Next Issue
Volume 7, September
Previous Issue
Volume 7, July
 
 

AgriEngineering, Volume 7, Issue 8 (August 2025) – 28 articles

Cover Story (view full-size image): AgriEngineering (ISSN 2624-7402) is an international, peer-reviewed, open access, open-source, and cross-disciplinary scientific journal on the engineering science of agricultural and horticultural production. Our aim is to encourage scientists to publish their experimental and theoretical research, along with the full set of schematics, source-code, and mechanical design models leading to accelerated and rapid dissemination of leading-edge technologies emerging in agricultural, environmental, and agronomic engineering. AgriEngineering publishes articles, technical notes, reviews, commentaries, and case/field reports, as well as Special Issues on particular subjects.
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
15 pages, 1762 KB  
Article
Long-Term Blueberry Storage by Ozonation or UV Irradiation Using Excimer Lamp
by Yujiro Takano, Daichi Hojo, Kosuke Sato, Noe Inubushi, Chieto Miyashita, Eiichi Inoue and Yuya Mochizuki
AgriEngineering 2025, 7(8), 269; https://doi.org/10.3390/agriengineering7080269 - 21 Aug 2025
Viewed by 212
Abstract
Blueberries are in high demand worldwide because of their taste and functional components. However, the shelf life of blueberries is short owing to their perishability and rapid quality deterioration. Therefore, a sterilization technology must be developed that can extend the shelf life of [...] Read more.
Blueberries are in high demand worldwide because of their taste and functional components. However, the shelf life of blueberries is short owing to their perishability and rapid quality deterioration. Therefore, a sterilization technology must be developed that can extend the shelf life of blueberries while maintaining their appearance and taste. As such, we verified the effectiveness of three pre-storage sterilization treatments (UV-C, ozone gas, and ozone water) using mercury-free excimer UV lamps that did not adversely affect the environment. We then created a device that continuously treated blueberries with approximately 2.57 ppm of ozone gas to ensure sterilization during the storage period, and we verified the effectiveness of the device. We found that the pre-storage ozone treatment reduced the number of fungi on the blueberry surface without adversely affecting fruit quality. The continuous ozone treatment suppressed the decrease in anthocyanin content, further reduced the number of fungi on the fruit surface and maintained fruit appearance for a longer period compared with the control. This suggests that continuous low-concentration ozone treatment suppresses the decay and extends the storage period of blueberries intended for raw consumption. Full article
(This article belongs to the Special Issue Latest Research on Post-Harvest Technology to Reduce Food Loss)
Show Figures

Figure 1

31 pages, 36163 KB  
Article
A Robust Lightweight Vision Transformer for Classification of Crop Diseases
by Karthick Mookkandi, Malaya Kumar Nath, Sanghamitra Subhadarsini Dash, Madhusudhan Mishra and Radak Blange
AgriEngineering 2025, 7(8), 268; https://doi.org/10.3390/agriengineering7080268 - 21 Aug 2025
Viewed by 155
Abstract
Rice, wheat, and maize are important food grains consumed by most of the population in Asian countries (like India, Japan, Singapore, Malaysia, China, and Thailand). These crops’ production is affected by biotic and abiotic factors that cause diseases in several parts of the [...] Read more.
Rice, wheat, and maize are important food grains consumed by most of the population in Asian countries (like India, Japan, Singapore, Malaysia, China, and Thailand). These crops’ production is affected by biotic and abiotic factors that cause diseases in several parts of the crops (including leaves, stems, roots, nodes, and panicles). A severe infection affects the growth of the plant, thereby undermining the economy of a country, if not detected at an early stage. This may cause extensive damage to crops, resulting in decreased yield and productivity. Early safeguarding methods are overlooked because of farmers’ lack of awareness and the variety of crop diseases. This causes significant crop damage and can consequently lower productivity. In this manuscript, a lightweight vision transformer (MaxViT) with 814.7 K learnable parameters and 85 layers is designed for classifying crop diseases in paddy and wheat. The MaxViT DNN architecture consists of a convolutional block attention module (CBAM), squeeze and excitation (SE), and depth-wise (DW) convolution, followed by a ConvNeXt module. This network architecture enhances feature representation by eliminating redundant information (using CBAM) and aggregating spatial information (using SE), and spatial filtering by the DW layer cumulatively enhances the overall classification performance. The proposed model was tested using a paddy dataset (with 7857 images and eight classes, obtained from local paddy farms in Lalgudi district, Tiruchirappalli) and a wheat dataset (with 5000 images and five classes, downloaded from the Kaggle platform). The model’s classification performance for various diseases has been evaluated based on accuracy, sensitivity, specificity, mean accuracy, precision, F1-score, and MCC. During training and testing, the model’s overall accuracy on the paddy dataset was 99.43% and 98.47%, respectively. Training and testing accuracies were 94% and 92.8%, respectively, for the wheat dataset. Ablation analysis was carried out to study the significant contribution of each module to improving the performance. It was found that the model’s performance was immune to the presence of noise. Additionally, there are a minimal number of parameters involved in the proposed model as compared to pre-trained networks, which ensures that the model trains faster. Full article
Show Figures

Figure 1

18 pages, 5372 KB  
Article
An IoT-Based System for Measuring Diurnal Gas Emissions of Laying Hens in Smart Poultry Farms
by Sejal Bhattad, Ahmed Abdelmoamen Ahmed, Ahmed A. A. Abdel-Wareth and Jayant Lohakare
AgriEngineering 2025, 7(8), 267; https://doi.org/10.3390/agriengineering7080267 - 21 Aug 2025
Viewed by 228
Abstract
It is critical to provide proper environmental conditions in poultry houses to maintain birds’ health, boost productivity, and improve the overall economic viability of the poultry industry. Among the myriad of environmental elements, indoor air quality has been a determining factor that directly [...] Read more.
It is critical to provide proper environmental conditions in poultry houses to maintain birds’ health, boost productivity, and improve the overall economic viability of the poultry industry. Among the myriad of environmental elements, indoor air quality has been a determining factor that directly affects poultry well-being. Elevated concentrations of harmful gases—in particular Carbon Dioxide (CO2), Methane (CH4), and Ammonia (NH3)—decomposition products of poultry litter, feed wastage, and biological processes have draconian effects on bird health, feed efficiency, the growth rate, reproduction efficiency, and mortality rate. Despite their importance, traditional air quality monitoring systems are often operated manually, labor intensive, and cannot detect sudden environmental changes due to the lack of real-time sensing. To overcome these limitations, this paper presents an interdisciplinary approach combining cloud computing, Artificial Intelligence (AI), and Internet of Things (IoT) technologies to measure real-time poultry gas concentrations. Real-time sensor feeds are transmitted to a cloud-based platform, which stores, displays, and processes the data. Furthermore, a machine learning (ML) model was trained using historical sensory data to predict the next-day gas emission levels. A web-based platform has been developed to enable convenient user interaction and display the gas sensory readings on an interactive dashboard. Also, the developed system triggers automatic alerts when gas levels cross safe environmental thresholds. Experimental results of CO2 concentrations showed a significant diurnal trend, peaking in the afternoon, followed by the evening, and reaching their lowest levels in the morning. In particular, CO2 concentrations peaked at approximately 570 ppm during the afternoon, a value that was significantly elevated (p < 0.001) compared to those recorded in the evening (~560 ppm) and morning (~555 ppm). This finding indicates a distinct diurnal pattern in CO2 accumulation, with peak concentrations occurring during the warmer afternoon hours. Full article
Show Figures

