Previous Issue
Volume 5, September
 
 

NeuroSci, Volume 5, Issue 4 (December 2024) – 6 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
23 pages, 3472 KiB  
Review
Exploring Neuroprotection against Radiation-Induced Brain Injury: A Review of Key Compounds
by Lucas González-Johnson, Ariel Fariña, Gonzalo Farías, Gustavo Zomosa, Víctor Pinilla-González and Catalina Rojas-Solé
NeuroSci 2024, 5(4), 462-484; https://doi.org/10.3390/neurosci5040034 - 12 Oct 2024
Viewed by 474
Abstract
Brain radiation is a crucial tool in neuro-oncology for enhancing local tumor control, but it can lead to mild-to-profound and progressive impairments in cognitive function. Radiation-induced brain injury is a significant adverse effect of radiotherapy for cranioencephalic tumors, primarily caused by indirect cellular [...] Read more.
Brain radiation is a crucial tool in neuro-oncology for enhancing local tumor control, but it can lead to mild-to-profound and progressive impairments in cognitive function. Radiation-induced brain injury is a significant adverse effect of radiotherapy for cranioencephalic tumors, primarily caused by indirect cellular damage through the formation of free radicals. This results in late neurotoxicity manifesting as cognitive impairment due to free radical production. The aim of this review is to highlight the role of different substances, such as drugs used in the clinical setting and antioxidants such as ascorbate, in reducing the neurotoxicity associated with radiation-induced brain injury. Currently, there is mainly preclinical and clinical evidence supporting the benefit of these interventions, representing a cost-effective and straightforward neuroprotective strategy. Full article
Show Figures

Figure 1

17 pages, 1018 KiB  
Article
Resting-State Functional Connectivity Predicts Attention Problems in Children: Evidence from the ABCD Study
by Kelly A. Duffy and Nathaniel E. Helwig
NeuroSci 2024, 5(4), 445-461; https://doi.org/10.3390/neurosci5040033 - 12 Oct 2024
Viewed by 442
Abstract
Attention deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder, and numerous functional and structural differences have been identified in the brains of individuals with ADHD compared to controls. This study uses data from the baseline sample of the large, epidemiologically informed Adolescent Brain [...] Read more.
Attention deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder, and numerous functional and structural differences have been identified in the brains of individuals with ADHD compared to controls. This study uses data from the baseline sample of the large, epidemiologically informed Adolescent Brain Cognitive Development Study of children aged 9–10 years old (N = 7979). Cross-validated Poisson elastic net regression models were used to predict a dimensional measure of ADHD symptomatology from within- and between-network resting-state correlations and several known risk factors, such as biological sex, socioeconomic status, and parental history of problematic alcohol and drug use. We found parental history of drug use and biological sex to be the most important predictors of attention problems. The connection between the default mode network and the dorsal attention network was the only brain network identified as important for predicting attention problems. Specifically, we found that reduced magnitudes of the anticorrelation between the default mode and dorsal attention networks relate to increased attention problems in children. Our findings complement and extend recent studies that have connected individual differences in structural and task-based fMRI to ADHD symptomatology and individual differences in resting-state fMRI to ADHD diagnoses. Full article
Show Figures

