Liposomes for Drug Delivery: Recent Advances and Discoveries

A special issue of Biomolecules (ISSN 2218-273X). This special issue belongs to the section "Biomacromolecules: Lipids".

Deadline for manuscript submissions: closed (29 February 2024) | Viewed by 18464

Special Issue Editors


E-Mail Website
Guest Editor
CNR-Institute for Biological Systems, Secondary Office of Rome-Reaction Mechanisms, c/o Chemistry Department, Sapienza University of Rome, 00185 Rome, Italy
Interests: drug delivery; liposomes; mitochondriotropic liposomes; bacteria biofilms; natural bioactive compounds; colloid chemistry

E-Mail Website
Guest Editor
CNR-Institute for Biological Systems, Secondary Office of Rome-Reaction Mechanisms, c/o Chemistry Department, Sapienza University of Rome, 00185 Rome, Italy
Interests: drug delivery; liposomes; bioactive compounds; Blood Brain Barrier; colloid chemistry

Special Issue Information

Dear Colleagues,

Liposomes and liposome-based drug delivery systems have proved to be the most successful family in the field of nanomedicine thanks to their safety, biocompatibility, and biodegradability. Their unique structural features can be modulated as a function of the physicochemical properties of the drug, of the biological target and of the therapeutic protocol, improving in this way their efficacy and targeting ability. Evidence of this success can be found in all the liposomal anticancer, antifungal, and analgesic drugs, together with liposome-based vaccines, approved in the last 25 years, and the very recent success of mRNA vaccines against SARS-CoV-2.

This Special Issue will focus on recent developments in all fields concerning the use of liposomes as drug delivery systems (targeting, diagnostics, imaging and theranostics). Special attention will be given to liposomes and multifunctional liposome-based systems for the targeted delivery to the central nervous system, subcellular organelles, tumors, bacteria biofilms, as well as to the delivery of genetic materials, peptides, and natural bioactive compounds.

Dr. Cecilia Bombelli
Dr. Francesca Ceccacci
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biomolecules is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • liposomes
  • liposome-based systems
  • targeted delivery
  • subcellular targeting

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

21 pages, 7345 KiB  
Article
Synthesis and Validation of TRIFAPYs as a Family of Transfection Agents for Therapeutic Oligonucleotides
by Berta Isanta, Ana Delgado, Carlos J. Ciudad, Mª Antònia Busquets, Rosa Griera, Núria Llor and Véronique Noé
Biomolecules 2024, 14(4), 390; https://doi.org/10.3390/biom14040390 - 25 Mar 2024
Viewed by 1975
Abstract
Transfection agents play a crucial role in facilitating the uptake of nucleic acids into eukaryotic cells offering potential therapeutic solutions for genetic disorders. However, progress in this field needs the development of improved systems that guarantee efficient transfection. Here, we describe the synthesis [...] Read more.
Transfection agents play a crucial role in facilitating the uptake of nucleic acids into eukaryotic cells offering potential therapeutic solutions for genetic disorders. However, progress in this field needs the development of improved systems that guarantee efficient transfection. Here, we describe the synthesis of a set of chemical delivery agents (TRIFAPYs) containing alkyl chains of different lengths based on the 1,3,5-tris[(4-alkyloxy-1pyridinio)methyl]benzene tribromide structure. Their delivery properties for therapeutic oligonucleotides were evaluated using PolyPurine Reverse Hoogsteen hairpins (PPRHs) as a silencing tool. The binding of liposomes to PPRHs was evaluated by retardation assays in agarose gels. The complexes had a size of 125 nm as determined by DLS, forming well-defined concentrical vesicles as visualized by Cryo-TEM. The prostate cancer cell line PC-3 was used to study the internalization of the nanoparticles by fluorescence microscopy and flow cytometry. The mechanism of entrance involved in the cellular uptake was mainly by clathrin-mediated endocytosis. Cytotoxicity analyses determined the intrinsic toxicity caused by each TRIFAPY and the effect on cell viability upon transfection of a specific PPRH (HpsPr-C) directed against the antiapoptotic target survivin. TRIFAPYs C12-C18 were selected to expand these studies in the breast cancer cell line SKBR-3 opening the usage of TRIFAPYs for both sexes and, in the hCMEC/D3 cell line, as a model for the blood–brain barrier. The mRNA levels of survivin decreased, while apoptosis levels increased upon the transfection of HpsPr-C with these TRIFAPYs in PC-3 cells. Therefore, TRIFAPYs can be considered novel lipid-based vehicles for the delivery of therapeutic oligonucleotides. Full article
(This article belongs to the Special Issue Liposomes for Drug Delivery: Recent Advances and Discoveries)
Show Figures

