Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 34487 KiB  
Article
An ASIC-Based Miniaturized System for Online Multi-Measurand Monitoring of Lithium-Ion Batteries
by Giuseppe Manfredini, Andrea Ria, Paolo Bruschi, Luca Gerevini, Michele Vitelli, Mario Molinara and Massimo Piotto
Batteries 2021, 7(3), 45; https://doi.org/10.3390/batteries7030045 - 5 Jul 2021
Cited by 15 | Viewed by 5686
Abstract
To better asses the ageing and to reduce the hazards involved in the use of Lithium-Ion Batteries, multi-measurand monitoring units and strategies are urged. In this paper, a Cell Management Unit, based on the SENSIPLUS chip, a recently introduced multichannel, multi-mode sensor interface, [...] Read more.
To better asses the ageing and to reduce the hazards involved in the use of Lithium-Ion Batteries, multi-measurand monitoring units and strategies are urged. In this paper, a Cell Management Unit, based on the SENSIPLUS chip, a recently introduced multichannel, multi-mode sensor interface, is described. SENSIPLUS is a single System on a Chip combined with a reduced number of external components, resulting in a highly miniaturized device, built on 20 × 8 mm2 printed circuit board. Thanks to SENSIPLUS’ versatility, the proposed system is capable of performing direct measurements (EIS, cell voltage) on the cell it is applied to, and reading different kinds of sensors. The SENSIPLUS versatile digital communication interface, combined with a digital isolator, enable connection of several devices to a single bus for parallel monitoring a large number of cells connected in series. Experiments performed by connecting the proposed system to a commercial Lithium-Ion Battery and to capacitive and resistive sensors are described. In particular, the capability of measuring the cell internal impedance with a resolution of 120 ?? is demonstrated. Full article
(This article belongs to the Special Issue Lithium-Ion Batteries Aging Mechanisms, 2nd Edition)
Show Figures

Figure 1

19 pages, 5381 KiB  
Article
Absolute Local Quantification of Li as Function of State-of-Charge in All-Solid-State Li Batteries via 2D MeV Ion-Beam Analysis
by Sören Möller, Takahiro Satoh, Yasuyuki Ishii, Britta Teßmer, Rayan Guerdelli, Tomihiro Kamiya, Kazuhisa Fujita, Kota Suzuki, Yoshiaki Kato, Hans-Dieter Wiemhöfer, Kunioki Mima and Martin Finsterbusch
Batteries 2021, 7(2), 41; https://doi.org/10.3390/batteries7020041 - 20 Jun 2021
Cited by 7 | Viewed by 6248
Abstract
Direct observation of the lithiation and de-lithiation in lithium batteries on the component and microstructural scale is still difficult. This work presents recent advances in MeV ion-beam analysis, enabling quantitative contact-free analysis of the spatially-resolved lithium content and state-of-charge (SoC) in all-solid-state lithium [...] Read more.
Direct observation of the lithiation and de-lithiation in lithium batteries on the component and microstructural scale is still difficult. This work presents recent advances in MeV ion-beam analysis, enabling quantitative contact-free analysis of the spatially-resolved lithium content and state-of-charge (SoC) in all-solid-state lithium batteries via 3 MeV proton-based characteristic x-ray and gamma-ray emission analysis. The analysis is demonstrated on cross-sections of ceramic and polymer all-solid-state cells with LLZO and MEEP/LIBOB solid electrolytes. Different SoC are measured ex-situ and one polymer-based operando cell is charged at 333 K during analysis. The data unambiguously show the migration of lithium upon charging. Quantitative lithium concentrations are obtained by taking the physical and material aspects of the mixed cathodes into account. This quantitative lithium determination as a function of SoC gives insight into irreversible degradation phenomena of all-solid-state batteries during the first cycles and locations of immobile lithium. The determined SoC matches the electrochemical characterization within uncertainties. The presented analysis method thus opens up a completely new access to the state-of-charge of battery cells not depending on electrochemical measurements. Automated beam scanning and data-analysis algorithms enable a 2D quantitative Li and SoC mapping on the µm-scale, not accessible with other methods. Full article
(This article belongs to the Special Issue Lithium-Ion Batteries Aging Mechanisms)
Show Figures

Figure 1

14 pages, 3619 KiB  
Article
A Comparison of Lithium-Ion Cell Performance across Three Different Cell Formats
by Grace Bridgewater, Matthew J. Capener, James Brandon, Michael J. Lain, Mark Copley and Emma Kendrick
Batteries 2021, 7(2), 38; https://doi.org/10.3390/batteries7020038 - 8 Jun 2021
Cited by 30 | Viewed by 10085
Abstract
To investigate the influence of cell formats during a cell development programme, lithium-ion cells have been prepared in three different formats. Coin cells, single layer pouch cells, and stacked pouch cells gave a range of scales of almost three orders of magnitude. The [...] Read more.
To investigate the influence of cell formats during a cell development programme, lithium-ion cells have been prepared in three different formats. Coin cells, single layer pouch cells, and stacked pouch cells gave a range of scales of almost three orders of magnitude. The cells used the same electrode coatings, electrolyte and separator. The performance of the different formats was compared in long term cycling tests and in measurements of resistance and discharge capacities at different rates. Some test results were common to all three formats. However, the stacked pouch cells had higher discharge capacities at higher rates. During cycling tests, there were indications of differences in the predominant degradation mechanism between the stacked cells and the other two cell formats. The stacked cells showed faster resistance increases, whereas the coin cells showed faster capacity loss. The difference in degradation mechanism can be linked to the different thermal and mechanical environments in the three cell formats. The correlation in the electrochemical performance between coin cells, single layer pouch cells, and stacked pouch cells shows that developments within a single cell format are likely to lead to improvements across all cell formats. Full article
(This article belongs to the Special Issue Lithium-Ion Batteries: Latest Advances and Prospects II)
Show Figures

