synthesis were systematically investigated and compared with the carbothermal reduction of WO3. It was revealed that powdered tungsten product with single-phase particles was obtained after nitridation at 800 °C combined with in situ decomposition at 1000 °C, displaying an average particle size of 15 nm and a large specific surface area of 6.52 m2/g. Furthermore, the proposed method avoided the limitations associated with intermediate phase formation and coarsening observed in carbothermal reduction, which resulted in the growth of W particles up to ~4.4 μm in size. This work demonstrates the potential of the nitridation–decomposition approach for the scalable and efficient synthesis of high-quality, fine-grained tungsten powder. Full article
(This article belongs to the Special Issue Advances in Electronic Ceramics)
Show Figures

Figure 1

28 pages, 7118 KiB  
Review
Ceramic Matrix Composites: Classifications, Manufacturing, Properties, and Applications
by Shriya Shrivastava, Dipen Kumar Rajak, Tilak Joshi, Dwesh K. Singh and D. P. Mondal
Ceramics 2024, 7(2), 652-679; https://doi.org/10.3390/ceramics7020043 - 10 May 2024
Viewed by 931
Abstract
Ceramic matrix composites (CMCs) are a significant advancement in materials science and engineering because they combine the remarkable characteristics of ceramics with the strength and toughness of fibers. With their unique properties, which offer better performance and endurance in severe settings, these advanced [...] Read more.
Ceramic matrix composites (CMCs) are a significant advancement in materials science and engineering because they combine the remarkable characteristics of ceramics with the strength and toughness of fibers. With their unique properties, which offer better performance and endurance in severe settings, these advanced composites have attracted significant attention in various industries. At the same time, lightweight ceramic matrix composites (LCMCs) provide an appealing alternative for a wide range of industries that require materials with excellent qualities such as high-temperature stability, low density, corrosion resistance, and excellent mechanical performance. CMC uses will expand as production techniques and material research improve, revolutionizing aerospace, automotive, and other industries. The effectiveness of CMCs primarily relies on the composition of their constituent elements and the methods employed in their manufacturing. Therefore, it is crucial to explore the functional properties of various global ceramic matrix reinforcements, their classifications, and the manufacturing techniques used in CMC fabrication. This study aims to overview a diverse range of CMCs reinforced with primary fibers, including their classifications, manufacturing techniques, functional properties, significant applications, and global market size. Full article
(This article belongs to the Special Issue Advances in Ceramics, 2nd Edition)
Show Figures

Figure 1

13 pages, 3419 KiB  
Article
Utilization of Waste Marble and Bi2O3-NPs as a Sustainable Replacement for Lead Materials for Radiation Shielding Applications
by Khalid Alsafi, Mohamed A. El-Nahal, Wafa M. Al-Saleh, Haifa M. Almutairi, Esraa H. Abdel-Gawad and Mohamed Elsafi
Ceramics 2024, 7(2), 639-651; https://doi.org/10.3390/ceramics7020042 - 7 May 2024
Viewed by 391
Abstract
In an attempt to reutilize marble waste, a new approach is presented in the current study to promote its use in the field of shielding against ionizing radiation. In this study, we aimed to develop a novel and sustainable/eco-friendly lead-free radiation shielding material [...] Read more.
In an attempt to reutilize marble waste, a new approach is presented in the current study to promote its use in the field of shielding against ionizing radiation. In this study, we aimed to develop a novel and sustainable/eco-friendly lead-free radiation shielding material by improving artificial marble (AM) produced from marble waste combined with polyester by reinforcing it with bismuth oxide (Bi2O3) nanoparticles. Six samples of AM samples doped with different concentrations (0%, 5%, 10%, 15%, 20%, and 25%) of Bi2O3 nanoparticles were prepared. The linear attenuation coefficient (LAC) values were measured experimentally through the narrow beam method at different energies (0.0595 MeV, 0.6617 MeV, 1.1730 MeV, and 1.330 MeV) for all samples with various concentrations of Bi2O3. Radiological shielding parameters such as half value layer (HVL), tenth-value layer (TVL), and radiation shielding efficiency (RSE) were estimated and compared for all the different samples. The results prove that increasing the concentration of Bi2O3 leads to the enhancement of the radiation shielding properties of the AM as a shielding material. It was observed that as the energy increases, the efficiency of the samples falls. High energy dependence was found when calculating the HVL and TVL values of the samples, which increased with increases in the energy of the incident photons. A comparison between the sample with the most efficient gamma radiation attenuation capability (AM-25%), concrete, and lead was conducted, and a discussion regarding their radiation shielding properties is presented herein. The results show that the AM-25% sample is superior to the ordinary concrete over all the studied energy ranges, as evidenced by its significantly lower HVLs. On the contrary, lead is superior to the AM-25% sample over all the studied energy ranges owing to its unbeatable density as a shielding material. Overall, this new type of artificial marble has the potential to be used as a radiation shielding material at low- to medium-gamma energy regions, specifically in medical imaging and radiation therapy. Full article
Show Figures