Figure 1

19 pages, 4938 KiB  
Article
Resveratrol and Resveratrol-Loaded Galactosylated Liposomes: Anti-Adherence and Cell Wall Damage Effects on Staphylococcus aureus and MRSA
by Giuliana Prevete, Beatrice Simonis, Marco Mazzonna, Francesca Mariani, Enrica Donati, Simona Sennato, Francesca Ceccacci and Cecilia Bombelli
Biomolecules 2023, 13(12), 1794; https://doi.org/10.3390/biom13121794 - 14 Dec 2023
Cited by 3 | Viewed by 1987
Abstract
Antibiotic resistance due to bacterial biofilm formation is a major global health concern that makes the search for new therapeutic approaches an urgent need. In this context,, trans-resveratrol (RSV), a polyphenolic natural substance, seems to be a good candidate for preventing and [...] Read more.
Antibiotic resistance due to bacterial biofilm formation is a major global health concern that makes the search for new therapeutic approaches an urgent need. In this context,, trans-resveratrol (RSV), a polyphenolic natural substance, seems to be a good candidate for preventing and eradicating biofilm-associated infections but its mechanism of action is poorly understood. In addition, RSV suffers from low bioavailability and chemical instability in the biological media that make its encapsulation in delivery systems necessary. In this work, the anti-biofilm activity of free RSV was investigated on Staphylococcus aureus and, to highlight the possible mechanism of action, we studied the anti-adherence activity and also the cell wall damage on a MRSA strain. Free RSV activity was compared to that of RSV loaded in liposomes, specifically neutral liposomes (L = DOPC/Cholesterol) and cationic liposomes (LG = DOPC/Chol/GLT1) characterized by a galactosylated amphiphile (GLT1) that promotes the interaction with bacteria. The results indicate that RSV loaded in LG has anti-adherence and anti-biofilm activity higher than free RSV. On the other side, free RSV has a higher bacterial-growth-inhibiting effect than encapsulated RSV and it can damage cell walls by creating pores; however, this effect can not prevent bacteria from growing again. This RSV ability may underlie its bacteriostatic activity. Full article
(This article belongs to the Special Issue Liposomes for Drug Delivery: Recent Advances and Discoveries)
Show Figures

Graphical abstract

14 pages, 5921 KiB  
Article
On Fusogenicity of Positively Charged Phased-Separated Lipid Vesicles: Experiments and Computational Simulations
by Yifei Wang, Yerbol Palzhanov, Dang T. Dang, Annalisa Quaini, Maxim Olshanskii and Sheereen Majd
Biomolecules 2023, 13(10), 1473; https://doi.org/10.3390/biom13101473 - 30 Sep 2023
Cited by 1 | Viewed by 1437
Abstract
This paper studies the fusogenicity of cationic liposomes in relation to their surface distribution of cationic lipids and utilizes membrane phase separation to control this surface distribution. It is found that concentrating the cationic lipids into small surface patches on liposomes, through phase-separation, [...] Read more.
This paper studies the fusogenicity of cationic liposomes in relation to their surface distribution of cationic lipids and utilizes membrane phase separation to control this surface distribution. It is found that concentrating the cationic lipids into small surface patches on liposomes, through phase-separation, can enhance liposome’s fusogenicity. Further concentrating these lipids into smaller patches on the surface of liposomes led to an increased level of fusogenicity. These experimental findings are supported by numerical simulations using a mathematical model for phase-separated charged liposomes. Findings of this study may be used for design and development of highly fusogenic liposomes with minimal level of toxicity. Full article
(This article belongs to the Special Issue Liposomes for Drug Delivery: Recent Advances and Discoveries)
Show Figures