Figure 1

16 pages, 2852 KB  
Article
Ear Back Surface Temperature of Pigs as an Indicator of Comfort: Spatial Variability and Its Thermal Implications
by Taize Calvacante Santana, Cristiane Guiselini, Héliton Pandorfi, Ricardo Brauer Vigoderis, José Antônio Delfino Barbosa Filho, Rodrigo Gabriel Ferreira Soares, Maria de Fátima Araújo Alves, Marco Antonio Silva, Leandro Dias de Lima and João José de Mesquita Sales
AgriEngineering 2025, 7(8), 266; https://doi.org/10.3390/agriengineering7080266 - 19 Aug 2025
Viewed by 212
Abstract
This study applied geostatistics to analyze thermal images of the back surface of pigs’ ears (TSO) to understand how spatial temperature variability influences thermoregulation. The objective was to assess TSO variability in pigs housed under two climate control systems, namely, pens without cooling [...] Read more.
This study applied geostatistics to analyze thermal images of the back surface of pigs’ ears (TSO) to understand how spatial temperature variability influences thermoregulation. The objective was to assess TSO variability in pigs housed under two climate control systems, namely, pens without cooling (BTEST) and with an evaporative cooling system (BECS), using infrared thermography and geostatistical tools. A total of 432 thermal images were obtained from 18 finishing pigs at 08:00, 12:00, and 16:00. Semivariograms were modeled and validated, and kriging maps were developed to visualize the spatial temperature distribution. The pens were thermally characterized using reclassified Temperature and Humidity Index (THI) values. The Gaussian model (R2 > 0.9) showed strong spatial dependence in temperature data. Pigs in the BECS system exhibited lower average TSO temperatures (28.2–38.6 °C) than those in the BTEST system, where temperatures exceeded 34 °C, highlighting the role of cooling in mitigating heat stress. In both systems, higher THI values were associated with increased TSO, indicating thermal discomfort under elevated environmental temperatures. Geostatistical analysis effectively revealed spatial patterns and variability in surface temperatures, providing key insights into how environmental conditions impact pigs’ thermal responses. Full article
Show Figures

Figure 1

15 pages, 2127 KB  
Article
Relationship Between Hyperspectral Data and Amino Acid Composition in Soybean Genotypes
by Ana Carina da Silva Cândido Seron, Dthenifer Cordeiro Santana, Izadora Araujo Oliveira, Cid Naudi Silva Campos, Larissa Pereira Ribeiro Teodoro, Elber Vinicius Martins Silva, Rafael Felippe Ratke, Fábio Henrique Rojo Baio, Carlos Antonio da Silva Junior and Paulo Eduardo Teodoro
AgriEngineering 2025, 7(8), 265; https://doi.org/10.3390/agriengineering7080265 - 15 Aug 2025
Viewed by 271
Abstract
Spectral reflectance of plants can be readily associated with physiological and biochemical parameters. Thus, relating spectral data to amino acid contents in different genetic materials provides an innovative and efficient approach for understanding and managing genetic diversity. Therefore, this study had two objectives: [...] Read more.
Spectral reflectance of plants can be readily associated with physiological and biochemical parameters. Thus, relating spectral data to amino acid contents in different genetic materials provides an innovative and efficient approach for understanding and managing genetic diversity. Therefore, this study had two objectives: (I) to differentiate genetic materials according to amino acid contents and spectral reflectance; (II) to establish the relationship between amino acids and spectral bands derived from hyperspectral data. The research was conducted with 32 soybean genetic materials grown in the field during the 2023–2024 crop year. The experimental design involved randomized blocks with four replicates. Leaf spectral data were collected 60 days after plant emergence, when the plants were in full bloom. Three leaf samples were collected from the third fully developed trifoliate leaf, counted from top to bottom, from each plot. The samples were taken to the laboratory, where reflectance readings were obtained using a spectroradiometer, which can measure the 350–2500 nm spectrum. Wavelengths were grouped as means of representative intervals and then organized into 28 bands. Subsequently, the leaf samples from each plot were subjected to quantification analyses for 17 amino acids. Then, the soybean genotypes were subjected to a PCA–K-means analysis to separate the genotypes according to their amino acid content and spectral behavior. A correlation network was constructed to investigate the relationships between the spectral variables and between the amino acids within each group. The groups formed by the different genetic materials exhibited distinct profiles in both amino acid composition and spectral behavior. Leaf reflectance data proved to be efficient in identifying differences between soybean genotypes regarding the amino acid content in the leaves. Leaf reflectance was effective in distinguishing soybean genotypes according to leaf amino acid content. Specific and high-magnitude associations were found between spectral bands and amino acids. Our findings reveal that spectral reflectance can serve as a reliable, non-destructive indicator of amino acid composition in soybean leaves, supporting advanced phenotyping and selection in breeding programs. Full article
Show Figures

Figure 1

20 pages, 3422 KB  
Article
Field Spectroscopy for Monitoring Nitrogen Fertilization and Estimating Cornstalk Nitrate Content in Maize
by Jesús Val, Iván González-Pérez, Enoc Sanz-Ablanedo, Ángel Maresma and José Ramón Rodríguez-Pérez
AgriEngineering 2025, 7(8), 264; https://doi.org/10.3390/agriengineering7080264 - 14 Aug 2025
Viewed by 231
Abstract
Evaluating the response of maize crops to different nitrogen fertilization rates is essential to ensure their agronomic, environmental, and economic efficiency. In this study, the spectral information of maize plants subjected to five distinct nitrogen fertilization strategies was analyzed. The fertilization strategies were [...] Read more.
Evaluating the response of maize crops to different nitrogen fertilization rates is essential to ensure their agronomic, environmental, and economic efficiency. In this study, the spectral information of maize plants subjected to five distinct nitrogen fertilization strategies was analyzed. The fertilization strategies were based on the practices commonly used in maize fields in the study area, with the aim of ensuring the research findings’ applicability. The spectral reflectance was measured using a spectroradiometer covering the 350–2500 nm range, and the results enabled the identification of optimal spectral regions for monitoring plants’ nitrogen status, particularly in the visible and infrared ranges. A Principal Component Analysis (PCA) of the reflectance data revealed the key wavelengths most sensitive to the nitrogen availability: 555 nm and 720 nm during the vegetative stage and 680 nm during the reproductive stage. This information will support the development of drone-mounted multispectral sensor systems for large-scale monitoring, as well as the design of low-cost sensors for early nitrogen deficiency detection. Furthermore, the study demonstrated the feasibility of estimating the cornstalk nitrate content based on direct reflectance measurements of maize stems. The prediction model showed satisfactory performance, with a coefficient of determination (R2) of 0.845 and a root mean square error of prediction (RMSECV) of 2035.3 ppm, indicating its strong potential for predicting the NO3-N concentrations in maize stems. Full article
Show Figures