Figure 1

14 pages, 1744 KiB  
Article
Effect of Processing Routes on Physical and Mechanical Properties of Advanced Cermet System
by Vikas Verma, Margarita García-Hernández, Jorge Humberto Luna-Domínguez, Edgardo Jonathan Suárez-Domínguez, Samuel Monteiro Júnior and Ronaldo Câmara Cozza
Ceramics 2024, 7(2), 625-638; https://doi.org/10.3390/ceramics7020041 - 2 May 2024
Viewed by 647
Abstract
The present research focuses on the effects of different processing routes on the physical and mechanical properties of nano Ti(CN)-based cermets with metallic binders. Tungsten carbide (WC) is added as a secondary carbide and Ni-Co is added as a metallic binder to nano [...] Read more.
The present research focuses on the effects of different processing routes on the physical and mechanical properties of nano Ti(CN)-based cermets with metallic binders. Tungsten carbide (WC) is added as a secondary carbide and Ni-Co is added as a metallic binder to nano Ti(CN)-based cermet processed via conventional and spark plasma sintering (SPS). A systematic comparison of the composition and sintering conditions for different cermets’ systems was carried out to design novel composition and sintering conditions. Nano TiCN powder was prepared by 30 h of ball milling. The highest density of >98.5% was achieved for the SPS-processed cermets sintered at 1200 °C and 1250 °C for 3 min at 60 MPa of pressure in comparison to the conventionally sintered cermets at 1400 °C for 1 h with a two-stage compaction process—uniaxially at 150 MPa and isostatically at 300 MPa of pressure. Comparative X-ray diffraction (XRD) analysis of the milled powders at different time intervals was performed to understand the characteristics of the as-received and milled powders. Peak broadening was observed after 5 h of ball milling, and it increased to 30 hr. Also, peak broadening and a refined carbide size was observed in the XRD and scanning electron microscope (SEM) micrographs of the SPS-processed cermet. Transmission electron microscope (TEM) analysis of the milled powder showed that its internal structure had a regular periodic arrangement of planes. SEM base scattered electron (BSE) images of all the cermets primarily showed three major microstructural phases of the core–rim–binder with black, grey, and white contrast, respectively. With the present sintering conditions, a high hardness of ~16 GPa and a fracture toughness of ~9 MPa m1/2 were obtained for SPS-processed cermets sintered at higher temperatures. Full article
Show Figures

Figure 1

18 pages, 4897 KiB  
Article
Enhancing Transparency in Non-Cubic Calcium Phosphate Ceramics: Effect of Starting Powder, LiF Doping, and Spark Plasma Sintering Parameters
by Kacper Albin Prokop, Sandrine Cottrino, Vincent Garnier, Gilbert Fantozzi, Yannick Guyot, Georges Boulon and Małgorzata Guzik
Ceramics 2024, 7(2), 607-624; https://doi.org/10.3390/ceramics7020040 - 30 Apr 2024
Viewed by 496
Abstract
Our objective is to achieve a new good-quality and mechanically durable high-transparency material that, when activated by rare earth ions, can be used as laser sources, scintillators, or phosphors. The best functional transparent ceramics are formed from high-symmetry systems, mainly cubic. Considering hexagonal [...] Read more.
Our objective is to achieve a new good-quality and mechanically durable high-transparency material that, when activated by rare earth ions, can be used as laser sources, scintillators, or phosphors. The best functional transparent ceramics are formed from high-symmetry systems, mainly cubic. Considering hexagonal hydroxyapatite, which shows anisotropy, the particle size of the initial powder is extremely important and should be of the order of several tens of nanometers. In this work, transparent micro-crystalline ceramics of non-cubic Ca10(PO4)6(OH)2 calcium phosphate were fabricated via Spark Plasma Sintering (SPS) from two types of nanopowders i.e., commercially available (COM. HA) and laboratory-made (LAB. HA) via the hydrothermal (HT) protocol. Our study centered on examining how the quality of sintered bodies is affected by the following parameters: the addition of LiF sintering agent, the temperature during the SPS process, and the quality of the starting nanopowders. The phase purity, microstructure, and optical transmittance of the ceramics were investigated to determine suitable sintering conditions. The best optical ceramics were obtained from LAB. HA nanopowder with the addition of 0.25 wt.% of LiF sintered at 1000 °C and 1050 °C. Full article
(This article belongs to the Special Issue Transparent Ceramics—a Theme Issue in Honor of Dr. Adrian Goldstein)
Show Figures