Figure 1

16 pages, 725 KiB  
Review
Trehalose: Neuroprotective Effects and Mechanisms—An Updated Review
by Borislav Sevriev, Simeonka Dimitrova, Gabriela Kehayova and Stela Dragomanova
NeuroSci 2024, 5(4), 429-444; https://doi.org/10.3390/neurosci5040032 - 12 Oct 2024
Viewed by 497
Abstract
Trehalose is a naturally occurring disaccharide that has recently gained significant attention for its neuroprotective properties in various models of neurodegeneration. This review provides an overview of available experimental data on the beneficial properties of trehalose for central nervous system pathological conditions. Trehalose’s [...] Read more.
Trehalose is a naturally occurring disaccharide that has recently gained significant attention for its neuroprotective properties in various models of neurodegeneration. This review provides an overview of available experimental data on the beneficial properties of trehalose for central nervous system pathological conditions. Trehalose’s impact on neuronal cell survival and function was also examined. As a result, we identified that trehalose’s neuroprotection includes autophagy modulation as well as its capability to stabilize proteins and inhibit the formation of misfolded ones. Moreover, trehalose mitigates oxidative stress-induced neuronal damage by stabilizing cellular membranes and modulating mitochondrial function. Furthermore, trehalose attenuates excitotoxicity-induced neuroinflammation by suppressing pro-inflammatory cytokine release and inhibiting inflammasome activation. A possible connection of trehalose with the gut–brain axis was also examined. These findings highlight the potential therapeutic effects of trehalose in neurodegenerative diseases. According to the conclusions drawn from this study, trehalose is a promising neuroprotective agent as a result of its distinct mechanism of action, which makes this compound a candidate for further research and the development of therapeutic strategies to combat neuronal damage and promote neuroprotection in various neurological diseases. Full article
Show Figures

Figure 1

22 pages, 4691 KiB  
Article
Wearable EEG-Based Brain–Computer Interface for Stress Monitoring
by Brian Premchand, Liyuan Liang, Kok Soon Phua, Zhuo Zhang, Chuanchu Wang, Ling Guo, Jennifer Ang, Juliana Koh, Xueyi Yong and Kai Keng Ang
NeuroSci 2024, 5(4), 407-428; https://doi.org/10.3390/neurosci5040031 - 8 Oct 2024
Viewed by 852
Abstract
Detecting stress is important for improving human health and potential, because moderate levels of stress may motivate people towards better performance at cognitive tasks, while chronic stress exposure causes impaired performance and health risks. We propose a Brain–Computer Interface (BCI) system to detect [...] Read more.
Detecting stress is important for improving human health and potential, because moderate levels of stress may motivate people towards better performance at cognitive tasks, while chronic stress exposure causes impaired performance and health risks. We propose a Brain–Computer Interface (BCI) system to detect stress in the context of high-pressure work environments. The BCI system includes an electroencephalogram (EEG) headband with dry electrodes and an electrocardiogram (ECG) chest belt. We collected EEG and ECG data from 40 participants during two stressful cognitive tasks: the Cognitive Vigilance Task (CVT), and the Multi-Modal Integration Task (MMIT) we designed. We also recorded self-reported stress levels using the Dundee Stress State Questionnaire (DSSQ). The DSSQ results indicated that performing the MMIT led to significant increases in stress, while performing the CVT did not. Subsequently, we trained two different models to classify stress from non-stress states, one using EEG features, and the other using heart rate variability (HRV) features extracted from the ECG. Our EEG-based model achieved an overall accuracy of 81.0% for MMIT and 77.2% for CVT. However, our HRV-based model only achieved 62.1% accuracy for CVT and 56.0% for MMIT. We conclude that EEG is an effective predictor of stress in the context of stressful cognitive tasks. Our proposed BCI system shows promise in evaluating mental stress in high-pressure work environments, particularly when utilizing an EEG-based BCI. Full article
Show Figures