Figure 1

17 pages, 3367 KB  
Article
Straw Cover and Tire Model Effect on Soil Stress
by Aldir Carpes Marques Filho, Lucas Santos Santana, Murilo Battistuzzi Martins, Wellingthon da Silva Guimarães Júnnyor, Simone Daniela Sartório de Medeiros and Kléber Pereira Lanças
AgriEngineering 2025, 7(8), 263; https://doi.org/10.3390/agriengineering7080263 - 13 Aug 2025
Viewed by 308
Abstract
Heavy machinery degrades agricultural soils, with severity influenced by wheel type, contact area, and soil moisture. Tropical agriculture is characterized by the constant maintenance of straw on the ground. This permanent cover, among other benefits, can mitigate the stress imposed by wheels on [...] Read more.
Heavy machinery degrades agricultural soils, with severity influenced by wheel type, contact area, and soil moisture. Tropical agriculture is characterized by the constant maintenance of straw on the ground. This permanent cover, among other benefits, can mitigate the stress imposed by wheels on the physical structure of the soil. This study aimed to evaluate the effect of tire types and straw amounts on soil stresses. Static studies were carried out under controlled conditions in a static tire test unit (STTU), equipped with standardized sensors and systems that simulated real farming conditions. Three tire models were tested: road truck double wheelset—2 × 275/80R22.5 (p1); agricultural radial tire—600/50R22.5 (p2); and bias-ply tire—600/50-22.5 (p3) on four contact surfaces (rigid surface; bare soil; soil with 15 and 30 Mg ha−1 straw cover). We performed comparative statistical tests and subsurface stress simulations for each tire and surface condition. On the hard surface, the contact areas were 4.7 to 6.8 times smaller than on bare soil. Straw increased the tire’s contact area, reducing compaction and subsoil stresses. Highest pressure was imposed by the road tire (p1) and lowest by the radial tire (p2). Adding 15 Mg ha−1 of straw reduced soil SPR by 18%, while increasing it to 30 Mg ha−1 led to an additional 8% reduction. Tire selection and effective straw management improve soil conservation and agriculture sustainability. Full article
Show Figures

Figure 1

13 pages, 2089 KB  
Technical Note
Design and Testing of Air-Separation-Type Tillage Layer Residual Film Recovery Machines
by Zechen Xu, Aiping Shi, Mingquan Zhang, Lei Liu, Zhi Zhou and Lijun Ding
AgriEngineering 2025, 7(8), 262; https://doi.org/10.3390/agriengineering7080262 - 12 Aug 2025
Viewed by 283
Abstract
Existing residual film recovery machines for the cultivated layer struggle to achieve an efficient separation of plastic film from impurities during operation. To address this challenge, a wind-separation-type residual film recovery machine equipped with a cross-flow fan was designed. Through theoretical analysis and [...] Read more.
Existing residual film recovery machines for the cultivated layer struggle to achieve an efficient separation of plastic film from impurities during operation. To address this challenge, a wind-separation-type residual film recovery machine equipped with a cross-flow fan was designed. Through theoretical analysis and field tests, the optimal operational parameters were determined. In this paper, with the recovery rate and impurity content of the residual film were taken as the test objectives, with the air inlet angle, fan speed, and the proportion of residual film quality as the test factors. The response surface diagram was drawn with design-expert software, and the optimal parameters of the fan device obtained by orthogonal test range analysis and variance analysis were that when the air inlet angle was 31°, the fan speed was 1277 r/min, and the residual film mass accounted for 62%. Under these parameters, the residual film recovery rate was 88.1%, and the impurity content was 3.7%, which met the operational requirements of residual film recovery, and the research results could provide a basis for the recovery of residual film in the tillage layer. Full article
Show Figures

Figure 1

16 pages, 4640 KB  
Article
Cloud-Enabled Multi-Axis Soilless Clinostat for Earth-Based Simulation of Partial Gravity and Light Interaction in Seedling Tropisms
by Christian Rae Cacayurin, Juan Carlos De Chavez, Mariah Christa Lansangan, Chrischell Lucas, Justine Joseph Villanueva, R-Jay Relano, Leone Ermes Romano and Ronnie Concepcion II
AgriEngineering 2025, 7(8), 261; https://doi.org/10.3390/agriengineering7080261 - 12 Aug 2025
Viewed by 421
Abstract
Understanding the combined gravi-phototropic behavior of plants is essential for space agriculture. Existing single-axis clinostats and gel-based grow media provide limited simulation fidelity. This study developed a Cloud-enabled triple-axis clinostat with built-in automated aeroponic and artificial photosynthetic lighting systems for Earth-based simulation under [...] Read more.
Understanding the combined gravi-phototropic behavior of plants is essential for space agriculture. Existing single-axis clinostats and gel-based grow media provide limited simulation fidelity. This study developed a Cloud-enabled triple-axis clinostat with built-in automated aeroponic and artificial photosynthetic lighting systems for Earth-based simulation under Martian gravity ranging from 0.35 to 0.4 g. Finite element analysis validated the stability and reliability of the acrylic and stainless steel rotating platform based on stress, strain, and thermal simulation tests. Arduino UNO microcontrollers were used to acquire and process sensor data to activate clinorotation and controlled environment systems. An Arduino ESP32 transmits grow chamber temperature, humidity, moisture, light intensity, and gravity sensor data to ThingSpeak and the Create IoT online platform for seamless monitoring and storage of enviro-physical data. The developed system can generate 0.252–0.460 g that suits the target Martian gravity. The combined gravi-phototropic tests confirmed that maize seedlings exposed to partial gravity and grown using the aeroponic approach have a shoot system growth driven by light availability (395–400 μmol/m2/s) across the partial gravity extremes. Root elongation is more responsive to gravity increase under higher partial gravity (0.375–0.4 g) even with low light availability. The developed soilless clinostat technology offers a scalable tool for simulating other high-value crops aside from maize. Full article
Show Figures

Figure 1

18 pages, 2886 KB  
Article
Hybrid LSTM Method for Multistep Soil Moisture Prediction Using Historical Soil Moisture and Weather Data
by Deus F. Kandamali, Erin Porter, Wesley M. Porter, Alex McLemore, Denis O. Kiobia, Ali P. Tavandashti and Glen C. Rains
AgriEngineering 2025, 7(8), 260; https://doi.org/10.3390/agriengineering7080260 - 12 Aug 2025
Viewed by 417
Abstract
Soil moisture prediction is a key parameter for effective irrigation scheduling and water use efficiency. However, accurate long-term prediction remains challenging, as most existing models excel in short- to medium-term prediction but struggle to capture the complex temporal dependencies and non-linear interactions of [...] Read more.
Soil moisture prediction is a key parameter for effective irrigation scheduling and water use efficiency. However, accurate long-term prediction remains challenging, as most existing models excel in short- to medium-term prediction but struggle to capture the complex temporal dependencies and non-linear interactions of soil moisture variables over extended horizons. This study proposes a hybrid soil moisture prediction method, integrating a long short-term memory (LSTM) network and extreme gradient boosting (XGBoost) model for multistep soil moisture prediction at 24 h, 72 h, and 168 h horizons. The LSTM captures temporal dependencies and extracts high-level features from the dataset, which are then used by XGBoost for final predictions. The study uses real-world data from the D.A.T.A (Demonstrating Applied Technology in Agriculture) research farm at ABAC (Abraham Baldwin Agricultural College) Tifton, GA, USA, utilizing watermark soil moisture sensors and weather station’s data installed on the farm. Results show that the proposed method outperforms other hybrid models, achieving R2 values of 98.67%, 98.54%, and 98.56% for 24, 72, and 168 h predictions, respectively. The study findings highlight that LSTM-XGBoost offers a precise long-term soil moisture prediction, making it a practical tool for real-time irrigation scheduling, enhancing water use efficiency in precision agriculture. Full article
(This article belongs to the Topic Digital Agriculture, Smart Farming and Crop Monitoring)
Show Figures