Graphical abstract

11 pages, 2900 KiB  
Communication
Experimental Design of the Adhesion between a PEI/Glass Fiber Composite and the AA1100 Aluminum Alloy with Oxide Coating Produced via Plasma Electrolytic Oxidation (PEO)
by Rafael Resende Lucas, Luis Felipe Barbosa Marques, Luis Rogerio de Oliveira Hein, Edson Cocchieri Botelho and Rogério Pinto Mota
Ceramics 2024, 7(2), 596-606; https://doi.org/10.3390/ceramics7020039 - 29 Apr 2024
Viewed by 437
Abstract
In this study, the AA1100 aluminum alloy underwent the plasma electrolytic oxidation (PEO) process to enhance its adhesion to a thermoplastic composite of polyetherimide (PEI) reinforced with glass fiber, following ASTM D1002:10 standards. A 23 factorial design was employed, varying three parameters [...] Read more.
In this study, the AA1100 aluminum alloy underwent the plasma electrolytic oxidation (PEO) process to enhance its adhesion to a thermoplastic composite of polyetherimide (PEI) reinforced with glass fiber, following ASTM D1002:10 standards. A 23 factorial design was employed, varying three parameters in the oxidation process: immersion time, applied electric potential, and electrolyte concentration (Na2B4O7). The joining of aluminum and thermoplastic composite samples was achieved through oxy-fuel welding (OFW), using oxygen and acetylene gases. For the characterization of the joined samples, a universal tensile testing machine was utilized with a displacement speed of 1.5 mm/min. The analysis of the oxide coating involved scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and Fourier transform infrared spectroscopy (FT-IR). Through variance analysis, it was determined that the statistical model encompasses approximately 80% of the variability in the adhesion process between materials. An improvement of up to 104% in adhesion between the materials was observed with the process, indicating an effective bond due to the presence of the thermoplastic matrix in the treated aluminum sample. This improvement is attributed to the morphology of the oxide coating, resembling corals, with micro-pores and recesses that facilitated mechanical anchoring. Full article
Show Figures

Graphical abstract

17 pages, 8091 KiB  
Article
Hot Corrosion Behavior of Plasma-Sprayed Gd2Zr2O7/YSZ Functionally Graded Thermal Barrier Coatings
by Rajasekaramoorthy Manogaran, Karthikeyan Alagu, Anderson Arul, Anandh Jesuraj, Dinesh Kumar Devarajan, Govindhasamy Murugadoss and Kamalan Kirubaharan Amirtharaj Mosas
Ceramics 2024, 7(2), 579-595; https://doi.org/10.3390/ceramics7020038 - 29 Apr 2024
Viewed by 521
Abstract
The development of advanced thermal barrier coating (TBC) materials with better hot corrosion resistance, phase stability, and residual stresses is an emerging research area in the aerospace industry. In the present study, four kinds of TBCs, namely, single-layer yttria-stabilized zirconia (YSZ), single-layer gadolinium [...] Read more.
The development of advanced thermal barrier coating (TBC) materials with better hot corrosion resistance, phase stability, and residual stresses is an emerging research area in the aerospace industry. In the present study, four kinds of TBCs, namely, single-layer yttria-stabilized zirconia (YSZ), single-layer gadolinium zirconate (GZ), bilayer gadolinium zirconate/yttria-stabilized zirconia (YSZ/GZ), and a multilayer functionally graded coating (FGC) of YSZ and GZ, were deposited on NiCrAlY bond-coated nickel-based superalloy (Inconel 718) substrates using the atmospheric plasma spray technique. The hot corrosion behavior of the coatings was tested by applying a mixture of Na2SO4 and V2O5 onto the surface of TBC, followed by isothermal heat treatment at 1273 K for 50 h. The characterization of the corroded samples was performed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) to identify physical and chemical changes in the coatings. GIXRD was used to analyze the residual stresses of the coatings. Residual stress in the FGC coating was found to be −15.2 ± 10.6 MPa. The wear resistance of TBCs is studied using a linear reciprocating tribometer, and the results indicate that gadolinium zirconate-based TBCs showed better performance when deposited in bilayer and multilayered functionally graded TBC systems. The wear rate of as-coated FGC coatings was determined to be 2.90 × 10−4 mm3/Nm, which is lower than the conventional YSZ coating. Full article
(This article belongs to the Special Issue Research Progress in Ceramic Coatings)
Show Figures