Figure 1

23 pages, 6215 KiB  
Article
Calendar Aging of Li-Ion Cells—Experimental Investigation and Empirical Correlation
by Daniel Werner, Sabine Paarmann and Thomas Wetzel
Batteries 2021, 7(2), 28; https://doi.org/10.3390/batteries7020028 - 30 Apr 2021
Cited by 34 | Viewed by 14241
Abstract
The lifetime of the battery significantly influences the acceptance of electric vehicles. Calendar aging contributes to the limited operating lifetime of lithium-ion batteries. Therefore, its consideration in addition to cyclical aging is essential to understand battery degradation. This study consequently examines the same [...] Read more.
The lifetime of the battery significantly influences the acceptance of electric vehicles. Calendar aging contributes to the limited operating lifetime of lithium-ion batteries. Therefore, its consideration in addition to cyclical aging is essential to understand battery degradation. This study consequently examines the same graphite/NCA pouch cell that was the subject of previously published cyclic aging tests. The cells were aged at different temperatures and states of charge. The self-discharge was continuously monitored, and after each storage period, the remaining capacity and the impedance were measured. The focus of this publication is on the correlation of the measurements. An aging correlation is obtained that is valid for a wide range of temperatures and states of charge. The results show an accelerated capacity fade and impedance rise with increasing temperature, following the law of Arrhenius. However, the obtained data do also indicate that there is no path dependency, i.e., earlier periods at different temperature levels do not affect the present degradation rate. A large impact of the storage state of charge at 100% is evident, whereas the influence is small below 80%. Instead of the commonly applied square root of the time function, our results are in excellent agreement with an exponential function. Full article
(This article belongs to the Special Issue Lithium-Ion Batteries Aging Mechanisms)
Show Figures

Figure 1

27 pages, 10524 KiB  
Article
Experimental and Numerical Investigation of the Thermal Performance of a Hybrid Battery Thermal Management System for an Electric Van
by Franck Pra, Jad Al Koussa, Sebastian Ludwig and Carlo M. De Servi
Batteries 2021, 7(2), 27; https://doi.org/10.3390/batteries7020027 - 28 Apr 2021
Cited by 6 | Viewed by 4919
Abstract
The temperature and the temperature gradient within the battery pack of an electric vehicle have a strong effect on the life time of the battery cells. In the case of automotive applications, a battery thermal management (BTM) system is required to maintain the [...] Read more.
The temperature and the temperature gradient within the battery pack of an electric vehicle have a strong effect on the life time of the battery cells. In the case of automotive applications, a battery thermal management (BTM) system is required to maintain the temperature of the cells within a prescribed and safe range, and to prevent excessively high thermal gradients within the battery pack. This work documents the assessment of a thermal management system for a battery pack for an electric van, which adopts a combination of active/passive solutions: the battery cells are arranged in a matrix or composite made of expanded graphite and a phase change material (PCM), which can be actively cooled by forced air convection. The thermal dissipation of the cells was predicted based on an equivalent circuit model of the cells (LG Chem MJ1) that was empirically calibrated in a previous study. It resulted that, in order to keep the temperature of the battery pack at or below 40 °C during certain charge/discharge cycles, a purely passive BTM would require a considerable amount of PCM material that would unacceptably increase the battery pack weight. Therefore, the passive solution was combined with an air cooling system that could be activated when necessary. To assess the resulting hybrid BTM concept, CFD simulations were performed and an experimental test setup was built to validate the simulations. In particular, PCM melting and solidification times, the thermal discrepancy among the cells and the melting/solidification temperatures were examined. The melting time experimentally observed was higher than that predicted by the CFD model, but this discrepancy was not observed during the solidification of the PCM. This deviation between the CFD model results and the experimental data during PCM melting can be attributed to the thermal losses occurring through the mock-up casing as the heating elements are in direct contact with the external walls of the casing. Moreover, the temperature range over which the PCM solidifies was 6 °C lower than that estimated in the numerical simulations. This occurs because the simple thermodynamic model cannot predict the metastable state of the liquid phase which occurs before the onset of PCM solidification. The mockup was also used to emulate the heat dissipation of the cells during a highway driving cycle of the eVan and the thermal management solution as designed. Results showed that for this mission of the vehicle and starting from an initial temperature of the cells of 40 °C, the battery pack temperature could be maintained below 40 °C over the entire mission by a cooling air flow at 2.5 m/s and at a temperature of 30 °C. Full article
Show Figures

Figure 1

26 pages, 5776 KiB  
Article
Early Detection of Failing Automotive Batteries Using Gas Sensors
by Christiane Essl, Lauritz Seifert, Michael Rabe and Anton Fuchs
Batteries 2021, 7(2), 25; https://doi.org/10.3390/batteries7020025 - 12 Apr 2021
Cited by 62 | Viewed by 16864
Abstract
Safety for automotive lithium-ion battery (LIB) applications is of crucial importance, especially for electric vehicle applications using batteries with high capacity and high energy density. In case of a defect inside or outside the cell, serious safety risks are possible including extensive heat [...] Read more.
Safety for automotive lithium-ion battery (LIB) applications is of crucial importance, especially for electric vehicle applications using batteries with high capacity and high energy density. In case of a defect inside or outside the cell, serious safety risks are possible including extensive heat generation, toxic and flammable gas generation, and consequently fire and explosion. New regulations (GB 38031-2020) require a warning for passengers at least five minutes before serious incidents. This regulation can hardly be fulfilled with state-of-the-art battery monitoring. In this study, gases produced during battery failure before and during a thermal runaway (TR) are investigated in detail and the use of different gas sensors as early detectors of battery incidents is tested and proposed. The response of several commercially available gas sensors is tested in four battery failure cases: unwanted electrolysis of voltage carrying parts, electrolyte vapor, first venting of the cell and the TR. The experiments show that battery failure detection with gas sensors is possible but depends highly on the failure case. The chosen gas sensor can detect H2 produced by unwanted electrolysis and electrolyte vapor and gases produced by degassing of state-of-the-art LIBs. The results may contribute significantly to failure detection and improvement of battery safety. Full article
(This article belongs to the Special Issue Batteries and Electric Vehicles)
Show Figures