Figure 1

25 pages, 2603 KB  
Article
Crop Identification with Monte Carlo Simulations and Rotation Models from Sentinel-2 Data
by Andrei Racoviteanu, Andreea Nițu, Corneliu Florea and Mihai Ivanovici
AgriEngineering 2025, 7(8), 259; https://doi.org/10.3390/agriengineering7080259 - 11 Aug 2025
Viewed by 349
Abstract
Crop rotation is a well-established practice that helps reduce nutrient depletion and pressure from pests and weeds. At the same time, the use of artificial intelligence tools to recognize crops from satellite multispectral imagery is gaining momentum as a first step toward automated [...] Read more.
Crop rotation is a well-established practice that helps reduce nutrient depletion and pressure from pests and weeds. At the same time, the use of artificial intelligence tools to recognize crops from satellite multispectral imagery is gaining momentum as a first step toward automated agricultural monitoring. However, the recognition process is limited by inherent errors and the scarcity of available data. In this paper, we build upon Monte Carlo simulation methods to investigate whether incorporating crop rotation information—encoded as a Markov chain—can improve identification accuracy. To broaden the simulation across diverse datasets, we also synthesize multispectral pixels for underrepresented crop types. Crop rotation is used not only in post-processing, but also integrated into the classifier, where a Gradient Boosting Machine is adapted to penalize learners that predict the same crop as in the previous year. Our evaluation uses Sentinel satellite imagery of agricultural crops, combined with the DACIA5 database from the Brașov region of Romania. We conclude that incorporating accurate prior information and crop rotation models noticeably improves crop identification performance. Synthesized data further enhances recognition rates and enables broader applicability, beyond the original region. Full article
Show Figures

Figure 1

22 pages, 2483 KB  
Article
Carbon Footprint of Crop Rotation Systems and Mitigation Options for Net Zeroing Greenhouse Gas Balance in Farms of Central Brazil
by Eduardo Barretto de Figueiredo
AgriEngineering 2025, 7(8), 258; https://doi.org/10.3390/agriengineering7080258 - 11 Aug 2025
Viewed by 429
Abstract
Different crop production scenarios and crop rotation systems should be investigated with lower greenhouse gas (GHG) intensity levels, with it being possible to reach net-zero GHG emissions from grain production farms. This study was divided into three stages—the development of spreadsheets for data [...] Read more.
Different crop production scenarios and crop rotation systems should be investigated with lower greenhouse gas (GHG) intensity levels, with it being possible to reach net-zero GHG emissions from grain production farms. This study was divided into three stages—the development of spreadsheets for data acquisition for each crop rotation, calculations of GHG emissions based on IPCC methodologies and specific regional emission factors, and an analysis of the main emissions and sinks sources we evaluated, including the potential for soil and biomass carbon (C) sequestration to offset agricultural emissions. The system C footprints were 2413, 2209, and 2096 kg CO2eq ha−1 for farms K, M, and G, respectively, demanding estimated C sequestration (soil or biomass) rates of 657, 602, and 571 kg C ha−1 year−1 to offset all emissions of agricultural phases. Mitigating practices can reduce GHG emissions, but compensation via sequestration (soil or biomass C) shall be required to achieve zero GHG emissions. Reserving approximately 10–15% of the farm’s total agricultural production area to plant native trees or eucalyptus in marginal areas or even introducing crop–livestock–forest integration or crop–forest integration systems can offset the GHG emissions of the entire agricultural production phase, considering the potential for soil and biomass C sequestration, showing that it is a feasible option for producing C credit from the agricultural sector. Full article
Show Figures

Figure 1

18 pages, 2151 KB  
Article
Drone-Assisted Plant Stress Detection Using Deep Learning: A Comparative Study of YOLOv8, RetinaNet, and Faster R-CNN
by Yousef-Awwad Daraghmi, Waed Naser, Eman Yaser Daraghmi and Hacene Fouchal
AgriEngineering 2025, 7(8), 257; https://doi.org/10.3390/agriengineering7080257 - 11 Aug 2025
Viewed by 414
Abstract
Drones have been widely used in precision agriculture to capture high-resolution images of crops, providing farmers with advanced insights into crop health, growth patterns, nutrient deficiencies, and pest infestations. Although several machine and deep learning models have been proposed for plant stress and [...] Read more.
Drones have been widely used in precision agriculture to capture high-resolution images of crops, providing farmers with advanced insights into crop health, growth patterns, nutrient deficiencies, and pest infestations. Although several machine and deep learning models have been proposed for plant stress and disease detection, their performance regarding accuracy and computational time still requires improvement, particularly under limited data. Therefore, this paper aims to address these challenges by conducting a comparative analysis of three State-of-the-Art object detection deep learning models: YOLOv8, RetinaNet, and Faster R-CNN, and their variants to identify the model with the best performance. To evaluate the models, the research uses a real-world dataset from potato farms containing images of healthy and stressed plants, with stress resulting from biotic and abiotic factors. The models are evaluated under limited conditions with original data of size 360 images and expanded conditions with augmented data of size 1560 images. The results show that YOLOv8 variants outperform the other models by achieving larger mAP@50 values and lower inference times on both the original and augmented datasets. The YOLOv8 variants achieve mAP@50 ranging from 0.798 to 0.861 and inference times ranging from 11.8 ms to 134.3 ms, while RetinaNet variants achieve mAP@50 ranging from 0.587 to 0.628 and inference times ranging from 118.7 ms to 158.8 ms, and Faster R-CNN variants achieve mAP@50 ranging from 0.587 to 0.628 and inference times ranging from 265 ms to 288 ms. These findings highlight YOLOv8’s robustness, speed, and suitability for real-time aerial crop monitoring, particularly in data-constrained environments. Full article
(This article belongs to the Topic Digital Agriculture, Smart Farming and Crop Monitoring)
Show Figures

Figure 1

14 pages, 797 KB  
Article
Systematic Evaluation and Experimental Validation of Discrete Element Method Contact Models for Soil Tillage Simulation
by Salavat Mudarisov, Ildar Gabitov, Yakov Lobachevsky, Ildar Farkhutdinov and Lyudmila Kravchenko
AgriEngineering 2025, 7(8), 256; https://doi.org/10.3390/agriengineering7080256 - 8 Aug 2025
Viewed by 379
Abstract
The discrete element method (DEM), based on particle dynamics, is used to simulate the technological process of soil tillage using agricultural machinery. A key aspect of the DEM for obtaining accurate agrotechnical and energy indicators of soil cultivation is the formulation of particle [...] Read more.
The discrete element method (DEM), based on particle dynamics, is used to simulate the technological process of soil tillage using agricultural machinery. A key aspect of the DEM for obtaining accurate agrotechnical and energy indicators of soil cultivation is the formulation of particle contact rules, determined by normal and tangential interactions as well as cohesion forces. This study presents a comprehensive analysis of discrete element method (DEM) contact models used to simulate soil cultivation processes. This study addresses a key issue—the absence of a systematic approach to selecting adequate contact models, which limits the accuracy of predicting soil behavior during interaction with agricultural machinery. A detailed classification of 17 combinations of contact models implemented in the commercial software Rocky DEM was performed, grouped into three categories: normal force models (Linear Spring [LSP], Hysteresis [HLS], Hertzian [HSD]), tangential force models (Coulomb, linear spring limit [linear], Mindlin–Deresiewicz), and cohesive force models (linear cohesion [linear], constant force [constant], Johnson–Kendall–Roberts [JKR]). Experimental validation was conducted by analyzing the angle of repose for various soil types (sandy loam, light loam, medium loam, and heavy clay) with moisture contents ranging from 11 to 31%. This analysis identified the nine most effective combinations of contact models to describe normal, tangential, and cohesive forces (LSP–Coulomb–linear, HLS–linear–linear, HLS–Coulomb–linear, HSD–linear–linear, HSD–linear–JKR, HSD–Coulomb–linear, HSD–Coulomb–JKR, HSD–Mindlin–Deresiewicz–linear, HSD–Mindlin–Deresiewicz–JKR), which showed reliable agreement with experimental angle of repose measurements at approximately 85% accuracy. This study significantly contributes to advancing computer modeling methods in agriculture by providing a scientifically grounded approach for selecting DEM contact models. Full article
(This article belongs to the Section Agricultural Mechanization and Machinery)
Show Figures