Figure 1

17 pages, 7052 KiB  
Article
Ultra-Broadband Plasmon Resonance in Gold Nanoparticles Precipitated in ZnO-Al2O3-SiO2 Glass
by Georgiy Shakhgildyan, Leon Avakyan, Grigory Atroshchenko, Maxim Vetchinnikov, Alexandra Zolikova, Elena Ignat’eva, Mariam Ziyatdinova, Elena Subcheva, Lusegen Bugaev and Vladimir Sigaev
Ceramics 2024, 7(2), 562-578; https://doi.org/10.3390/ceramics7020037 - 25 Apr 2024
Viewed by 456
Abstract
Optical materials with a tunable localized surface plasmon resonance (LSPR) are of great interest for applications in photonics and optoelectronics. In the present study, we explored the potential of generating an LSPR band with an ultra-broad range of over 1000 nm in gold [...] Read more.
Optical materials with a tunable localized surface plasmon resonance (LSPR) are of great interest for applications in photonics and optoelectronics. In the present study, we explored the potential of generating an LSPR band with an ultra-broad range of over 1000 nm in gold nanoparticles (NPs), precipitated through a thermal treatment in ZnO-Al2O3-SiO2 glass. Using optical absorption spectroscopy, we demonstrated that the LSPR band’s position and shape can be finely controlled by varying the thermal treatment route. Comprehensive methods including Raman spectroscopy, X-ray diffraction, and high-resolution transmission electron microscopy were used to study the glass structure, while computational approaches were used for the theoretical description of the absorption spectra. The obtained results allowed us to suggest a scenario responsible for an abnormal LSPR band broadening that includes a possible interparticle plasmonic coupling effect taking place during the liquid–liquid phase separation of the heat-treated glass. The formation of gold NPs with an ultra-broad LSPR band in glasses holds promise for sensitizing rare earth ion luminescence for new photonics devices. Full article
(This article belongs to the Special Issue Innovative Manufacturing Processes of Silicate Materials)
Show Figures

Figure 1

15 pages, 2645 KiB  
Article
Study of the Surface-Layer Softening Effects in xLi2ZrO3–(1−x)Li4SiO4 Ceramics under Irradiation with He2+ Ions
by Dmitriy I. Shlimas, Daryn B. Borgekov, Kayrat K. Kadyrzhanov, Artem L. Kozlovskiy and Maxim V. Zdorovets
Ceramics 2024, 7(2), 547-561; https://doi.org/10.3390/ceramics7020036 - 16 Apr 2024
Viewed by 681
Abstract
The study investigates alterations in the mechanical and thermophysical properties of ceramics composed of xLi2ZrO3–(1−x)Li4SiO4 as radiation damage accumulates, mainly linked to helium agglomeration in the surface layer. This research is motivated by the potential to [...] Read more.
The study investigates alterations in the mechanical and thermophysical properties of ceramics composed of xLi2ZrO3–(1−x)Li4SiO4 as radiation damage accumulates, mainly linked to helium agglomeration in the surface layer. This research is motivated by the potential to develop lithium-containing ceramics characterized by exceptional strength properties and a resistance to the accumulation of radiation damage and ensuing deformation distortions in the near-surface layer. The study of the radiation damage accumulation processes in the near-surface layer was conducted through intense irradiation of ceramics using He2+ ions at a temperature of 700 °C, simulating conditions closely resembling operation conditions. Following this, a correlation between the accumulation of structural modifications (value of atomic displacements) and variations in strength and thermophysical characteristics was established. During the research, it was observed that two-component ceramics exhibit significantly greater resistance to external influences and damage accumulation related to radiation exposure compared to their single-component counterparts. Furthermore, the composition that provides the highest resistance to softening in two-component ceramics is an equal ratio of the components of 0.5Li2ZrO3–0.5Li4SiO4 ceramics. Full article
Show Figures