Figure 1

19 pages, 3515 KiB  
Article
Influence of Aging on the Failing Behavior of Automotive Lithium-Ion Batteries
by Christiane Essl, Andrey W. Golubkov and Anton Fuchs
Batteries 2021, 7(2), 23; https://doi.org/10.3390/batteries7020023 - 7 Apr 2021
Cited by 32 | Viewed by 8319
Abstract
Lithium-ion batteries (LIBs) are a dominant state-of-the-art energy storage system and have importance in the automotive sector. Still, LIBs suffer from aging effects and serious hazards from failing batteries are possible. These failures can lead to exothermic chemical reactions inside the cell, ending [...] Read more.
Lithium-ion batteries (LIBs) are a dominant state-of-the-art energy storage system and have importance in the automotive sector. Still, LIBs suffer from aging effects and serious hazards from failing batteries are possible. These failures can lead to exothermic chemical reactions inside the cell, ending up in thermal runaway (TR). TR has caused most electric vehicle (EV) fires. Since statistically most accidents with EVs happen after about one year of vehicle usage, in particular, the failing behavior of aged cells needs to be investigated. Little information is available in open literature about the influence of aging paths on the failing behavior and especially on the degassing behavior of large automotive LIBs. Therefore, this study investigates the influence of three different aging paths (cyclic at ?10 °C and at 45 °C and calendric at 60 °C) on the thermal behavior, the vent gas emission, and the vent gas composition. The results show a clear effect of aging on the failing behavior. The aged cells showed a less violent failing reaction, reduced maximal temperatures, lower amount of produced gas, significantly lower amount of CO in the vent gas, and lower mass loss than fresh cells in the same overtemperature experiments. The results are valuable for the scientific and industrial community dealing with LIBs. Full article
Show Figures

Figure 1

13 pages, 1257 KiB  
Review
A Performance and Cost Overview of Selected Solid-State Electrolytes: Race between Polymer Electrolytes and Inorganic Sulfide Electrolytes
by Duygu Karabelli, Kai Peter Birke and Max Weeber
Batteries 2021, 7(1), 18; https://doi.org/10.3390/batteries7010018 - 5 Mar 2021
Cited by 65 | Viewed by 14861
Abstract
Electrolytes are key components in electrochemical storage systems, which provide an ion-transport mechanism between the cathode and anode of a cell. As battery technologies are in continuous development, there has been growing demand for more efficient, reliable and environmentally friendly materials. Solid-state lithium [...] Read more.
Electrolytes are key components in electrochemical storage systems, which provide an ion-transport mechanism between the cathode and anode of a cell. As battery technologies are in continuous development, there has been growing demand for more efficient, reliable and environmentally friendly materials. Solid-state lithium ion batteries (SSLIBs) are considered as next-generation energy storage systems and solid electrolytes (SEs) are the key components for these systems. Compared to liquid electrolytes, SEs are thermally stable (safer), less toxic and provide a more compact (lighter) battery design. However, the main issue is the ionic conductivity, especially at low temperatures. So far, there are two popular types of SEs: (1) inorganic solid electrolytes (InSEs) and (2) polymer electrolytes (PEs). Among InSEs, sulfide-based SEs are providing very high ionic conductivities (up to 10?2 S/cm) and they can easily compete with liquid electrolytes (LEs). On the other hand, they are much more expensive than LEs. PEs can be produced at less cost than InSEs but their conductivities are still not sufficient for higher performances. This paper reviews the most efficient SEs and compares them in terms of their performances and costs. The challenges associated with the current state-of-the-art electrolytes and their cost-reduction potentials are described. Full article
(This article belongs to the Special Issue Ionic Transportation Bases in All-Solid-State Batteries)
Show Figures

Figure 1

16 pages, 3398 KiB  
Article
State-of-Charge Monitoring and Battery Diagnosis of Different Lithium Ion Chemistries Using Impedance Spectroscopy
by Peter Kurzweil and Wolfgang Scheuerpflug
Batteries 2021, 7(1), 17; https://doi.org/10.3390/batteries7010017 - 4 Mar 2021
Cited by 10 | Viewed by 7718
Abstract
For lithium iron phosphate batteries (LFP) in aerospace applications, impedance spectroscopy is applicable in the flat region of the voltage-charge curve. The frequency-dependent pseudocapacitance at 0.15 Hz is presented as useful state-of-charge (SOC) and state-of-health (SOH) indicator. For the same battery type, the [...] Read more.
For lithium iron phosphate batteries (LFP) in aerospace applications, impedance spectroscopy is applicable in the flat region of the voltage-charge curve. The frequency-dependent pseudocapacitance at 0.15 Hz is presented as useful state-of-charge (SOC) and state-of-health (SOH) indicator. For the same battery type, the prediction error of pseudocapacitance is better than 1% for a quadratic calibration curve, and less than 36% for a linear model. An approximately linear correlation between pseudocapacitance and Ah battery capacity is observed as long as overcharge and deep discharge are avoided. We verify the impedance method in comparison to the classical constant-current discharge measurements. In the case of five examined lithium-ion chemistries, the linear trend of impedance and SOC is lost if the slope of the discharge voltage curve versus SOC changes. With nickel manganese cobalt (NMC), high impedance modulus correlates with high SOC above 70%. Full article
(This article belongs to the Special Issue Lithium-Ion Batteries: Latest Advances and Prospects II)
Show Figures