Figure 1

25 pages, 2915 KB  
Article
Multi-Model Identification of Rice Leaf Diseases Based on CEL-DL-Bagging
by Zhenghua Zhang, Rufeng Wang and Siqi Huang
AgriEngineering 2025, 7(8), 255; https://doi.org/10.3390/agriengineering7080255 - 7 Aug 2025
Viewed by 337
Abstract
This study proposes CEL-DL-Bagging (Cross-Entropy Loss-optimized Deep Learning Bagging), a multi-model fusion framework that integrates cross-entropy loss-weighted voting with Bootstrap Aggregating (Bagging). First, we develop a lightweight recognition architecture by embedding a salient position attention (SPA) mechanism into four base networks (YOLOv5s-cls, EfficientNet-B0, [...] Read more.
This study proposes CEL-DL-Bagging (Cross-Entropy Loss-optimized Deep Learning Bagging), a multi-model fusion framework that integrates cross-entropy loss-weighted voting with Bootstrap Aggregating (Bagging). First, we develop a lightweight recognition architecture by embedding a salient position attention (SPA) mechanism into four base networks (YOLOv5s-cls, EfficientNet-B0, MobileNetV3, and ShuffleNetV2), significantly enhancing discriminative feature extraction for disease patterns. Our experiments show that these SPA-enhanced models achieve consistent accuracy gains of 0.8–1.7 percentage points, peaking at 97.86%. Building on this, we introduce DB-CEWSV—an ensemble framework combining Deep Bootstrap Aggregating (DB) with adaptive Cross-Entropy Weighted Soft Voting (CEWSV). The system dynamically optimizes model weights based on their cross-entropy performance, using SPA-augmented networks as base learners. The final integrated model attains 98.33% accuracy, outperforming the strongest individual base learner by 0.48 percentage points. Compared with single models, the ensemble learning algorithm proposed in this study led to better generalization and robustness of the ensemble learning model and better identification of rice diseases in the natural background. It provides a technical reference for applying rice disease identification in practical engineering. Full article
(This article belongs to the Topic Digital Agriculture, Smart Farming and Crop Monitoring)
Show Figures

Figure 1

18 pages, 1227 KB  
Article
Assessment of Biomethane Potential from Waste Activated Sludge in Swine Wastewater Treatment and Its Co-Digestion with Swine Slurry, Water Lily, and Lotus
by Sartika Indah Amalia Sudiarto, Hong Lim Choi, Anriansyah Renggaman and Arumuganainar Suresh
AgriEngineering 2025, 7(8), 254; https://doi.org/10.3390/agriengineering7080254 - 7 Aug 2025
Viewed by 274
Abstract
Waste activated sludge (WAS), a byproduct of livestock wastewater treatment, poses significant disposal challenges due to its low biodegradability and potential environmental impact. Anaerobic digestion (AD) offers a sustainable approach for methane recovery and sludge stabilization. This study evaluates the biomethane potential (BMP) [...] Read more.
Waste activated sludge (WAS), a byproduct of livestock wastewater treatment, poses significant disposal challenges due to its low biodegradability and potential environmental impact. Anaerobic digestion (AD) offers a sustainable approach for methane recovery and sludge stabilization. This study evaluates the biomethane potential (BMP) of WAS and its co-digestion with swine slurry (SS), water lily (Nymphaea spp.), and lotus (Nelumbo nucifera) shoot biomass to enhance methane yield. Batch BMP assays were conducted at substrate-to-inoculum (S/I) ratios of 1.0 and 0.5, with methane production kinetics analyzed using the modified Gompertz model. Mono-digestion of WAS yielded 259.35–460.88 NmL CH4/g VSadded, while co-digestion with SS, water lily, and lotus increased yields by 14.89%, 10.97%, and 16.89%, respectively, surpassing 500 NmL CH4/g VSadded. All co-digestion combinations exhibited synergistic effects (α > 1), enhancing methane production beyond individual substrate contributions. Lower S/I ratios improved methane yields and biodegradability, highlighting the role of inoculum availability. Co-digestion reduced the lag phase limitations of WAS and plant biomass, improving process efficiency. These findings demonstrate that co-digesting WAS with nutrient-rich co-substrates optimizes biogas production, supporting sustainable sludge management and renewable energy recovery in livestock wastewater treatment systems. Full article
(This article belongs to the Section Sustainable Bioresource and Bioprocess Engineering)
Show Figures

Figure 1

11 pages, 810 KB  
Article
Determination of Olive Maturity Stage and Optimal Harvest Interval of ‘Kalinjot’ Cultivar Using Destructive and Non-Destructive Methods
by Gjoke Vuksani, Angjelina Vuksani, Onejda Kyçyk, Florina Pazari and Tokli Thomaj
AgriEngineering 2025, 7(8), 253; https://doi.org/10.3390/agriengineering7080253 - 7 Aug 2025
Viewed by 720
Abstract
This study investigated the maturity and optimal harvest interval of the ‘Kalinjot’ olive cultivar in the Vlora region. Fruit samples were collected from six randomly selected trees over nine harvest dates at 10-day intervals from September to December 2024. Physical, chemical, [...] Read more.
This study investigated the maturity and optimal harvest interval of the ‘Kalinjot’ olive cultivar in the Vlora region. Fruit samples were collected from six randomly selected trees over nine harvest dates at 10-day intervals from September to December 2024. Physical, chemical, and instrumental analyses were conducted to evaluate parameters related to olive ripening and oil quality. Destructive methods measured the fruit diameter, fresh weight, maturity index, flesh firmness, and detachment index, while non-destructive techniques assessed the color and absorbance indices using portable Vis/NIR devices. Chemical analyses determined the fruit moisture, oil content, and total polyphenols. The results showed that the fruit diameter, fresh weight, and oil content increased with ripening, whereas the flesh firmness and detachment index decreased significantly. A negative correlation between the maturity index and color index was observed, along with strong positive correlations between the Kiwi-Meter’s IAD values, maturity index, and oil content. The optimal harvest interval was identified when olives reached up to 25.42% oil content and 1820.89 mg GAE/kg FW total polyphenols, ensuring both the technological and nutritional quality of the oil. Full article
(This article belongs to the Section Pre and Post-Harvest Engineering in Agriculture)
Show Figures

Figure 1

27 pages, 1523 KB  
Article
Reinforcement Learning-Based Agricultural Fertilization and Irrigation Considering N2O Emissions and Uncertain Climate Variability
by Zhaoan Wang, Shaoping Xiao, Jun Wang, Ashwin Parab and Shivam Patel
AgriEngineering 2025, 7(8), 252; https://doi.org/10.3390/agriengineering7080252 - 7 Aug 2025
Viewed by 447
Abstract
Nitrous oxide (N2O) emissions from agriculture are rising due to increased fertilizer use and intensive farming, posing a major challenge for climate mitigation. This study introduces a novel reinforcement learning (RL) framework to optimize farm management strategies that balance [...] Read more.
Nitrous oxide (N2O) emissions from agriculture are rising due to increased fertilizer use and intensive farming, posing a major challenge for climate mitigation. This study introduces a novel reinforcement learning (RL) framework to optimize farm management strategies that balance crop productivity with environmental impact, particularly N2O emissions. By modeling agricultural decision-making as a partially observable Markov decision process (POMDP), the framework accounts for uncertainties in environmental conditions and observational data. The approach integrates deep Q-learning with recurrent neural networks (RNNs) to train adaptive agents within a simulated farming environment. A Probabilistic Deep Learning (PDL) model was developed to estimate N2O emissions, achieving a high Prediction Interval Coverage Probability (PICP) of 0.937 within a 95% confidence interval on the available dataset. While the PDL model’s generalizability is currently constrained by the limited observational data, the RL framework itself is designed for broad applicability, capable of extending to diverse agricultural practices and environmental conditions. Results demonstrate that RL agents reduce N2O emissions without compromising yields, even under climatic variability. The framework’s flexibility allows for future integration of expanded datasets or alternative emission models, ensuring scalability as more field data becomes available. This work highlights the potential of artificial intelligence to advance climate-smart agriculture by simultaneously addressing productivity and sustainability goals in dynamic real-world settings. Full article
(This article belongs to the Special Issue Implementation of Artificial Intelligence in Agriculture)
Show Figures