Figure 1

18 pages, 4099 KiB  
Article
Pegylated Liposomal Alendronate Biodistribution, Immune Modulation, and Tumor Growth Inhibition in a Murine Melanoma Model
by Md. Rakibul Islam, Jalpa Patel, Patricia Ines Back, Hilary Shmeeda, Raja Reddy Kallem, Claire Shudde, Maciej Markiewski, William C. Putnam, Alberto A. Gabizon and Ninh M. La-Beck
Biomolecules 2023, 13(9), 1309; https://doi.org/10.3390/biom13091309 - 26 Aug 2023
Cited by 6 | Viewed by 2425
Abstract
While tumor-associated macrophages (TAM) have pro-tumoral activity, the ablation of macrophages in cancer may be undesirable since they also have anti-tumoral functions, including T cell priming and activation against tumor antigens. Alendronate is a potent amino-bisphosphonate that modulates the function of macrophages in [...] Read more.
While tumor-associated macrophages (TAM) have pro-tumoral activity, the ablation of macrophages in cancer may be undesirable since they also have anti-tumoral functions, including T cell priming and activation against tumor antigens. Alendronate is a potent amino-bisphosphonate that modulates the function of macrophages in vitro, with potential as an immunotherapy if its low systemic bioavailability can be addressed. We repurposed alendronate in a non-leaky and long-circulating liposomal carrier similar to that of the clinically approved pegylated liposomal doxorubicin to facilitate rapid clinical translation. Here, we tested liposomal alendronate (PLA) as an immunotherapeutic agent for cancer in comparison with a standard of care immunotherapy, a PD-1 immune checkpoint inhibitor. We showed that the PLA induced bone marrow-derived murine non-activated macrophages and M2-macrophages to polarize towards an M1-functionality, as evidenced by gene expression, cytokine secretion, and lipidomic profiles. Free alendronate had negligible effects, indicating that liposome encapsulation is necessary for the modulation of macrophage activity. In vivo, the PLA showed significant accumulation in tumor and tumor-draining lymph nodes, sites of tumor immunosuppression that are targets of immunotherapy. The PLA remodeled the tumor microenvironment towards a less immunosuppressive milieu, as indicated by a decrease in TAM and helper T cells, and inhibited the growth of established tumors in the B16-OVA melanoma model. The improved bioavailability and the beneficial effects of PLA on macrophages suggest its potential application as immunotherapy that could synergize with T-cell-targeted therapies and chemotherapies to induce immunogenic cell death. PLA warrants further clinical development, and these clinical trials should incorporate tumor and blood biomarkers or immunophenotyping studies to verify the anti-immunosuppressive effect of PLA in humans. Full article
(This article belongs to the Special Issue Liposomes for Drug Delivery: Recent Advances and Discoveries)
Show Figures

Figure 1

20 pages, 4362 KiB  
Article
Mucoadhesive Rifampicin-Liposomes for the Treatment of Pulmonary Infection by Mycobacterium abscessus: Chitosan or ε-Poly-L-Lysine Decoration
by Jacopo Forte, Patrizia Nadia Hanieh, Noemi Poerio, Tommaso Olimpieri, Maria Grazia Ammendolia, Maurizio Fraziano, Maria Gioia Fabiano, Carlotta Marianecci, Maria Carafa, Federico Bordi, Simona Sennato and Federica Rinaldi
Biomolecules 2023, 13(6), 924; https://doi.org/10.3390/biom13060924 - 31 May 2023
Cited by 5 | Viewed by 2294
Abstract
Mycobacterium abscessus (Mabs) is a dangerous non-tubercular mycobacterium responsible for severe pulmonary infections in immunologically vulnerable patients, due to its wide resistance to many different antibiotics which make its therapeutic management extremely difficult. Drug nanocarriers as liposomes may represent a promising delivery strategy [...] Read more.
Mycobacterium abscessus (Mabs) is a dangerous non-tubercular mycobacterium responsible for severe pulmonary infections in immunologically vulnerable patients, due to its wide resistance to many different antibiotics which make its therapeutic management extremely difficult. Drug nanocarriers as liposomes may represent a promising delivery strategy against pulmonary Mabs infection, due to the possibility to be aerosolically administrated and to tune their properties in order to increase nebulization resistance and retainment of encapsulated drug. In fact, liposome surface can be modified by decoration with mucoadhesive polymers to enhance its stability, mucus penetration and prolong its residence time in the lung. The aim of this work is to employ Chitosan or ε-poly-L-lysine decoration for improving the properties of a novel liposomes composed by hydrogenated phosphatidyl-choline from soybean (HSPC) and anionic 1,2-Dipalmitoyl-sn-glycero-3-phosphorylglycerol sodium salt (DPPG) able to entrap Rifampicin. A deep physicochemical characterization of polymer-decorated liposomes shows that both polymers improve mucoadhesion without affecting liposome features and Rifampicin entrapment efficiency. Therapeutic activity on Mabs-infected macrophages demonstrates an effective antibacterial effect of ε-poly-L-lysine liposomes with respect to chitosan-decorated ones. Altogether, these results suggest a possible use of ε-PLL liposomes to improve antibiotic delivery in the lung. Full article
(This article belongs to the Special Issue Liposomes for Drug Delivery: Recent Advances and Discoveries)
Show Figures

