New Sights of Deep Learning in Bioengineering: Updates and Future Directions

A special issue of Bioengineering (ISSN 2306-5354). This special issue belongs to the section "Biosignal Processing".

Deadline for manuscript submissions: closed (31 October 2024) | Viewed by 20787

Special Issue Editors

School of Engineering, Design and Built Environment, Western Sydney University, Sydney, Australia
Interests: artificial intelligence; machine learning; meta-heuristic optimization

E-Mail
Guest Editor
School for Engineering of Matter, Transport and Energy, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, USA
Interests: system design and control of hybrid bionic unmanned aerial robotics, surgical robotics, and artificial-intelligence-assisted robotics control
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Recent advances in deep learning and predictive computer simulations have dramatically changed current treatment models, facilitating individualized medical research. Advanced machine learning and deep learning algorithms have become influential in the medical fields, and it is important to expedite the incorporation of these innovative technologies into medical research.

Therefore, the purpose of this Special Issue, entitled “New Sight of Deep Learning in Bioengineering: Updates and Future Directions”, is to make relevant work known to our colleagues in the field. To achieve this, the Special Issue, edited by Dr. Yang Yu and Dr. Tao Zhang, invites scientists to submit research articles, review articles, and short communications focused on this topic.

We look forward to receiving your valuable contributions which will make this Special Issue a reference resource for future researchers in the field of deep learning in bioengineering

Dr. Yang Yu
Dr. Tao Zhang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Bioengineering is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • artificial intelligence
  • machine learning
  • bio-robotics
  • bio-mechanics
  • bio-medical engineering
  • signal/image processing application

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

17 pages, 1952 KiB  
Article
Study of a Deep Convolution Network with Enhanced Region Proposal Network in the Detection of Cancerous Lung Tumors
by Jiann-Der Lee, Yu-Tsung Hsu and Jong-Chih Chien
Bioengineering 2024, 11(5), 511; https://doi.org/10.3390/bioengineering11050511 - 19 May 2024
Cited by 1 | Viewed by 1338
Abstract
A deep convolution network that expands on the architecture of the faster R-CNN network is proposed. The expansion includes adapting unsupervised classification with multiple backbone networks to improve the Region Proposal Network in order to improve accuracy and sensitivity in detecting minute changes [...] Read more.
A deep convolution network that expands on the architecture of the faster R-CNN network is proposed. The expansion includes adapting unsupervised classification with multiple backbone networks to improve the Region Proposal Network in order to improve accuracy and sensitivity in detecting minute changes in images. The efficiency of the proposed architecture is investigated by applying it to the detection of cancerous lung tumors in CT (computed tomography) images. This investigation used a total of 888 images from the LUNA16 dataset, which contains CT images of both cancerous and non-cancerous tumors of various sizes. These images are divided into 80% and 20%, which are used for training and testing, respectively. The result of the investigation through the experiment is that the proposed deep-learning architecture could achieve an accuracy rate of 95.32%, a precision rate of 94.63%, a specificity of 94.84%, and a high sensitivity of 96.23% using the LUNA16 images. The result shows an improvement compared to a reported accuracy of 93.6% from a previous study using the same dataset. Full article
Show Figures