Figure 1

14 pages, 2579 KB  
Article
Prediction of Subcutaneous Fat Thickness (SFT) in Pantaneiro Lambs: A Model Based on Adipometer and Body Measurements for Android Application
by Adrielly Lais Alves da Silva, Marcus Vinicius Porto dos Santos, Marcelo Corrêa da Silva, Hélio Almeida Ricardo, Marcio Rodrigues de Souza, Núbia Michelle Vieira da Silva and Fernando Miranda de Vargas Junior
AgriEngineering 2025, 7(8), 251; https://doi.org/10.3390/agriengineering7080251 - 7 Aug 2025
Viewed by 656
Abstract
The increasing adoption of digital technologies in the agriculture sector has significantly contributed to optimizing on-farm routines, especially in data-driven decision-making. This study aimed to develop an application to determine the slaughter point of lambs by predicting subcutaneous fat thickness (SFT) using pre-slaughter [...] Read more.
The increasing adoption of digital technologies in the agriculture sector has significantly contributed to optimizing on-farm routines, especially in data-driven decision-making. This study aimed to develop an application to determine the slaughter point of lambs by predicting subcutaneous fat thickness (SFT) using pre-slaughter parameters such as body weight (BW), body condition score (BCS), and skinfold measurements at the brisket (BST), lumbar (LST), and tail base (TST), obtained using an adipometer. A total of 45 Pantaneiros lambs were evaluated, finished in feedlot, and slaughtered at different body weights. Each pre-slaughter weight class showed a distinct carcass pattern when all parameters were included in the model. Exploratory analysis revealed statistical significance for all variables (p < 0.001). BW and LST were selected to construct the predictive equation (R2 = 55.44%). The regression equations were integrated into the developed application, allowing for in-field estimation of SFT based on simple measurements. Compared to conventional techniques such as ultrasound or visual scoring, this tool offers advantages in portability, objectivity, and immediate decision-making support. In conclusion, combining accessible technologies (e.g., adipometer) with traditional variables (e.g., body weight), represents an effective alternative for production systems aimed at optimizing and enhancing the value of lamb carcasses. Full article
Show Figures

Graphical abstract

12 pages, 1432 KB  
Article
Optimizing Gear Selection and Engine Speed to Reduce CO2 Emissions in Agricultural Tractors
by Murilo Battistuzzi Martins, Jessé Santarém Conceição, Aldir Carpes Marques Filho, Bruno Lucas Alves, Diego Miguel Blanco Bertolo, Cássio de Castro Seron, João Flávio Floriano Borges Gomides and Eduardo Pradi Vendruscolo
AgriEngineering 2025, 7(8), 250; https://doi.org/10.3390/agriengineering7080250 - 6 Aug 2025
Viewed by 373
Abstract
In modern agriculture, tractors play a crucial role in powering tools and implements. Proper operation of agricultural tractors in mechanized field operations can support sustainable agriculture and reduce emissions of pollutants such as carbon dioxide (CO2). This has been a recurring [...] Read more.
In modern agriculture, tractors play a crucial role in powering tools and implements. Proper operation of agricultural tractors in mechanized field operations can support sustainable agriculture and reduce emissions of pollutants such as carbon dioxide (CO2). This has been a recurring concern associated with agricultural intensification for food production. This study aimed to evaluate the optimization of tractor gears and engine speed during crop operations to minimize CO2 emissions and promote sustainability. The experiment was conducted using a strip plot design with subdivided sections and six replications, following a double factorial structure. The first factor evaluated was the type of agricultural implement (disc harrow, subsoiler, or sprayer), while the second factor was the engine speed setting (nominal or reduced). Operational and energy performance metrics were analyzed, including fuel consumption and CO2 emissions, travel speed, effective working time, wheel slippage, and working depth. Optimized gear selection and engine speeds resulted in a 20 to 40% reduction in fuel consumption and CO2 emissions. However, other evaluated parameters remain unaffected by the reduced engine speed, regardless of the implement used, ensuring the operation’s quality. Thus, optimizing operator training or configuring machines allows for environmental impact reduction, making agricultural practices more sustainable. Full article
(This article belongs to the Collection Research Progress of Agricultural Machinery Testing)
Show Figures

Figure 1

27 pages, 27006 KB  
Article
Design and Fabrication of a Cost-Effective, Remote-Controlled, Variable-Rate Sprayer Mounted on an Autonomous Tractor, Specifically Integrating Multiple Advanced Technologies for Application in Sugarcane Fields
by Pongpith Tuenpusa, Kiattisak Sangpradit, Mano Suwannakam, Jaturong Langkapin, Alongklod Tanomtong and Grianggai Samseemoung
AgriEngineering 2025, 7(8), 249; https://doi.org/10.3390/agriengineering7080249 - 5 Aug 2025
Viewed by 436
Abstract
The integration of a real-time image processing system using multiple webcams with a variable rate spraying system mounted on the back of an unmanned tractor presents an effective solution to the labor shortage in agriculture. This research aims to design and fabricate a [...] Read more.
The integration of a real-time image processing system using multiple webcams with a variable rate spraying system mounted on the back of an unmanned tractor presents an effective solution to the labor shortage in agriculture. This research aims to design and fabricate a low-cost, variable-rate, remote-controlled sprayer specifically for use in sugarcane fields. The primary method involves the modification of a 15-horsepower tractor, which will be equipped with a remote-control system to manage both the driving and steering functions. A foldable remote-controlled spraying arm is installed at the rear of the unmanned tractor. The system operates by using a webcam mounted on the spraying arm to capture high-angle images above the sugarcane canopy. These images are recorded and processed, and the data is relayed to the spraying control system. As a result, chemicals can be sprayed on the sugarcane accurately and efficiently based on the insights gained from image processing. Tests were conducted at various nozzle heights of 0.25 m, 0.5 m, and 0.75 m. The average system efficiency was found to be 85.30% at a pressure of 1 bar, with a chemical spraying rate of 36 L per hour and a working capacity of 0.975 hectares per hour. The energy consumption recorded was 0.161 kWh, while fuel consumption was measured at 6.807 L per hour. In conclusion, the development of the remote-controlled variable rate sprayer mounted on an unmanned tractor enables immediate and precise chemical application through remote control. This results in high-precision spraying and uniform distribution, ultimately leading to cost savings, particularly by allowing for adjustments in nozzle height from a minimum of 0.25 m to a maximum of 0.75 m from the target. Full article
(This article belongs to the Special Issue Implementation of Artificial Intelligence in Agriculture)
Show Figures