Figure 1

11 pages, 1803 KiB  
Article
Discontinuation of Cerebro-Spinal Fluid (CSF) Drainage in Acute Hydrocephalus: A Prospective Cohort Study and Exploratory Data Analysis
by Anand S. Pandit, Joanna Palasz, Lauren Harris, Parashkev Nachev and Ahmed K. Toma
NeuroSci 2024, 5(4), 396-406; https://doi.org/10.3390/neurosci5040030 - 8 Oct 2024
Viewed by 507
Abstract
Background: The optimal management of CSF drainage in acute hydrocephalus, in particular when to initiate drain weaning, remains uncertain. This study aimed to evaluate the impact of timing and method of drain weaning on patient outcomes. Methods: This prospective observational study in a [...] Read more.
Background: The optimal management of CSF drainage in acute hydrocephalus, in particular when to initiate drain weaning, remains uncertain. This study aimed to evaluate the impact of timing and method of drain weaning on patient outcomes. Methods: This prospective observational study in a large-volume tertiary neuroscience centre included all adult patients who required temporary CSF drainage for acute hydrocephalus of any cause between January 2020 and March 2021. Contemporaneous data collection was conducted, including patient demographics, time to clamp, weaning methods, and clinical outcomes of hospital length of stay (LOS), rate of shunt insertion, drain-related infections, and mechanical complications. Univariate and multivariate statistical analyses were performed to identify the independent associations of timing-related factors. Results: A total of 69 patients were included (mean age = 59.4 years). A total of 59% had CSF diversion for aneurysmal subarachnoid haemorrhage, and 88% had EVD drainage. The length of drainage prior to the first clamp was significantly associated with the overall length of drainage (p < 0.0001), LOS (p = 0.004), and time to shunt (p = 0.02) following multivariate adjustment. For each day delayed in initiating the drain challenge, the overall LOS increased by an additional 1.25 days. There was no association between the weaning method and LOS, the rate of shunting, or CNS infection; however, those in the gradually weaned group had more mechanical complications, such as drain blockage or CSF leakage, than those rapidly weaned (p = 0.03) after adjustment. Discussion: This study recommends challenging the drain early via a rapid wean to reduce LOS, mechanical complications, and possibly infections. The consequences of temporary CSF diversion have significant implications at financial and patient levels, but the quality of evidence regarding weaning remains poor. Further randomised multicentre studies and national databases of practice are required to allow definitive conclusions to be drawn. Full article
Show Figures

Figure 1

18 pages, 316 KiB  
Article
Normative Data for the D-KEFS Color-Word Interference and Trail Making Tests Adapted in Greek Adult Population 20–49 Years Old
by Marianna Tsatali, Fotini Surdu, Andromachi Konstantinou and Despina Moraitou
NeuroSci 2024, 5(4), 378-395; https://doi.org/10.3390/neurosci5040029 - 4 Oct 2024
Viewed by 418
Abstract
Background: This study was designed to adapt the Delis–Kaplan Executive System (D-KEFS) version of the Color-Word Interference (CWIT) and Trail Making Tests (TMTs) for the Greek adult population from 20 to 49 years old, since it is of research as well as clinical [...] Read more.
Background: This study was designed to adapt the Delis–Kaplan Executive System (D-KEFS) version of the Color-Word Interference (CWIT) and Trail Making Tests (TMTs) for the Greek adult population from 20 to 49 years old, since it is of research as well as clinical importance to detect executive functions’ impairment in young adults with neurological or/and psychiatric conditions. Aims: Norms for the Greek adult population have been calculated to be available for neuropsychologists and health professionals who work in relevant settings. Methods: The study sample consisted of 101 healthy adults (41% male and 60% female) aged 20 to 49 years (M = 32.16, SD = 11.57) with education from 12 to 19 years of schooling (M = 14.51, SD = 0.89). A Pearson correlation test as well as a chi square test were conducted to examine potential associations between gender, age, education, and participants’ performance. Afterwards, we calculated normative data using raw scores and transformed them into percentile scores. Finally, Greek norms were compared to the original raw scores, which were transformed into scaled scores by Delis et al. (2001). Results: The findings showed that age was the only variable which affected CWIT, whereas level of education as well as age were predictive factors for most TMT conditions, except for the visual scanning test (Condition 1). Gender did not affect both tests. Finally, D-KEFS norms for CWIT and TMT are available for the Greek adult population to help clinicians detect executive functions’ deficits and therefore adjust tailored therapeutic strategies. Additionally, it is of great importance to use these tests for research purposes. Conclusion: Given that executive functions are assumed as high-level skills, which are highly related to everyday functionality, adapted tests contribute not only to assess the progression of any existing neurological as well as psychiatric disorders, but they can also be used to evaluate patients’ ability to live independently, as well as their access to work. Full article
Previous Issue
Back to TopTop