Graphical abstract

16 pages, 1074 KiB  
Article
Periodontitis and Metabolic Syndrome: Statistical and Machine Learning Analytics of a Nationwide Study
by Asaf Wilensky, Noa Frank, Gabriel Mizraji, Dorit Tzur, Chen Goldstein and Galit Almoznino
Bioengineering 2023, 10(12), 1384; https://doi.org/10.3390/bioengineering10121384 - 1 Dec 2023
Cited by 2 | Viewed by 2020
Abstract
This study aimed to analyze the associations between periodontitis and metabolic syndrome (MetS) components and related conditions while controlling for sociodemographics, health behaviors, and caries levels among young and middle-aged adults. We analyzed data from the Dental, Oral, and Medical Epidemiological (DOME) record-based [...] Read more.
This study aimed to analyze the associations between periodontitis and metabolic syndrome (MetS) components and related conditions while controlling for sociodemographics, health behaviors, and caries levels among young and middle-aged adults. We analyzed data from the Dental, Oral, and Medical Epidemiological (DOME) record-based cross-sectional study that combines comprehensive sociodemographic, medical, and dental databases of a nationally representative sample of military personnel. The research consisted of 57,496 records of patients, and the prevalence of periodontitis was 9.79% (5630/57,496). The following parameters retained a significant positive association with subsequent periodontitis multivariate analysis (from the highest to the lowest OR (odds ratio)): brushing teeth (OR = 2.985 (2.739–3.257)), obstructive sleep apnea (OSA) (OR = 2.188 (1.545–3.105)), cariogenic diet consumption (OR = 1.652 (1.536–1.776)), non-alcoholic fatty liver disease (NAFLD) (OR = 1.483 (1.171–1.879)), smoking (OR = 1.176 (1.047–1.322)), and age (OR = 1.040 (1.035–1.046)). The following parameters retained a significant negative association (protective effect) with periodontitis in the multivariate analysis (from the highest to the lowest OR): the mean number of decayed teeth (OR = 0.980 (0.970–0.991)); North America as the birth country compared to native Israelis (OR = 0.775 (0.608–0.988)); urban non-Jewish (OR = 0.442 (0.280–0.698)); and urban Jewish (OR = 0.395 (0.251–0.620)) compared to the rural locality of residence. Feature importance analysis using the eXtreme Gradient Boosting (XGBoost) machine learning algorithm with periodontitis as the target variable ranked obesity, OSA, and NAFLD as the most important systemic conditions in the model. We identified a profile of the “patient vulnerable to periodontitis” characterized by older age, rural residency, smoking, brushing teeth, cariogenic diet, comorbidities of obesity, OSA and NAFLD, and fewer untreated decayed teeth. North American-born individuals had a lower prevalence of periodontitis than native Israelis. This study emphasizes the holistic view of the MetS cluster and explores less-investigated MetS-related conditions in the context of periodontitis. A comprehensive assessment of disease risk factors is crucial to target high-risk populations for periodontitis and MetS. Full article
Show Figures

Graphical abstract

16 pages, 2113 KiB  
Article
A Comparative Study of Automated Machine Learning Platforms for Exercise Anthropometry-Based Typology Analysis: Performance Evaluation of AWS SageMaker, GCP VertexAI, and MS Azure
by Wansuk Choi, Taeseok Choi and Seoyoon Heo
Bioengineering 2023, 10(8), 891; https://doi.org/10.3390/bioengineering10080891 - 27 Jul 2023
Cited by 5 | Viewed by 2897
Abstract
The increasing prevalence of machine learning (ML) and automated machine learning (AutoML) applications across diverse industries necessitates rigorous comparative evaluations of their predictive accuracies under various computational environments. The purpose of this research was to compare and analyze the predictive accuracy of several [...] Read more.
The increasing prevalence of machine learning (ML) and automated machine learning (AutoML) applications across diverse industries necessitates rigorous comparative evaluations of their predictive accuracies under various computational environments. The purpose of this research was to compare and analyze the predictive accuracy of several machine learning algorithms, including RNNs, LSTMs, GRUs, XGBoost, and LightGBM, when implemented on different platforms such as Google Colab Pro, AWS SageMaker, GCP Vertex AI, and MS Azure. The predictive performance of each model within its respective environment was assessed using performance metrics such as accuracy, precision, recall, F1-score, and log loss. All algorithms were trained on the same dataset and implemented on their specified platforms to ensure consistent comparisons. The dataset used in this study comprised fitness images, encompassing 41 exercise types and totaling 6 million samples. These images were acquired from AI-hub, and joint coordinate values (x, y, z) were extracted utilizing the Mediapipe library. The extracted values were then stored in a CSV format. Among the ML algorithms, LSTM demonstrated the highest performance, achieving an accuracy of 73.75%, precision of 74.55%, recall of 73.68%, F1-score of 73.11%, and a log loss of 0.71. Conversely, among the AutoML algorithms, XGBoost performed exceptionally well on AWS SageMaker, boasting an accuracy of 99.6%, precision of 99.8%, recall of 99.2%, F1-score of 99.5%, and a log loss of 0.014. On the other hand, LightGBM exhibited the poorest performance on MS Azure, achieving an accuracy of 84.2%, precision of 82.2%, recall of 81.8%, F1-score of 81.5%, and a log loss of 1.176. The unnamed algorithm implemented on GCP Vertex AI showcased relatively favorable results, with an accuracy of 89.9%, precision of 94.2%, recall of 88.4%, F1-score of 91.2%, and a log loss of 0.268. Despite LightGBM’s lackluster performance on MS Azure, the GRU implemented in Google Colab Pro displayed encouraging results, yielding an accuracy of 88.2%, precision of 88.5%, recall of 88.1%, F1-score of 88.4%, and a log loss of 0.44. Overall, this study revealed significant variations in performance across different algorithms and platforms. Particularly, AWS SageMaker’s implementation of XGBoost outperformed other configurations, highlighting the importance of carefully considering the choice of algorithm and computational environment in predictive tasks. To gain a comprehensive understanding of the factors contributing to these performance discrepancies, further investigations are recommended. Full article
Show Figures