Figure 1

17 pages, 1519 KB  
Article
TOM-SSL: Tomato Disease Recognition Using Pseudo-Labelling-Based Semi-Supervised Learning
by Sathiyamohan Nishankar, Thurairatnam Mithuran, Selvarajah Thuseethan, Yakub Sebastian, Kheng Cher Yeo and Bharanidharan Shanmugam
AgriEngineering 2025, 7(8), 248; https://doi.org/10.3390/agriengineering7080248 - 5 Aug 2025
Viewed by 470
Abstract
In the agricultural domain, the availability of labelled data for disease recognition tasks is often limited due to the cost and expertise required for annotation. In this paper, a novel semi-supervised learning framework named TOM-SSL is proposed for automatic tomato leaf disease recognition [...] Read more.
In the agricultural domain, the availability of labelled data for disease recognition tasks is often limited due to the cost and expertise required for annotation. In this paper, a novel semi-supervised learning framework named TOM-SSL is proposed for automatic tomato leaf disease recognition using pseudo-labelling. TOM-SSL effectively addresses the challenge of limited labelled data by leveraging a small labelled subset and confidently pseudo-labelled samples from a large pool of unlabelled data to improve classification performance. Utilising only 10% of the labelled data, the proposed framework with a MobileNetV3-Small backbone achieves the best accuracy at 72.51% on the tomato subset of the PlantVillage dataset and 70.87% on the Taiwan tomato leaf disease dataset across 10 disease categories in PlantVillage and 6 in the Taiwan dataset. While achieving recognition performance on par with current state-of-the-art supervised methods, notably, the proposed approach offers a tenfold enhancement in label efficiency. Full article
Show Figures

Figure 1

29 pages, 2495 KB  
Article
AIM-Net: A Resource-Efficient Self-Supervised Learning Model for Automated Red Spider Mite Severity Classification in Tea Cultivation
by Malathi Kanagarajan, Mohanasundaram Natarajan, Santhosh Rajendran, Parthasarathy Velusamy, Saravana Kumar Ganesan, Manikandan Bose, Ranjithkumar Sakthivel and Baskaran Stephen Inbaraj
AgriEngineering 2025, 7(8), 247; https://doi.org/10.3390/agriengineering7080247 - 1 Aug 2025
Viewed by 347
Abstract
Tea cultivation faces significant threats from red spider mite (RSM: Oligonychus coffeae) infestations, which reduce yields and economic viability in major tea-producing regions. Current automated detection methods rely on supervised deep learning models requiring extensive labeled data, limiting scalability for smallholder farmers. [...] Read more.
Tea cultivation faces significant threats from red spider mite (RSM: Oligonychus coffeae) infestations, which reduce yields and economic viability in major tea-producing regions. Current automated detection methods rely on supervised deep learning models requiring extensive labeled data, limiting scalability for smallholder farmers. This article proposes AIM-Net (AI-based Infestation Mapping Network) by evaluating SwAV (Swapping Assignments between Views), a self-supervised learning framework, for classifying RSM infestation severity (Mild, Moderate, Severe) using a geo-referenced, field-acquired dataset of RSM infested tea-leaves, Cam-RSM. The methodology combines SwAV pre-training on unlabeled data with fine-tuning on labeled subsets, employing multi-crop augmentation and online clustering to learn discriminative features without full supervision. Comparative analysis against a fully supervised ResNet-50 baseline utilized 5-fold cross-validation, assessing accuracy, F1-scores, and computational efficiency. Results demonstrate SwAV’s superiority, achieving 98.7% overall accuracy (vs. 92.1% for ResNet-50) and macro-average F1-scores of 98.3% across classes, with a 62% reduction in labeled data requirements. The model showed particular strength in Mild_RSM-class detection (F1-score: 98.5%) and computational efficiency, enabling deployment on edge devices. Statistical validation confirmed significant improvements (p < 0.001) over baseline approaches. These findings establish self-supervised learning as a transformative tool for precision pest management, offering resource-efficient solutions for early infestation detection while maintaining high accuracy. Full article
Show Figures

Figure 1

20 pages, 5369 KB  
Article
Smart Postharvest Management of Strawberries: YOLOv8-Driven Detection of Defects, Diseases, and Maturity
by Luana dos Santos Cordeiro, Irenilza de Alencar Nääs and Marcelo Tsuguio Okano
AgriEngineering 2025, 7(8), 246; https://doi.org/10.3390/agriengineering7080246 - 1 Aug 2025
Viewed by 501
Abstract
Strawberries are highly perishable fruits prone to postharvest losses due to defects, diseases, and uneven ripening. This study proposes a deep learning-based approach for automated quality assessment using the YOLOv8n object detection model. A custom dataset of 5663 annotated strawberry images was compiled, [...] Read more.
Strawberries are highly perishable fruits prone to postharvest losses due to defects, diseases, and uneven ripening. This study proposes a deep learning-based approach for automated quality assessment using the YOLOv8n object detection model. A custom dataset of 5663 annotated strawberry images was compiled, covering eight quality categories, including anthracnose, gray mold, powdery mildew, uneven ripening, and physical defects. Data augmentation techniques, such as rotation and Gaussian blur, were applied to enhance model generalization and robustness. The model was trained over 100 and 200 epochs, and its performance was evaluated using standard metrics: Precision, Recall, and mean Average Precision (mAP). The 200-epoch model achieved the best results, with a mAP50 of 0.79 and an inference time of 1 ms per image, demonstrating suitability for real-time applications. Classes with distinct visual features, such as anthracnose and gray mold, were accurately classified. In contrast, visually similar categories, such as ‘Good Quality’ and ‘Unripe’ strawberries, presented classification challenges. Full article
Show Figures

Figure 1

22 pages, 2425 KB  
Article
Spatial Variability in the Deposition of Herbicide Droplets Sprayed Using a Remotely Piloted Aircraft
by Edney Leandro da Vitória, Luis Felipe Oliveira Ribeiro, Ivoney Gontijo, Fábio Ribeiro Pires, Aloisio José Bueno Cotta, Francisco de Assis Ferreira, Marconi Ribeiro Furtado Júnior, Maria Eduarda da Silva Barbosa, João Victor Oliveira Ribeiro and Josué Wan Der Maas Moreira
AgriEngineering 2025, 7(8), 245; https://doi.org/10.3390/agriengineering7080245 - 1 Aug 2025
Viewed by 452
Abstract
In this study, we evaluated the spatial variability in droplet deposition in herbicide applications using a remotely piloted aircraft (RPA) in pasture areas. The investigation was conducted in a square grid (50.0 m × 50.0 m), with 121 sampling points, at two operational [...] Read more.
In this study, we evaluated the spatial variability in droplet deposition in herbicide applications using a remotely piloted aircraft (RPA) in pasture areas. The investigation was conducted in a square grid (50.0 m × 50.0 m), with 121 sampling points, at two operational flight heights (3.0 and 4.0 m). Droplet deposition was quantified using the fluorescent dye rhodamine B, and the droplet spectrum was characterised using water-sensitive paper tags. Geostatistical analysis was implemented to characterise spatial dependence, complemented by multivariate statistical analysis. Droplet deposition ranged from 1.01 to 9.02 and 1.10–6.10 μL cm−2 at 3.0 and 4.0 m flight heights, respectively, with the coefficients of variation between 19.72 and 23.06% for droplet spectrum parameters. All droplet spectrum parameters exhibited a moderate to strong spatial dependence (relative nugget effect ≤75%) and a predominance of adjustment to the exponential model, with spatial dependence indices ranging from 12.55 to 47.49% between the two flight heights. Significant positive correlations were observed between droplet deposition and droplet spectrum parameters (r = 0.60–0.79 at 3.0 m; r = 0.37–0.66 at 4.0 m), with the correlation magnitude decreasing as the operational flight height increased. Cross-validation indices demonstrated acceptable accuracy in spatial prediction, with a mean estimation error ranging from −0.030 to 0.044 and a root mean square error ranging from 0.81 to 2.25 across parameters and flight heights. Principal component analysis explained 99.14 and 85.72% of the total variation at 3.0 and 4.0 m flight heights, respectively. The methodological integration of geostatistics and multivariate statistics provides a comprehensive understanding of the spatial variability in droplet deposition, with relevant implications for the optimisation of phytosanitary applications performed using RPAs. Full article
Show Figures