Figure 1

17 pages, 6794 KiB  
Article
Effect of Thermal Cycling or Simulated Gastric Acid on the Surface Characteristics of Dental Ceramic Materials
by Panagiotis Pandoleon, Katia Sarafidou, Georgia K. Pouroutzidou, Anna Theocharidou, George A. Zachariadis and Eleana Kontonasaki
Ceramics 2024, 7(2), 530-546; https://doi.org/10.3390/ceramics7020035 - 15 Apr 2024
Viewed by 664
Abstract
(1) Background: The presence of various dental ceramic materials with different chemical compositions complicates clinicians’ decision making, especially in cases with a highly acidic environment appearing in patients suffering from gastroesophageal reflux disease or other eating disorders. Thermal alterations in the oral cavity [...] Read more.
(1) Background: The presence of various dental ceramic materials with different chemical compositions complicates clinicians’ decision making, especially in cases with a highly acidic environment appearing in patients suffering from gastroesophageal reflux disease or other eating disorders. Thermal alterations in the oral cavity can also affect surface structure and roughness, resulting in variations in both degradation mechanisms and/or bacteria adhesion. The aim of the present in vitro study was to evaluate the effect of thermal cycling and exposure to simulated gastric acid on the surface roughness of different ceramics; (2) Methods: Five groups of different ceramics were utilized, and twenty specimens were fabricated for each group. Specimens were either thermocycled for 10,000 cycles in distilled water or immersed in simulated gastric acid for 91 h. The evaluation of surface roughness was performed with optical profilometry, while scanning electron microscopy, X-ray diffraction analysis and inductively coupled plasma atomic emission spectroscopy were also performed; (4) Conclusions: Based on the combination of the surface roughness profile and structural integrity, zirconia specimens presented the smallest changes after immersion in simulated gastric acid followed by lithium disilicate materials. Zirconia-reinforced lithium silicate ceramic presented the most notable changes in microstructure and roughness after both treatments. Full article
Show Figures

Figure 1

14 pages, 6859 KiB  
Article
Effect of B2O3 and Basic Oxides on Network Structure and Chemical Stability of Borosilicate Glass
by Ming Lian, Tian Wang and Chong Wei
Ceramics 2024, 7(2), 516-529; https://doi.org/10.3390/ceramics7020034 - 15 Apr 2024
Viewed by 600
Abstract
Glass properties play crucial roles in ensuring the safety and reliability of electronic packaging. However, challenges, such as thermal expansion and resistance to acid corrosion, pose long-term service difficulties. This study investigated the impact of the microstructure on acid resistance by adjusting the [...] Read more.
Glass properties play crucial roles in ensuring the safety and reliability of electronic packaging. However, challenges, such as thermal expansion and resistance to acid corrosion, pose long-term service difficulties. This study investigated the impact of the microstructure on acid resistance by adjusting the glass composition. A glass material with excellent acid resistance was obtained by achieving a similar coefficient of thermal expansion to tantalum; it exhibited a weight loss rate of less than 0.03% when submerged in 38% sulfuric acid at 85 °C for 200 h. Theoretically, this glass can be used to seal wet Ta electrolytic capacitors. Differential scanning calorimetry (DSC) was used to analyze the glass transition temperature and thermal stability of borosilicate glasses. X-ray diffractometry (XRD), scanning electron microscopy (SEM), and Raman spectroscopy were used to study the microstructure of the amorphous phase of the borosilicate glass, which revealed a close relationship between the degree of network phase separation in the borosilicate glass and the degree of polymerization (isomorphic polyhedron value, IP) of the glass matrix. The IP value decreased from 3.82 to 1.98 with an increasing degree of phase separation. Boron transitions from [BO4] to [BO3] within the glass network structure with increasing boron oxide content, which diminishes the availability of free oxygen provided by alkaline oxide, resulting in a lower acid resistance. Notably, the glass exhibited optimal acid resistance at boron trioxide and mixed alkaline oxide contents of 15% and 6%, respectively. Raman experiments revealed how the distributions of various bridging oxygen atoms (Qn) affect the structural phase separation of the glass network. Additionally, Raman spectroscopy revealed the depolymerization of Q4 into Q3, thereby promoting high-temperature phase separation and highlighting the unique advantages of Raman spectroscopy for phase recognition. Full article
(This article belongs to the Special Issue Advances in Ceramics, 2nd Edition)
Show Figures