Figure 1

13 pages, 2585 KiB  
Article
Performance Comparison of Machine Learning Approaches on Hepatitis C Prediction Employing Data Mining Techniques
by Azadeh Alizargar, Yang-Lang Chang and Tan-Hsu Tan
Bioengineering 2023, 10(4), 481; https://doi.org/10.3390/bioengineering10040481 - 17 Apr 2023
Cited by 16 | Viewed by 4565
Abstract
Hepatitis C is a liver infection caused by the hepatitis C virus (HCV). Due to the late onset of symptoms, early diagnosis is difficult in this disease. Efficient prediction can save patients before permeant liver damage. The main objective of this study is [...] Read more.
Hepatitis C is a liver infection caused by the hepatitis C virus (HCV). Due to the late onset of symptoms, early diagnosis is difficult in this disease. Efficient prediction can save patients before permeant liver damage. The main objective of this study is to employ various machine learning techniques to predict this disease based on common and affordable blood test data to diagnose and treat patients in the early stages. In this study, six machine learning algorithms (Support Vector Machine (SVM), K-nearest Neighbors (KNN), Logistic Regression, decision tree, extreme gradient boosting (XGBoost), artificial neural networks (ANN)) were utilized on two datasets. The performances of these techniques were compared in terms of confusion matrix, precision, recall, F1 score, accuracy, receiver operating characteristics (ROC), and the area under the curve (AUC) to identify a method that is appropriate for predicting this disease. The analysis, on NHANES and UCI datasets, revealed that SVM and XGBoost (with the highest accuracy and AUC among the test models, >80%) can be effective tools for medical professionals using routine and affordable blood test data to predict hepatitis C. Full article
Show Figures

Figure 1

19 pages, 6201 KiB  
Article
U-Net Model with Transfer Learning Model as a Backbone for Segmentation of Gastrointestinal Tract
by Neha Sharma, Sheifali Gupta, Deepika Koundal, Sultan Alyami, Hani Alshahrani, Yousef Asiri and Asadullah Shaikh
Bioengineering 2023, 10(1), 119; https://doi.org/10.3390/bioengineering10010119 - 14 Jan 2023
Cited by 36 | Viewed by 6059
Abstract
The human gastrointestinal (GI) tract is an important part of the body. According to World Health Organization (WHO) research, GI tract infections kill 1.8 million people each year. In the year 2019, almost 5 million individuals were detected with gastrointestinal disease. Radiation therapy [...] Read more.
The human gastrointestinal (GI) tract is an important part of the body. According to World Health Organization (WHO) research, GI tract infections kill 1.8 million people each year. In the year 2019, almost 5 million individuals were detected with gastrointestinal disease. Radiation therapy has the potential to improve cure rates in GI cancer patients. Radiation oncologists direct X-ray beams at the tumour while avoiding the stomach and intestines. The current objective is to direct the X-ray beam toward the malignancy while avoiding the stomach and intestines in order to improve dose delivery to the tumour. This study offered a technique for segmenting GI tract organs (small bowel, big intestine, and stomach) to assist radio oncologists to treat cancer patients more quickly and accurately. The suggested model is a U-Net model designed from scratch and used for the segmentation of a small size of images to extract the local features more efficiently. Furthermore, in the proposed model, six transfer learning models were employed as the backbone of the U-Net topology. The six transfer learning models used are Inception V3, SeResNet50, VGG19, DenseNet121, InceptionResNetV2, and EfficientNet B0. The suggested model was analysed with model loss, dice coefficient, and IoU. The results specify that the suggested model outperforms all transfer learning models, with performance parameter values as 0.122 model loss, 0.8854 dice coefficient, and 0.8819 IoU. Full article
Show Figures