Figure 1

25 pages, 6843 KB  
Article
Design and Experimental Investigation of Pneumatic Drum-Sieve-Type Separator for Transforming Mixtures of Protaetia Brevitarsis Larvae
by Yuxin Yang, Changhe Niu, Xin Shi, Jianhua Xie, Yongxin Jiang and Deying Ma
AgriEngineering 2025, 7(8), 244; https://doi.org/10.3390/agriengineering7080244 - 1 Aug 2025
Viewed by 387
Abstract
In response to the need for separation and utilization of residual film mixtures after transformation of protaetia brevitarsis larvae, a pneumatic drum-sieve-type separator for transforming mixtures of protaetia brevitarsis larvae was designed. First, the suspension velocity of each component was determined by the [...] Read more.
In response to the need for separation and utilization of residual film mixtures after transformation of protaetia brevitarsis larvae, a pneumatic drum-sieve-type separator for transforming mixtures of protaetia brevitarsis larvae was designed. First, the suspension velocity of each component was determined by the suspension speed test. Secondly, the separation process of residual film, larvae, and insect sand was formulated on the basis of biological activities, shape differences, and aerodynamic response characteristics. Eventually, the main structural parameters and working parameters of the machine were determined. In order to optimize the separation effect, a single-factor experiment and a quadratic regression response surface experiment containing three factors and three levels were carried out, and the corresponding regression model was established. The experimental results showed that the effects of the air speed at the inlet, inclination angle of the sieve cylinder, and rotational speed of the sieve cylinder on the impurity rate of the residual film decreased in that order, and that the effects of the rotational speed of the sieve cylinder, inclination angle of the sieve cylinder, and air speed at the inlet on the inactivation rate of the larvae decreased in that order. Through parameter optimization, a better combination of working parameters was obtained: the rotational speed of the sieve cylinder was 24 r/min, the inclination angle of the sieve cylinder was −0.43°, and the air speed at the inlet was 5.32 m/s. The average values of residual film impurity rate and larval inactivation rate obtained from the material sieving test under these parameters were 8.74% and 3.18%, with the relative errors of the theoretically optimized values being less than 5%. The results of the study can provide a reference for the resource utilization of residual film and impurity mixtures and the development of equipment for the living body separation of protaetia brevitarsis. Full article
Show Figures

Figure 1

26 pages, 1790 KB  
Article
A Hybrid Deep Learning Model for Aromatic and Medicinal Plant Species Classification Using a Curated Leaf Image Dataset
by Shareena E. M., D. Abraham Chandy, Shemi P. M. and Alwin Poulose
AgriEngineering 2025, 7(8), 243; https://doi.org/10.3390/agriengineering7080243 - 1 Aug 2025
Viewed by 579
Abstract
In the era of smart agriculture, accurate identification of plant species is critical for effective crop management, biodiversity monitoring, and the sustainable use of medicinal resources. However, existing deep learning approaches often underperform when applied to fine-grained plant classification tasks due to the [...] Read more.
In the era of smart agriculture, accurate identification of plant species is critical for effective crop management, biodiversity monitoring, and the sustainable use of medicinal resources. However, existing deep learning approaches often underperform when applied to fine-grained plant classification tasks due to the lack of domain-specific, high-quality datasets and the limited representational capacity of traditional architectures. This study addresses these challenges by introducing a novel, well-curated leaf image dataset consisting of 39 classes of medicinal and aromatic plants collected from the Aromatic and Medicinal Plant Research Station in Odakkali, Kerala, India. To overcome performance bottlenecks observed with a baseline Convolutional Neural Network (CNN) that achieved only 44.94% accuracy, we progressively enhanced model performance through a series of architectural innovations. These included the use of a pre-trained VGG16 network, data augmentation techniques, and fine-tuning of deeper convolutional layers, followed by the integration of Squeeze-and-Excitation (SE) attention blocks. Ultimately, we propose a hybrid deep learning architecture that combines VGG16 with Batch Normalization, Gated Recurrent Units (GRUs), Transformer modules, and Dilated Convolutions. This final model achieved a peak validation accuracy of 95.24%, significantly outperforming several baseline models, such as custom CNN (44.94%), VGG-19 (59.49%), VGG-16 before augmentation (71.52%), Xception (85.44%), Inception v3 (87.97%), VGG-16 after data augumentation (89.24%), VGG-16 after fine-tuning (90.51%), MobileNetV2 (93.67), and VGG16 with SE block (94.94%). These results demonstrate superior capability in capturing both local textures and global morphological features. The proposed solution not only advances the state of the art in plant classification but also contributes a valuable dataset to the research community. Its real-world applicability spans field-based plant identification, biodiversity conservation, and precision agriculture, offering a scalable tool for automated plant recognition in complex ecological and agricultural environments. Full article
(This article belongs to the Special Issue Implementation of Artificial Intelligence in Agriculture)
Show Figures

Figure 1

20 pages, 2990 KB  
Article
Examination of Interrupted Lighting Schedule in Indoor Vertical Farms
by Dafni D. Avgoustaki, Vasilis Vevelakis, Katerina Akrivopoulou, Stavros Kalogeropoulos and Thomas Bartzanas
AgriEngineering 2025, 7(8), 242; https://doi.org/10.3390/agriengineering7080242 - 1 Aug 2025
Viewed by 454
Abstract
Indoor horticulture requires a substantial quantity of electricity to meet crops extended photoperiodic requirements for optimal photosynthetic rate. Simultaneously, global electricity costs have grown dramatically in recent years, endangering the sustainability and profitability of indoor vertical farms and/or modern greenhouses that use artificial [...] Read more.
Indoor horticulture requires a substantial quantity of electricity to meet crops extended photoperiodic requirements for optimal photosynthetic rate. Simultaneously, global electricity costs have grown dramatically in recent years, endangering the sustainability and profitability of indoor vertical farms and/or modern greenhouses that use artificial lighting systems to accelerate crop development and growth. This study investigates the growth rate and physiological development of cherry tomato plants cultivated in a pilot indoor vertical farm at the Agricultural University of Athens’ Laboratory of Farm Structures (AUA) under continuous and disruptive lighting. The leaf physiological traits from multiple photoperiodic stress treatments were analyzed and utilized to estimate the plant’s tolerance rate under varied illumination conditions. Four different photoperiodic treatments were examined and compared, firstly plants grew under 14 h of continuous light (C-14L10D/control), secondly plants grew under a normalized photoperiod of 14 h with intermittent light intervals of 10 min of light followed by 50 min of dark (NI-14L10D/stress), the third treatment where plants grew under 14 h of a load-shifted energy demand response intermittent lighting schedule (LSI-14L10D/stress) and finally plants grew under 13 h photoperiod following of a load-shifted energy demand response intermittent lighting schedule (LSI-13L11D/stress). Plants were subjected also under two different light spectra for all the treatments, specifically WHITE and Blue/Red/Far-red light composition. The aim was to develop flexible, energy-efficient lighting protocols that maintain crop productivity while reducing electricity consumption in indoor settings. Results indicated that short periods of disruptive light did not negatively impact physiological responses, and plants exhibited tolerance to abiotic stress induced by intermittent lighting. Post-harvest data indicated that intermittent lighting regimes maintained or enhanced growth compared to continuous lighting, with spectral composition further influencing productivity. Plants under LSI-14L10D and B/R/FR spectra produced up to 93 g fresh fruit per plant and 30.4 g dry mass, while consuming up to 16 kWh less energy than continuous lighting—highlighting the potential of flexible lighting strategies for improved energy-use efficiency. Full article
(This article belongs to the Topic Digital Agriculture, Smart Farming and Crop Monitoring)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop