Actionable Pattern-Driven Analytics and Prediction
A special issue of Applied Sciences (ISSN 2076-3417). This special issue belongs to the section "Computing and Artificial Intelligence".
Deadline for manuscript submissions: closed (31 October 2019) | Viewed by 64664
Special Issue Editors
Interests: AI and machine learning; data analytics; optimization; soft computing
Special Issues, Collections and Topics in MDPI journals
Interests: artificial intelligence; financial technology; data mining; Internet of Things; time series; deep learning
Special Issues, Collections and Topics in MDPI journals
Special Issue Information
Dear Colleagues,
Pattern-driven analytics and mining has received a lot of attention in the last two decades, since information discovered in data can be used to support decision and strategy making. In addition to traditional methods for mining interesting patterns, several machine learning and optimization methods have been proposed in artificial intelligence to find interesting patterns and retrieve that information in a reasonable time, or in a big data environment. This Special Issue focuses on the topic of discovering actionable knowledge in realistic situations and enterprise applications. We thus welcome original, creative, innovative, cutting-edge, and state-of-the-art theoretical and applied contributions on this topic, including on the following aspects: (1) Next-generation data analytics and prediction theories, methodologies, frameworks, and processes to support actionable pattern-driven analytics and prediction; (2) developing new machine learning and optimization algorithms and methods for handling the big data environment to retrieve actionable patterns in a reasonable and acceptable time; (3) design of operational tools and systems to address business concerns and deliver actionable patterns for business purposes and processes; (4) investigation of novel trends in pattern-driven analytics using AI techniques for different domains and applications; and (5) studies on the security and privacy of actionable knowledge discovery and related organizational and social issues.
Prof. Jerry Chun-Wei Lin
Prof. Chun-Hao Chen
Guest Editors
Manuscript Submission Information
Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.
Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Applied Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.
Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.
Keywords
- Pattern-driven analytics and prediction
- Machine learning and optimization
- Artificial intelligence
- Actional knowledge discovery
Benefits of Publishing in a Special Issue
- Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
- Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
- Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
- External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
- e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.
Further information on MDPI's Special Issue polices can be found here.