Figure 1

16 pages, 17434 KiB  
Article
Tuning Liposome Stability in Biological Environments and Intracellular Drug Release Kinetics
by Keni Yang, Karolina Tran and Anna Salvati
Biomolecules 2023, 13(1), 59; https://doi.org/10.3390/biom13010059 - 27 Dec 2022
Cited by 7 | Viewed by 4648
Abstract
Ideal drug carriers should be stable in biological environments but eventually release their drug load once inside the targeted cells. These two aspects can be in contrast with each other, thus they need to be carefully tuned in order to achieve the desired [...] Read more.
Ideal drug carriers should be stable in biological environments but eventually release their drug load once inside the targeted cells. These two aspects can be in contrast with each other, thus they need to be carefully tuned in order to achieve the desired properties for specific applications. Quantifying drug release profiles in biological environments or inside cells can be highly challenging, and standard methods to determine drug release kinetics in many cases cannot be applied to complex biological environments or cells. Within this context, the present work combined kinetic studies by flow cytometry with aging experiments in biological fluids and size-exclusion chromatography to determine drug release profiles in biological environments and inside cells. To this purpose, anionic and zwitterionic liposomes were used as model nanomedicines. By changing lipid composition, liposome stability in serum and intracellular release kinetics could be tuned and formulations with very different properties could be obtained. The methods presented can be used to characterize liposome release profiles in complex biological media, as well as inside cells. In this way, liposome composition can be tuned in order to achieve formulations with optimal balance between stability and release kinetics for specific applications. Full article
(This article belongs to the Special Issue Liposomes for Drug Delivery: Recent Advances and Discoveries)
Show Figures

Graphical abstract

17 pages, 2290 KiB  
Article
Liposomal Entrapment or Chemical Modification of Relaxin2 for Prolongation of Its Stability and Biological Activity
by George Kogkos, Foteini Gkartziou, Spyridon Mourtas, Kostas K. Barlos, Pavlos Klepetsanis, Kleomenis Barlos and Sophia G. Antimisiaris
Biomolecules 2022, 12(10), 1362; https://doi.org/10.3390/biom12101362 - 24 Sep 2022
Cited by 2 | Viewed by 1983
Abstract
Relaxin (RLX) is a protein that is structurally similar to insulin and has interesting biological activities. As with all proteins, preservation of RLX’s structural integrity/biological functionality is problematic. Herein, we investigated two methods for increasing the duration of relaxin-2’s (RLX2) biological activity: synthesis [...] Read more.
Relaxin (RLX) is a protein that is structurally similar to insulin and has interesting biological activities. As with all proteins, preservation of RLX’s structural integrity/biological functionality is problematic. Herein, we investigated two methods for increasing the duration of relaxin-2’s (RLX2) biological activity: synthesis of a palmitoyl RLX2 conjugate (P-RLX2) with the use of a Palmitoyl-l-Glu-OtBu peptide modifier, and encapsulation into liposomes of P-RLX2, RLX2, and its oxidized form (O-RLX2). For liposomal encapsulation thin-film hydration and DRV methods were applied, and different lipid compositions were tested for optimized protein loading. RLX2 and O-RLX2 were quantified by HPLC. The capability of the peptides/conjugate to stimulate transfected cells to produce cyclic adenosine monophosphate (cAMP) was used as a measure of their biological activity. The stability and bioactivity of free and liposomal RLX2 types were monitored for a 30 d period, in buffer (in some cases) and bovine serum (80%) at 37 °C. The results showed that liposome encapsulation substantially increased the RLX2 integrity in buffer; PEGylated liposomes demonstrated a higher protection. Liposome encapsulation also increased the stability of RLX2 and O-RLX2 in serum. Considering the peptide’s biological activity, cAMP production of RLX2 was higher than that of the oxidized form and the P-RLX2 conjugate (which demonstrated a similar activity to O-RLX2 when measured in buffer, but lower when measured in the presence of serum proteins), while liposome encapsulation resulted in a slight decrease of bioactivity initially, but prolonged the peptide bioactivity during incubation in serum. It was concluded that liposome encapsulation of RLX2 and synthetic modification to P-RLX2 can both prolong RLX2 peptide in vitro stability; however, the applied chemical conjugation results in a significant loss of bioactivity (cAMP production), whereas the effect of liposome entrapment on RLX2 activity was significantly lower. Full article
(This article belongs to the Special Issue Liposomes for Drug Delivery: Recent Advances and Discoveries)
Show Figures

Figure 1

Back to TopTop