Figure 1

12 pages, 2760 KiB  
Article
Experiments Using Different Types of Waste to Manufacture Ceramic Materials: Examples on a Laboratory Scale
by Manuel M. Jordán Vidal
Ceramics 2024, 7(2), 504-515; https://doi.org/10.3390/ceramics7020033 - 4 Apr 2024
Viewed by 956
Abstract
Reusing waste as raw materials to produce other materials can entail a decrease in production costs and in the abusive use of natural resources. Furthermore, it can even improve the properties of the end product or material. In this sense, a review of [...] Read more.
Reusing waste as raw materials to produce other materials can entail a decrease in production costs and in the abusive use of natural resources. Furthermore, it can even improve the properties of the end product or material. In this sense, a review of the most relevant literature published in recent decades shows that numerous solutions have been proposed or implemented, such as its use to produce construction materials, catalysts, pigments, pozzolana, refractory materials, glass-ceramic products, etc. Our research group has verified the viability of using different types of waste as secondary raw materials to obtain several types of ceramic, glassy and glassceramic materials, as well as frits. This article highlights several types of industrial waste that have both non-toxic (Li, Ca and Mn) and highly toxic (Cr VI) differentiating elements that can be used in sintering and vitrification industrial processes to immobilise them or render them inert. We studied the compositions and characterised the various materials obtained, conducting toxicity and leaching tests on waste/materials designed with high amounts of chromium. A suggestion for future lines of research has been proposed. Full article
Show Figures

Figure 1

13 pages, 1960 KiB  
Article
The Origin of the Low-Temperature Minimum of Electrical Resistivity in Strontium Ferromolybdate Ceramics
by Gunnar Suchaneck, Evgenii Artiukh and Gerald Gerlach
Ceramics 2024, 7(2), 491-503; https://doi.org/10.3390/ceramics7020032 - 1 Apr 2024
Viewed by 860
Abstract
In this work, we analyze the electrical behavior of strontium ferromolybdate below room temperature. We demonstrate that in SFMO ceramics, SFMO thin films deposited by pulsed laser deposition including (100) and (111) textured thin films, as well as in nonstoichiometric SFMO ceramics, an [...] Read more.
In this work, we analyze the electrical behavior of strontium ferromolybdate below room temperature. We demonstrate that in SFMO ceramics, SFMO thin films deposited by pulsed laser deposition including (100) and (111) textured thin films, as well as in nonstoichiometric SFMO ceramics, an intergrain tunneling mechanism of charge carrier conduction leads to a decrease in resistivity with increasing temperature in the low-temperature region. This intergrain tunneling can be attributed to fluctuation-induced tunneling. On the other hand, bulk metallic resistivity of the grains, which increases with temperature, becomes dominant at higher temperatures and magnetic fluxes. The interplay of these conduction mechanisms leads to a resistivity minimum, i.e., a resistivity upturn below the temperature of minimum resistivity. Several mechanisms have been discussed in the literature to describe the low-temperature upturn in resistivity. Based on available literature data, we propose a revised model describing the appearance of a low-temperature resistivity minimum in SFMO ceramics by an interplay of fluctuation-induced tunneling and metallic conductivity. Additionally, we obtained that in the region of metallic conductivity at higher temperatures and magnetic fluxes, the pre-factor Rm of the temperature-dependent term of metallic conductivity written as a power law decreases exponentially with the temperature exponent m of this power law. Here, the value of m is determined by the charge scattering mechanism. Full article
(This article belongs to the Special Issue Advances in Electronic Ceramics)
Show Figures

