The Structure and Function of Proteins, Lipids and Nucleic Acids

A special issue of Biomolecules (ISSN 2218-273X). This special issue belongs to the section "Molecular Structure and Dynamics".

Deadline for manuscript submissions: 31 January 2025 | Viewed by 3887

Special Issue Editor


E-Mail Website
Guest Editor
Laboratory for Biomolecular Interactions and Spectroscopy, Ruđer Bošković Institute, Division of Organic Chemistry and Biochemistry, Bijenička 54, 10000 Zagreb, Croatia
Interests: biomolecular interaction; DNA binding; DNA structure; protein structure; peptide; click-chemistry
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The primary focus of this Special Issue is to unravel how biomacromolecules, including proteins, nucleic acids and lipids, engage with one another and their environment at the molecular level. In this Special Issue, we are committed to showcasing essential and captivating studies that shed light on various interactions between biomacromolecules. Moreover, we extend the invitation for manuscripts exploring the multifaceted landscape of biomolecular structure and function, investigating topics such as protein folding and stability.

Beyond that, we are eager to embrace contributions highlighting innovations in biophysical techniques. These innovations not only facilitate, but also catalyse further advancements in this field of research. Your insights and groundbreaking work in these areas are not only valued, but are essential for continued progress in the field of biophysics.

We eagerly anticipate your valuable contributions to this Special Issue which promises to demonstrate the collaborative and pioneering spirit of our biophysical scientific community.

Dr. Ivo Crnolatac
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biomolecules is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Review

19 pages, 4887 KiB  
Review
Calreticulin—Enigmatic Discovery
by Gillian C. Okura, Alamelu G. Bharadwaj and David M. Waisman
Biomolecules 2024, 14(7), 866; https://doi.org/10.3390/biom14070866 - 19 Jul 2024
Viewed by 135
Abstract
Calreticulin (CRT) is an intrinsically disordered multifunctional protein that plays essential roles intra-and extra-cellularly. The Michalak laboratory has proposed that CRT was initially identified in 1974 by the MacLennan laboratory as the high-affinity Ca2+-binding protein (HACBP) of the sarcoplasmic reticulin (SR). [...] Read more.
Calreticulin (CRT) is an intrinsically disordered multifunctional protein that plays essential roles intra-and extra-cellularly. The Michalak laboratory has proposed that CRT was initially identified in 1974 by the MacLennan laboratory as the high-affinity Ca2+-binding protein (HACBP) of the sarcoplasmic reticulin (SR). This widely accepted belief has been ingrained in the scientific literature but has never been rigorously tested. In our report, we have undertaken a comprehensive reexamination of this assumption by meticulously examining the majority of published studies that present a proteomic analysis of the SR. These analyses have utilized proteomic analysis of purified SR preparations or purified components of the SR, namely the longitudinal tubules and junctional terminal cisternae. These studies have consistently failed to detect the HACBP or CRT in skeletal muscle SR. We propose that the existence of the HACBP has failed the test of reproducibility and should be retired to the annals of antiquity. Therefore, the scientific dogma that the HACBP and CRT are identical proteins is a non sequitur. Full article
(This article belongs to the Special Issue The Structure and Function of Proteins, Lipids and Nucleic Acids)
Show Figures