Figure 1

Review

Jump to: Research

17 pages, 2343 KiB  
Review
Artificial Intelligence Transforming Post-Translational Modification Research
by Doo Nam Kim, Tianzhixi Yin, Tong Zhang, Alexandria K. Im, John R. Cort, Jordan C. Rozum, David Pollock, Wei-Jun Qian and Song Feng
Bioengineering 2025, 12(1), 26; https://doi.org/10.3390/bioengineering12010026 - 31 Dec 2024
Viewed by 663
Abstract
Post-Translational Modifications (PTMs) are covalent changes to amino acids that occur after protein synthesis, including covalent modifications on side chains and peptide backbones. Many PTMs profoundly impact cellular and molecular functions and structures, and their significance extends to evolutionary studies as well. In [...] Read more.
Post-Translational Modifications (PTMs) are covalent changes to amino acids that occur after protein synthesis, including covalent modifications on side chains and peptide backbones. Many PTMs profoundly impact cellular and molecular functions and structures, and their significance extends to evolutionary studies as well. In light of these implications, we have explored how artificial intelligence (AI) can be utilized in researching PTMs. Initially, rationales for adopting AI and its advantages in understanding the functions of PTMs are discussed. Then, various deep learning architectures and programs, including recent applications of language models, for predicting PTM sites on proteins and the regulatory functions of these PTMs are compared. Finally, our high-throughput PTM-data-generation pipeline, which formats data suitably for AI training and predictions is described. We hope this review illuminates areas where future AI models on PTMs can be improved, thereby contributing to the field of PTM bioengineering. Full article
Show Figures

Figure 1

39 pages, 3667 KiB  
Review
A Survey on AI-Driven Mouse Behavior Analysis Applications and Solutions
by Chaopeng Guo, Yuming Chen, Chengxia Ma, Shuang Hao and Jie Song
Bioengineering 2024, 11(11), 1121; https://doi.org/10.3390/bioengineering11111121 - 6 Nov 2024
Viewed by 1464
Abstract
The physiological similarities between mice and humans make them vital animal models in biological and medical research. This paper explores the application of artificial intelligence (AI) in analyzing mice behavior, emphasizing AI’s potential to identify and classify these behaviors. Traditional methods struggle to [...] Read more.
The physiological similarities between mice and humans make them vital animal models in biological and medical research. This paper explores the application of artificial intelligence (AI) in analyzing mice behavior, emphasizing AI’s potential to identify and classify these behaviors. Traditional methods struggle to capture subtle behavioral features, whereas AI can automatically extract quantitative features from large datasets. Consequently, this study aims to leverage AI to enhance the efficiency and accuracy of mice behavior analysis. The paper reviews various applications of mice behavior analysis, categorizes deep learning tasks based on an AI pyramid, and summarizes AI methods for addressing these tasks. The findings indicate that AI technologies are increasingly applied in mice behavior analysis, including disease detection, assessment of external stimuli effects, social behavior analysis, and neurobehavioral assessment. The selection of AI methods is crucial and must align with specific applications. Despite AI’s promising potential in mice behavior analysis, challenges such as insufficient datasets and benchmarks remain. Furthermore, there is a need for a more integrated AI platform, along with standardized datasets and benchmarks, to support these analyses and further advance AI-driven mice behavior analysis. Full article
Show Figures

Figure 1

Back to TopTop