Figure 1

12 pages, 2369 KiB  
Article
Thermophysical Characterization of a Layered P2 Type Structure Na0.53MnO2 Cathode Material for Sodium Ion Batteries
by Ijaz Ul Mohsin, Carlos Ziebert, Magnus Rohde and Hans Jürgen Seifert
Batteries 2021, 7(1), 16; https://doi.org/10.3390/batteries7010016 - 1 Mar 2021
Cited by 8 | Viewed by 6153
Abstract
Over the last decade, the demand for safer batteries with excellent performance and lower costs has been intensively increasing. The abundantly available precursors and environmental friendliness are generating more and more interest in sodium ion batteries (SIBs), especially because of the lower material [...] Read more.
Over the last decade, the demand for safer batteries with excellent performance and lower costs has been intensively increasing. The abundantly available precursors and environmental friendliness are generating more and more interest in sodium ion batteries (SIBs), especially because of the lower material costs compared to Li-ion batteries. Therefore, significant efforts are being dedicated to investigating new cathode materials for SIBs. Since the thermal characterization of cathode materials is one of the key factors for designing safe batteries, the thermophysical properties of a commercial layered P2 type structure Na0.53MnO2 cathode material in powder form were measured in the temperature range between ?20 and 1200 °C by differential scanning calorimetry (DSC), laser flash analysis (LFA), and thermogravimetry (TG). The thermogravimetry (TG) was combined with mass spectrometry (MS) to study the thermal decomposition of the cathode material with respect to the evolved gas analysis (EGA) and was performed from room temperature up to 1200 °C. The specific heat (Cp) and the thermal diffusivity (?) were measured up to 400 °C because beyond this temperature, the cathode material starts to decompose. The thermal conductivity (?) as a function of temperature was calculated from the thermal diffusivity, the specific heat capacity, and the density. Such thermophysical data are highly relevant and important for thermal simulation studies, thermal management, and the mitigation of thermal runaway. Full article
Show Figures

Figure 1

22 pages, 3571 KiB  
Article
Estimate e-Golf Battery State Using Diagnostic Data and a Digital Twin
by Lukas Merkle, Michael Pöthig and Florian Schmid
Batteries 2021, 7(1), 15; https://doi.org/10.3390/batteries7010015 - 24 Feb 2021
Cited by 52 | Viewed by 10793
Abstract
Li-ion battery packs are the heart of modern electric vehicles. Due to their perishable nature, it is crucial to supervise them closely. In addition to on-board supervision over safety and range, insights into the battery’s degradation are also becoming increasingly important, not only [...] Read more.
Li-ion battery packs are the heart of modern electric vehicles. Due to their perishable nature, it is crucial to supervise them closely. In addition to on-board supervision over safety and range, insights into the battery’s degradation are also becoming increasingly important, not only for the vehicle manufacturers but also for vehicle users. The concept of digital twins has already emerged on the field of automotive technology, and can also help to digitalize the vehicle’s battery. In this work, we set up a data pipeline and digital battery twin to track the battery state, including State of charge (SOC) and State of Health (SOH). To achieve this goal, we reverse-engineer the diagnostics interface of a 2014 e-Golf to query for UDS messages containing both battery pack and cell-individual data. An OBD logger records the data with edge-processing capability. Pushing this data into the cloud twin system using IoT-technology, we can fit battery models to the data and infer for example, cell individual internal resistance from them. We find that the resistances of the cells differ by a magnitude of two. Furthermore, we propose an architecture for the battery twin in which the twin fleet shares resources like models by encapsulating them in Docker containers run on a cloud stack. By using web technology, we present the analyzed results on a web interface. Full article
Show Figures

Figure 1

21 pages, 834 KiB  
Article
A Flexible Model for Benchmarking the Energy Usage of Automotive Lithium-Ion Battery Cell Manufacturing
by Asanthi Jinasena, Odne Stokke Burheim and Anders Hammer Strømman
Batteries 2021, 7(1), 14; https://doi.org/10.3390/batteries7010014 - 22 Feb 2021
Cited by 45 | Viewed by 12067
Abstract
The increasing use of electric vehicle batteries in the world has a significant impact on both society and the environment. Thus, there is a need for the availability of transparent information on resource allocation. Battery manufacturing process details in this regard are not [...] Read more.
The increasing use of electric vehicle batteries in the world has a significant impact on both society and the environment. Thus, there is a need for the availability of transparent information on resource allocation. Battery manufacturing process details in this regard are not available in academia or the public. The available energy data on manufacturing has a high variation. Furthermore, different process steps have different energy and material demands. A process model can benchmark the energy usage, provide detailed process data, and compare various cell productions which in turn can be used in life-cycle assessment studies to reduce the variation and provide directions for improvements. Therefore, a cell manufacturing model is developed for the calculation of energy and material demands for different battery types, plant capacities, and process steps. The model consists of the main process steps, machines, intermediate products and building service units. Furthermore, the results are validated using literature values. For a case study of a 2 GWh plant that produces prismatic NMC333 cells, the total energy requirement on a theoretical and optimal basis is suggested to be 44.6Whinproduction/Whcellcapacity. This energy consumption in producing batteries is dominated by electrode drying, and dry room. Energy usage for a variety of cell types for a similar plant capacity shows that the standard deviation in the results is low (47.23±13.03Wh/Wh). Full article
Show Figures