Graphical abstract

14 pages, 4204 KiB  
Article
Sonochemical Synthesis of Indium Nitride Nanoparticles and Photocatalytic Composites with Titania
by Aikaterina Paraskevopoulou, Pavlos Pandis, Christos Argirusis and Georgia Sourkouni
Ceramics 2024, 7(2), 478-490; https://doi.org/10.3390/ceramics7020031 - 27 Mar 2024
Viewed by 872
Abstract
Indium nitride is an excellent semiconductor that belongs to the group of III nitride materials. Due to its unique properties, it is applied to various optoelectronic applications. However, its low thermal stability makes it difficult to synthesize. The present study introduces the synthesis [...] Read more.
Indium nitride is an excellent semiconductor that belongs to the group of III nitride materials. Due to its unique properties, it is applied to various optoelectronic applications. However, its low thermal stability makes it difficult to synthesize. The present study introduces the synthesis of indium nitride nanoparticles, using ultrasound power (sonochemistry). The sonochemical method provides a low-cost and rapid technique for nanomaterial synthesis. InN nanoparticles were produced in only 3 h through the sonochemical reaction of InCl3 and LiN3. Xylene was used as a reaction solvent. X-ray powder diffraction (XRD) as well as high-resolution transmission electron microscopy (HRTEM) were adopted for the characterization of the obtained powder. According to our results, ultrasound contributed to the synthesis of InN nanocrystals in a cubic and a hexagonal phase. The obtained InN nanoparticles were further used to decorate titanium dioxide (TiO2) by means of ultrasound. The contribution of InN nanoparticles on the processes of photocatalysis was investigated through the degradation of methylene blue (MB), a typical organic substance acting in place of an environment pollutant. According to the obtained results, InN nanoparticles improved the photocatalytic activity of TiO2 by 41.8% compared with commercial micrometric titania. Full article
(This article belongs to the Special Issue Advances in Ceramics, 2nd Edition)
Show Figures

Figure 1

12 pages, 3362 KiB  
Article
Zero-Temperature Coefficient of Resonant Frequency in [(Mg0.6Zn0.4)0.95Co0.05]1.02TiO3.02-Ca0.6(La0.9Y0.1)0.2667TiO3 Ultra-Low-Loss Composite Dielectrics
by Yuan-Bin Chen and Jie Peng
Ceramics 2024, 7(2), 466-477; https://doi.org/10.3390/ceramics7020030 - 26 Mar 2024
Viewed by 727
Abstract
Investigating the microwave dielectric properties of ceramics prepared through the conventional solid-state route, such as x[(Mg0.6Zn0.4)0.95Co0.05]1.02TiO3.02-(1−x)Ca0.6(La0.9Y0.1)0.2667TiO3, reveals notable characteristics. [(Mg0.6 [...] Read more.
Investigating the microwave dielectric properties of ceramics prepared through the conventional solid-state route, such as x[(Mg0.6Zn0.4)0.95Co0.05]1.02TiO3.02-(1−x)Ca0.6(La0.9Y0.1)0.2667TiO3, reveals notable characteristics. [(Mg0.6Zn0.4)0.95Co0.05]1.02TiO3.02 shows a permittivity (εr) of approximately 20, a high quality factor (Q × f) ranging between 250,000 and 560,000 GHz, and a temperature coefficient of resonant frequency (τf) of approximately −65 ppm/°C. To enhance the temperature stability, Ca0.6(La0.9Y0.1)0.2667TiO3 featuring a τf value of +374 ppm/°C was incorporated into the [(Mg0.6Zn0.4)0.95Co0.05]1.02TiO3.02 composition. τf demonstrated an increase with rising Ca0.6(La0.9Y0.1)0.2667TiO3 content, reaching zero at x = 0.95. A ceramic composition of 0.95[(Mg0.6Zn0.4)0.95Co0.05]1.02TiO3.02-0.05Ca0.6(La0.9Y0.1)0.2667TiO3, incorporating 3wt.% BaCu(B2O5) as sintering aids, exhibited outstanding microwave dielectric properties: εr~22.5, Q × f~195,000 (at 9 GHz), and τf~0.1ppm/°C, with a sintering temperature at 950 °C. This material is proposed as a prospective candidate for 6G band components and GPS antennas. Full article
(This article belongs to the Special Issue Advances in Electronic Ceramics)
Show Figures