Graphical abstract

17 pages, 4341 KiB  
Review
Unveiling the Druggable Landscape of Bacterial Peptidyl tRNA Hydrolase: Insights into Structure, Function, and Therapeutic Potential
by Surbhi Mundra and Ashish Kabra
Biomolecules 2024, 14(6), 668; https://doi.org/10.3390/biom14060668 - 7 Jun 2024
Viewed by 716
Abstract
Bacterial peptidyl tRNA hydrolase (Pth) or Pth1 emerges as a pivotal enzyme involved in the maintenance of cellular homeostasis by catalyzing the release of peptidyl moieties from peptidyl-tRNA molecules and the maintenance of a free pool of specific tRNAs. This enzyme is vital [...] Read more.
Bacterial peptidyl tRNA hydrolase (Pth) or Pth1 emerges as a pivotal enzyme involved in the maintenance of cellular homeostasis by catalyzing the release of peptidyl moieties from peptidyl-tRNA molecules and the maintenance of a free pool of specific tRNAs. This enzyme is vital for bacterial cells and an emerging drug target for various bacterial infections. Understanding the enzymatic mechanisms and structural intricacies of bacterial Pth is pivotal in designing novel therapeutics to combat antibiotic resistance. This review provides a comprehensive analysis of the multifaceted roles of Pth in bacterial physiology, shedding light on its significance as a potential drug target. This article delves into the diverse functions of Pth, encompassing its involvement in ribosome rescue, the maintenance of a free tRNA pool in bacterial systems, the regulation of translation fidelity, and stress response pathways within bacterial systems. Moreover, it also explores the druggability of bacterial Pth, emphasizing its promise as a target for antibacterial agents and highlighting the challenges associated with developing specific inhibitors against this enzyme. Structural elucidation represents a cornerstone in unraveling the catalytic mechanisms and substrate recognition of Pth. This review encapsulates the current structural insights of Pth garnered through various biophysical techniques, such as X-ray crystallography and NMR spectroscopy, providing a detailed understanding of the enzyme’s architecture and conformational dynamics. Additionally, biophysical aspects, including its interaction with ligands, inhibitors, and substrates, are discussed, elucidating the molecular basis of bacterial Pth’s function and its potential use in drug design strategies. Through this review article, we aim to put together all the available information on bacterial Pth and emphasize its potential in advancing innovative therapeutic interventions and combating bacterial infections. Full article
(This article belongs to the Special Issue The Structure and Function of Proteins, Lipids and Nucleic Acids)
Show Figures

Figure 1

18 pages, 1044 KiB  
Review
Joint Hypermobility Syndrome and Membrane Proteins: A Comprehensive Review
by Raquel Pliego-Arreaga, Juan Antonio Cervantes-Montelongo, Guillermo Antonio Silva-Martínez, Fabiola Estefanía Tristán-Flores, Miguel Angel Pantoja-Hernández and Juan Raúl Maldonado-Coronado
Biomolecules 2024, 14(4), 472; https://doi.org/10.3390/biom14040472 - 12 Apr 2024
Viewed by 2383
Abstract
Ehlers–Danlos syndromes (EDSs) constitute a heterogeneous group of connective tissue disorders characterized by joint hypermobility, skin hyperextensibility, and tissue fragility. Asymptomatic EDSs, joint hypermobility without associated syndromes, EDSs, and hypermobility spectrum disorders are the commonest phenotypes associated with joint hypermobility. Joint hypermobility syndrome [...] Read more.
Ehlers–Danlos syndromes (EDSs) constitute a heterogeneous group of connective tissue disorders characterized by joint hypermobility, skin hyperextensibility, and tissue fragility. Asymptomatic EDSs, joint hypermobility without associated syndromes, EDSs, and hypermobility spectrum disorders are the commonest phenotypes associated with joint hypermobility. Joint hypermobility syndrome (JHS) is a connective tissue disorder characterized by extreme flexibility of the joints, along with pain and other symptoms. JHS can be a sign of a more serious underlying genetic condition, such as EDS, which affects the cartilage, bone, fat, and blood. The exact cause of JHS could be related to genetic changes in the proteins that add flexibility and strength to the joints, ligaments, and tendons, such as collagen. Membrane proteins are a class of proteins embedded in the cell membrane and play a crucial role in cell signaling, transport, and adhesion. Dysregulated membrane proteins have been implicated in a variety of diseases, including cancer, cardiovascular disease, and neurological disorders; recent studies have suggested that membrane proteins may also play a role in the pathogenesis of JHS. This article presents an exploration of the causative factors contributing to musculoskeletal pain in individuals with hypermobility, based on research findings. It aims to provide an understanding of JHS and its association with membrane proteins, addressing the clinical manifestations, pathogenesis, diagnosis, and management of JHS. Full article
(This article belongs to the Special Issue The Structure and Function of Proteins, Lipids and Nucleic Acids)
Show Figures

Figure 1

Back to TopTop