Figure 1

15 pages, 4716 KiB  
Article
Infiltrated and Isostatic Laminated NCM and LTO Electrodes with Plastic Crystal Electrolyte Based on Succinonitrile for Lithium-Ion Solid State Batteries
by Matthias Coeler, Vanessa van Laack, Frederieke Langer, Annegret Potthoff, Sören Höhn, Sebastian Reuber, Katharina Koscheck and Mareike Wolter
Batteries 2021, 7(1), 11; https://doi.org/10.3390/batteries7010011 - 3 Feb 2021
Cited by 9 | Viewed by 6509
Abstract
We report a new process technique for electrode manufacturing for all solid-state batteries. Porous electrodes are manufactured by a tape casting process and subsequently infiltrated by a plastic crystal polymer electrolyte (PCPE). With a following isostatic lamination process, the PCPE was further integrated [...] Read more.
We report a new process technique for electrode manufacturing for all solid-state batteries. Porous electrodes are manufactured by a tape casting process and subsequently infiltrated by a plastic crystal polymer electrolyte (PCPE). With a following isostatic lamination process, the PCPE was further integrated deeply into the porous electrode layer, forming a composite electrode. The PCPE comprises the plastic crystal succinonitrile (SN), lithium conductive salt LiTFSI and polyacrylonitrile (PAN) and exhibits suitable thermal, rheological (? = 0.6 Pa s @ 80 °C 1 s?1) and electrochemical properties (? > 10?4 S/cm @ 45 °C). We detected a lowered porosity of infiltrated and laminated electrodes through Hg porosimetry, showing a reduction from 25.6% to 2.6% (NCM infiltrated to laminated) and 32.9% to 4.0% (LTO infiltrated to laminated). Infiltration of PCPE into the electrodes was further verified by FESEM images and EDS mapping of sulfur content of the conductive salt. Cycling tests of full cells with NCM and LTO electrodes with PCPE separator at 45 °C showed up to 165 mAh/g at 0.03C over 20 cycles, which is about 97% of the total usable LTO capacity with a coulomb efficiency of between 98 and 99%. Cycling tests at 0.1C showed a capacity of ~128 mAh/g after 40 cycles. The C-rate of 0.2C showed a mean capacity of 127 mAh/g. In summary, we could manufacture full cells using a plastic crystal polymer electrolyte suitable for NCM and LTO active material, which is easily to be integrated into porous electrodes and which is being able to be used in future cell concepts like bipolar stacked cells. Full article
(This article belongs to the Special Issue Ionic Transportation Bases in All-Solid-State Batteries)
Show Figures

Figure 1

14 pages, 5108 KiB  
Article
Effects of the Nail Geometry and Humidity on the Nail Penetration of High-Energy Density Lithium Ion Batteries
by Stefan Doose, Wolfgang Haselrieder and Arno Kwade
Batteries 2021, 7(1), 6; https://doi.org/10.3390/batteries7010006 - 12 Jan 2021
Cited by 19 | Viewed by 5347
Abstract
Internal short-circuit tests were carried out in a battery safety investigation chamber to determine the behavior of batteries during the nail penetration test. So far, systematic investigations regarding the test setup and its influence are rarely found in the literature. Especially, to improve [...] Read more.
Internal short-circuit tests were carried out in a battery safety investigation chamber to determine the behavior of batteries during the nail penetration test. So far, systematic investigations regarding the test setup and its influence are rarely found in the literature. Especially, to improve the comparability of the multitude of available results, it is essential to understand the effects of the geometric, operating and ambient parameters. In this study commercial lithium ion batteries with a capacity of 5.3 and 3.3 Ah were used to study the influence of the varied parameters on the voltage drop, the development of surface temperatures and of infrared active gas species. We studied both the influence of the geometry of the penetrating nail and concentration of water in the inert atmosphere especially on the quantities of the reaction products under variation of cell capacity. It could be shown that the geometry of the nail, within certain limits, has no influence on the processes of the thermal runaway of high energy density lithium ion batteries (LIBs). However, a change in capacity from 5.3 to 3.3 Ah shows that in particular the gaseous reaction products differ: The standardized gas concentrations show a higher measurable concentration of all gases except CO for the 3.3 Ah LIBs. This circumstance can be explained by the intensity of the reactions due to the different battery capacities: In the 5.3 Ah cells a larger amount of unreacted material is immediately discharged from the reaction center, and by the different available amounts of oxidizing reaction partners. An increase of the water content in the surrounding atmosphere during the thermal runaway leads to a reduction of the measurable gas concentrations of up to 36.01%. In general, all measured concentrations decrease. With increased water content more reaction products from the atmosphere can be directly bound or settle as condensate on surfaces. Full article
Show Figures

Figure 1

11 pages, 2099 KiB  
Article
Design Considerations for Fast Charging Lithium Ion Cells for NMC/MCMB Electrode Pairs
by William Yourey, Yanbao Fu, Ning Li, Vincent Battaglia and Wei Tong
Batteries 2021, 7(1), 4; https://doi.org/10.3390/batteries7010004 - 5 Jan 2021
Cited by 8 | Viewed by 5743
Abstract
Lithium ion cells that can be quickly charged are of critical importance for the continued and accelerated penetration of electric vehicles (EV) into the consumer market. Considering this, the U.S. Department of Energy (DOE) has set a cell recharge time goal of 10–15 [...] Read more.
Lithium ion cells that can be quickly charged are of critical importance for the continued and accelerated penetration of electric vehicles (EV) into the consumer market. Considering this, the U.S. Department of Energy (DOE) has set a cell recharge time goal of 10–15 min. The following study provides an investigation into the effect of cell design, specifically negative to positive matching ratio (1.2:1 vs. 1.7:1) on fast charging performance. By using specific charging procedures based on negative electrode performance, as opposed to the industrial standard constant current constant voltage procedures, we show that the cells with a higher N:P ratio can be charged to ~16% higher capacity in the ten-minute time frame. Cells with a higher N:P ratio also show similar cycle life performance to those with a conventional N:P ratio, despite the fact that these cells experience a much higher irreversible capacity loss, leading to a lower reversible specific capacity. Full article
Show Figures