Figure 1

14 pages, 4272 KiB  
Article
Negative Temperature Coefficient Properties of Natural Clinoptilolite
by Loredana Schiavo, Lucrezia Aversa, Roberto Verucchi, Rachele Castaldo, Gennaro Gentile and Gianfranco Carotenuto
Ceramics 2024, 7(2), 452-465; https://doi.org/10.3390/ceramics7020029 - 23 Mar 2024
Viewed by 1112
Abstract
Negative temperature coefficient (NTC) materials are usually based on ceramic semiconductors, and electrons are involved in their transport mechanism. A new type of NTC material, adequate for alternating current (AC) applications, is represented by zeolites. Indeed, zeolites are single charge carrier ionic conductors [...] Read more.
Negative temperature coefficient (NTC) materials are usually based on ceramic semiconductors, and electrons are involved in their transport mechanism. A new type of NTC material, adequate for alternating current (AC) applications, is represented by zeolites. Indeed, zeolites are single charge carrier ionic conductors with a temperature-dependent electrical conductivity. In particular, electrical transport in zeolites is due to the monovalent charge-balancing cations, like K+, capable of hopping between negatively charged sites in the aluminosilicate framework. Owing to the highly non-linear electrical behavior of the traditional electronic NTC materials, the possibility to have alternative types of materials, showing linearity in their electrical behavior, is very desirable. Among different zeolites, natural clinoptilolite has been selected for investigating NTC behavior since it is characterized by high zeolite content, a convenient Si/Al atomic ratio, good mechanical strength due to its compact microstructure, and low toxicity. Clinoptilolite has shown a rapid and quite reversible impedance change under heating, characterized by a linear dependence on temperature. X-ray diffraction (XRD) has been used to identify the natural zeolite, to establish all types of crystalline phases present in the mineral, and to investigate the thermal stability of these phases up to 150 °C. X-ray photoelectron spectroscopy (XPS) analysis was used for the chemical characterization of this natural clinoptilolite sample, providing important information on the cationic content and framework composition. In addition, since electrical transport takes place in the zeolite free-volume, a Brunauer–Emmett–Teller (BET) analysis of the mineral has also been performed. Full article
(This article belongs to the Special Issue Advances in Ceramics, 2nd Edition)
Show Figures

Graphical abstract

16 pages, 9753 KiB  
Article
Polymer-Infiltrated Ceramic Network Produced by Direct Ink Writing: The Effects of Manufacturing Design on Mechanical Properties
by Junhui Zhang, Paula Pou, Ludmila Hodásová, Mona Yarahmadi, Sergio Elizalde, Jose-Maria Cabrera, Luis Llanes, Elaine Armelin and Gemma Fargas
Ceramics 2024, 7(2), 436-451; https://doi.org/10.3390/ceramics7020028 - 22 Mar 2024
Viewed by 946
Abstract
Polymer-infiltrated ceramic network (PICN) materials have gained considerable attention as tooth-restorative materials due to their mechanical compatibility with human teeth, especially with computer-aided design and computer-aided manufacturing (CAD/CAM) technologies. However, the designed geometry affects the mechanical properties of PICN materials. This study aims [...] Read more.
Polymer-infiltrated ceramic network (PICN) materials have gained considerable attention as tooth-restorative materials due to their mechanical compatibility with human teeth, especially with computer-aided design and computer-aided manufacturing (CAD/CAM) technologies. However, the designed geometry affects the mechanical properties of PICN materials. This study aims to study the relationship between manufacturing geometry and mechanical properties. In doing so, zirconia-based PICN materials with different geometries were fabricated using a direct ink-writing process, followed by copolymer infiltration. Comprehensive analyses of the microstructure and structural properties of zirconia scaffolds, as well as PICN materials, were performed. The mechanical properties were assessed through compression testing and digital image correlation analysis. The results revealed that the compression strength of PICN pieces was significantly higher than the respective zirconia scaffolds without polymer infiltration. In addition, two geometries (C-grid 0 and C-grid 45) have the highest mechanical performance. Full article
(This article belongs to the Special Issue Advances in Ceramics, 2nd Edition)
Show Figures

Graphical abstract

Previous Issue
Back to TopTop