Figure 1

26 pages, 6817 KiB  
Article
Mathematical Heat Transfer Modeling and Experimental Validation of Lithium-Ion Battery Considering: Tab and Surface Temperature, Separator, Electrolyte Resistance, Anode-Cathode Irreversible and Reversible Heat
by Anosh Mevawalla, Satyam Panchal, Manh-Kien Tran, Michael Fowler and Roydon Fraser
Batteries 2020, 6(4), 61; https://doi.org/10.3390/batteries6040061 - 16 Dec 2020
Cited by 99 | Viewed by 12084
Abstract
The temperature and heat produced by lithium-ion (Li-ion) batteries in electric and hybrid vehicles is an important field of investigation as it determines the power, performance, and cycle life of the battery pack. This paper presented both laboratory data and simulation results at [...] Read more.
The temperature and heat produced by lithium-ion (Li-ion) batteries in electric and hybrid vehicles is an important field of investigation as it determines the power, performance, and cycle life of the battery pack. This paper presented both laboratory data and simulation results at C-rates of 1C, 2C, 3C, and 4C at an ambient temperature of approximately 23 °C. During experiment thermocouples were placed on the surface of the battery. The thermal model assumed constant current discharge and was experimentally validated. It was observed that temperature increased with C-rates at both the surface and the tabs. We note that at 4C the battery temperature increased from 22 °C to 47.40 °C and the tab temperature increased from 22 °C to 52.94 °C. Overall, the simulation results showed that more heat was produced in the cathode than the anode, the primary source of heat was the electrolyte resistance, and the battery temperature was the highest near the tabs and in the internal space of the battery. Simulation of the lithium concentration within the battery showed that the lithium concentration was more uniform in the anode than in the cathode. These results can help the accurate thermal design and thermal management of Li-ion batteries. Full article
(This article belongs to the Special Issue Batteries and Electric Vehicles)
Show Figures

Figure 1

18 pages, 2719 KiB  
Article
Lightweight Polymer-Carbon Composite Current Collector for Lithium-Ion Batteries
by Marco Fritsch, Matthias Coeler, Karina Kunz, Beate Krause, Peter Marcinkowski, Petra Pötschke, Mareike Wolter and Alexander Michaelis
Batteries 2020, 6(4), 60; https://doi.org/10.3390/batteries6040060 - 8 Dec 2020
Cited by 18 | Viewed by 7834
Abstract
A hermetic dense polymer-carbon composite-based current collector foil (PCCF) for lithium-ion battery applications was developed and evaluated in comparison to state-of-the-art aluminum (Al) foil collector. Water-processed LiNi0.5Mn1.5O4 (LMNO) cathode and Li4Ti5O12 (LTO) anode [...] Read more.
A hermetic dense polymer-carbon composite-based current collector foil (PCCF) for lithium-ion battery applications was developed and evaluated in comparison to state-of-the-art aluminum (Al) foil collector. Water-processed LiNi0.5Mn1.5O4 (LMNO) cathode and Li4Ti5O12 (LTO) anode coatings with the integration of a thin carbon primer at the interface to the collector were prepared. Despite the fact that the laboratory manufactured PCCF shows a much higher film thickness of 55 µm compared to Al foil of 19 µm, the electrode resistance was measured to be by a factor of 5 lower compared to the Al collector, which was attributed to the low contact resistance between PCCF, carbon primer and electrode microstructure. The PCCF-C-primer collector shows a sufficient voltage stability up to 5 V vs. Li/Li+ and a negligible Li-intercalation loss into the carbon primer. Electrochemical cell tests demonstrate the applicability of the developed PCCF for LMNO and LTO electrodes, with no disadvantage compared to state-of-the-art Al collector. Due to a 50% lower material density, the lightweight and hermetic dense PCCF polymer collector offers the possibility to significantly decrease the mass loading of the collector in battery cells, which can be of special interest for bipolar battery architectures. Full article
(This article belongs to the Special Issue Lithium-Ion Batteries: Latest Advances and Prospects)
Show Figures

Figure 1

16 pages, 3255 KiB  
Article
Optimal Siting and Sizing of Battery Energy Storage Systems for Distribution Network of Distribution System Operators
by Panyawoot Boonluk, Apirat Siritaratiwat, Pradit Fuangfoo and Sirote Khunkitti
Batteries 2020, 6(4), 56; https://doi.org/10.3390/batteries6040056 - 19 Nov 2020
Cited by 59 | Viewed by 8990
Abstract
In this work, optimal siting and sizing of a battery energy storage system (BESS) in a distribution network with renewable energy sources (RESs) of distribution network operators (DNO) are presented to reduce the effect of RES fluctuations for power generation reliability and quality. [...] Read more.
In this work, optimal siting and sizing of a battery energy storage system (BESS) in a distribution network with renewable energy sources (RESs) of distribution network operators (DNO) are presented to reduce the effect of RES fluctuations for power generation reliability and quality. The optimal siting and sizing of the BESS are found by minimizing the costs caused by the voltage deviations, power losses, and peak demands in the distribution network for improving the performance of the distribution network. The simulation results of the BESS installation were evaluated in the IEEE 33-bus distribution network. Genetic algorithm (GA) and particle swarm optimization (PSO) were adopted to solve this optimization problem, and the results obtained from these two algorithms were compared. After the BESS installation in the distribution network, the voltage deviations, power losses, and peak demands were reduced when compared to those of the case without BESS installation. Full article
(This article belongs to the Special Issue Battery Systems and Energy Storage beyond 2020)
Show Figures

Figure 1

32 pages, 2211 KiB  
Review
A Review on Temperature-Dependent Electrochemical Properties, Aging, and Performance of Lithium-Ion Cells
by Mohammad Alipour, Carlos Ziebert, Fiorentino Valerio Conte and Riza Kizilel
Batteries 2020, 6(3), 35; https://doi.org/10.3390/batteries6030035 - 28 Jun 2020
Cited by 117 | Viewed by 22833
Abstract
Temperature heavily affects the behavior of any energy storage chemistries. In particular, lithium-ion batteries (LIBs) play a significant role in almost all storage application fields, including Electric Vehicles (EVs). Therefore, a full comprehension of the influence of the temperature on the key cell [...] Read more.
Temperature heavily affects the behavior of any energy storage chemistries. In particular, lithium-ion batteries (LIBs) play a significant role in almost all storage application fields, including Electric Vehicles (EVs). Therefore, a full comprehension of the influence of the temperature on the key cell components and their governing equations is mandatory for the effective integration of LIBs into the application. If the battery is exposed to extreme thermal environments or the desired temperature cannot be maintained, the rates of chemical reactions and/or the mobility of the active species may change drastically. The alteration of properties of LIBs with temperature may create at best a performance problem and at worst a safety problem. Despite the presence of many reports on LIBs in the literature, their industrial realization has still been difficult, as the technologies developed in different labs have not been standardized yet. Thus, the field requires a systematic analysis of the effect of temperature on the critical properties of LIBs. In this paper, we report a comprehensive review of the effect of temperature on the properties of LIBs such as performance, cycle life, and safety. In addition, we focus on the alterations in resistances, energy losses, physicochemical properties, and aging mechanism when the temperature of LIBs are not under control. Full article
Show Figures

Figure 1

28 pages, 7873 KiB  
Article
Comprehensive Hazard Analysis of Failing Automotive Lithium-Ion Batteries in Overtemperature Experiments
by Christiane Essl, Andrey W. Golubkov, Eva Gasser, Manfred Nachtnebel, Armin Zankel, Eduard Ewert and Anton Fuchs
Batteries 2020, 6(2), 30; https://doi.org/10.3390/batteries6020030 - 18 May 2020
Cited by 66 | Viewed by 13415
Abstract
Lithium-ion batteries (LIBs) are gaining importance in the automotive sector because of the potential of electric vehicles (EVs) to reduce greenhouse gas emissions and air pollution. However, there are serious hazards resulting from failing battery cells leading to exothermic chemical reactions inside the [...] Read more.
Lithium-ion batteries (LIBs) are gaining importance in the automotive sector because of the potential of electric vehicles (EVs) to reduce greenhouse gas emissions and air pollution. However, there are serious hazards resulting from failing battery cells leading to exothermic chemical reactions inside the cell, called thermal runaway (TR). Literature of quantifying the failing behavior of modern automotive high capacity cells is rare and focusing on single hazard categories such as heat generation. Thus, the aim of this study is to quantify several hazard relevant parameters of a failing currently used battery cell extracted from a modern mass-produced EV: the temperature response of the cell, the maximum reached cell surface temperature, the amount of produced vent gas, the gas venting rate, the composition of the produced gases including electrolyte vapor and the size and composition of the produced particles at TR. For this purpose, overtemperature experiments with fresh 41 Ah automotive lithium NMC/LMO—graphite pouch cells at different state-of-charge (SOC) 100%, 30% and 0% are performed. The results are valuable for firefighters, battery pack designers, cell recyclers, cell transportation and all who deal with batteries. Full article
(This article belongs to the Special Issue Lithium-Ion Batteries: Latest Advances and Prospects)
Show Figures

Graphical abstract

14 pages, 3802 KiB  
Article
SEI Growth Impacts of Lamination, Formation and Cycling in Lithium Ion Batteries
by Martin Frankenberger, Markus Trunk, Stefan Seidlmayer, Alexander Dinter, Johannes Dittloff, Lukas Werner, Roman Gernhäuser, Zsolt Revay, Bastian Märkisch, Ralph Gilles and Karl-Heinz Pettinger
Batteries 2020, 6(2), 21; https://doi.org/10.3390/batteries6020021 - 26 Mar 2020
Cited by 28 | Viewed by 13497
Abstract
The accumulation of solid electrolyte interphases (SEI) in graphite anodes related to elevated formation rates (0.1C, 1C and 2C), cycling rates (1C and 2C), and electrode-separator lamination is investigated. As shown previously, the lamination technique is beneficial for the capacity aging in graphite-LiNi [...] Read more.
The accumulation of solid electrolyte interphases (SEI) in graphite anodes related to elevated formation rates (0.1C, 1C and 2C), cycling rates (1C and 2C), and electrode-separator lamination is investigated. As shown previously, the lamination technique is beneficial for the capacity aging in graphite-LiNi1/3Mn1/3Co1/3O2 cells. Here, surface resistance growth phenomena are quantified using electrochemical impedance spectroscopy (EIS). The graphite anodes were extracted from the graphite NMC cells in their fully discharged state and irreversible accumulations of lithium in the SEI are revealed using neutron depth profiling (NDP). In this post-mortem study, NDP reveals uniform lithium accumulations as a function of depth with lithium situated at the surface of the graphite particles thus forming the SEI. The SEI was found to grow logarithmically with cycle number starting with the main formation in the initial cycles. Furthermore, the EIS measurements indicate that benefits from lamination arise from surface resistance growth phenomena aside from SEI growth in superior anode fractions. Full article
(This article belongs to the Special Issue Lithium-Ion Batteries Aging Mechanisms)
Show Figures

Figure 1

16 pages, 3094 KiB  
Article
Inhomogeneous Temperature Distribution Affecting the Cyclic Aging of Li-Ion Cells. Part II: Analysis and Correlation
by Daniel Werner, Sabine Paarmann, Achim Wiebelt and Thomas Wetzel
Batteries 2020, 6(1), 12; https://doi.org/10.3390/batteries6010012 - 14 Feb 2020
Cited by 34 | Viewed by 7046
Abstract
Temperature has a significant influence on the behavior of batteries and their lifetime. There are several studies in literature that investigate the aging behavior under electrical load, but are limited to homogeneous, constant temperatures. This article presents an approach to quantifying cyclic aging [...] Read more.
Temperature has a significant influence on the behavior of batteries and their lifetime. There are several studies in literature that investigate the aging behavior under electrical load, but are limited to homogeneous, constant temperatures. This article presents an approach to quantifying cyclic aging of lithium-ion cells that takes into account complex thermal boundary conditions. It not only considers different temperature levels but also spatial and transient temperature gradients that can occur despite-or even due to-the use of thermal management systems. Capacity fade and impedance rise are used as measured quantities for degradation and correlated with the temperature boundary conditions during the aging process. The concept and definition of an equivalent aging temperature (EAT) is introduced to relate the degradation caused by spatial and temporal temperature inhomogeneities to similar degradation caused by a homogeneous steady temperature during electrical cycling. The results show an increased degradation at both lower and higher temperatures, which can be very well described by two superimposed exponential functions. These correlations also apply to cells that are cycled under the influence of spatial temperature gradients, both steady and transient. Only cells that are exposed to transient, but spatially homogeneous temperature conditions show a significantly different aging behavior. The concluding result is a correlation between temperature and aging rate, which is expressed as degradation per equivalent full cycle (EFC). This enables both temperature-dependent modeling of the aging behavior and its prediction. Full article
Show Figures

Figure 1

26 pages, 5912 KiB  
Review
Degradation and Aging Routes of Ni-Rich Cathode Based Li-Ion Batteries
by Philipp Teichert, Gebrekidan Gebresilassie Eshetu, Hannes Jahnke and Egbert Figgemeier
Batteries 2020, 6(1), 8; https://doi.org/10.3390/batteries6010008 - 22 Jan 2020
Cited by 91 | Viewed by 25272
Abstract
Driven by the increasing plea for greener transportation and efficient integration of renewable energy sources, Ni-rich metal layered oxides, namely NMC, Li [Ni1−xyCoyMnz] O2 (x + y ≤ 0.4), and NCA, Li [...] Read more.
Driven by the increasing plea for greener transportation and efficient integration of renewable energy sources, Ni-rich metal layered oxides, namely NMC, Li [Ni1−xyCoyMnz] O2 (x + y ≤ 0.4), and NCA, Li [Ni1−xyCoxAly] O2, cathode materials have garnered huge attention for the development of Next-Generation lithium-ion batteries (LIBs). The impetus behind such huge celebrity includes their higher capacity and cost effectiveness when compared to the-state-of-the-art LiCoO2 (LCO) and other low Ni content NMC versions. However, despite all the beneficial attributes, the large-scale deployment of Ni-rich NMC based LIBs poses a technical challenge due to less stability of the cathode/electrolyte interphase (CEI) and diverse degradation processes that are associated with electrolyte decomposition, transition metal cation dissolution, cation–mixing, oxygen release reaction etc. Here, the potential degradation routes, recent efforts and enabling strategies for mitigating the core challenges of Ni-rich NMC cathode materials are presented and assessed. In the end, the review shed light on the perspectives for the future research directions of Ni-rich cathode materials. Full article
(This article belongs to the Special Issue Batteries and Supercapacitors Aging)
Show Figures

Figure 1

18 pages, 5454 KiB  
Article
Accelerated Aging Characterization of Lithium-ion Cells: Using Sensitivity Analysis to Identify the Stress Factors Relevant to Cyclic Aging
by Tanja Gewald, Adrian Candussio, Leo Wildfeuer, Dirk Lehmkuhl, Alexander Hahn and Markus Lienkamp
Batteries 2020, 6(1), 6; https://doi.org/10.3390/batteries6010006 - 20 Jan 2020
Cited by 29 | Viewed by 13344
Abstract
As storage technology in electric vehicles, lithium-ion cells are subject to a continuous aging process during their service life that, in the worst case, can lead to a premature system failure. Battery manufacturers thus have an interest in the aging prediction during the [...] Read more.
As storage technology in electric vehicles, lithium-ion cells are subject to a continuous aging process during their service life that, in the worst case, can lead to a premature system failure. Battery manufacturers thus have an interest in the aging prediction during the early design phase, for which semi-empirical aging models are often used. The progress of aging is dependent on the application-specific load profile, more precisely on the aging-relevant stress factors. Still, a literature review reveals a controversy on the aging-relevant stress factors to use as input parameters for the simulation models. It shows that, at present, a systematic and efficient procedure for stress factor selection is missing, as the aging characteristic is cell-specific. In this study, an accelerated sensitivity analysis as a prior step to aging modeling is proposed, which is transferable and allows to determine the actual aging-relevant stress factors for a specific lithium-ion cell. For the assessment of this accelerated approach, two test series with different acceleration levels and cell types are performed and evaluated. The results show that a certain amount of charge throughput, 100 equivalent full cycles in this case, is necessary to conduct a statistically significant sensitivity analysis. Full article
Show Figures

Figure 1

26 pages, 6857 KiB  
Article
The Impact of Environmental Factors on the Thermal Characteristic of a Lithium–ion Battery
by Gerd Liebig, Ulf Kirstein, Stefan Geißendörfer, Omio Zahid, Frank Schuldt and Carsten Agert
Batteries 2020, 6(1), 3; https://doi.org/10.3390/batteries6010003 - 2 Jan 2020
Cited by 24 | Viewed by 10889
Abstract
To draw reliable conclusions about the thermal characteristic of or a preferential cooling strategy for a lithium–ion battery, the correct set of thermal input parameters and a detailed battery layout is crucial. In our previous work, an electrochemical model for a commercially-available, 40 [...] Read more.
To draw reliable conclusions about the thermal characteristic of or a preferential cooling strategy for a lithium–ion battery, the correct set of thermal input parameters and a detailed battery layout is crucial. In our previous work, an electrochemical model for a commercially-available, 40 Ah prismatic lithium–ion battery was validated under heuristic temperature dependence. In this work the validated electrochemical model is coupled to a spatially resolved, three dimensional (3D), thermal model of the same battery to evaluate the thermal characteristics, i.e., thermal barriers and preferential heat rejection patterns, within common environment layouts. We discuss to which extent the knowledge of the batteries’ interior layout can be constructively used for the design of an exterior battery thermal management. It is found from the study results that: (1) Increasing the current rate without considering an increased heat removal flux at natural convection at higher temperatures will lead to increased model deviations; (2) Centralized fan air-cooling within a climate chamber in a multi cell test arrangement can lead to significantly different thermal characteristics at each battery cell; (3) Increasing the interfacial surface area, at which preferential battery interior and exterior heat rejection match, can significantly lower the temperature rise and inhomogeneity within the electrode stack and increase the batteries’ lifespan. Full article
(This article belongs to the Special Issue Thermal Characteristics of Batteries 2019)
Show Figures

Figure 1

Back to TopTop