Advances in Research on Brain Health and Dementia: Prevention and Early Detection of Cognitive Decline and Dementia: Series II

A special issue of Brain Sciences (ISSN 2076-3425). This special issue belongs to the section "Social Cognitive and Affective Neuroscience".

Deadline for manuscript submissions: 16 December 2024 | Viewed by 8455

Special Issue Editor


E-Mail Website
Guest Editor
Department of Neurology, Minkodo Minohara Hospital, Fukuoka 811-2402, Japan
Interests: dementia; Alzheimer’s disease; mild cognitive impairment; cognitive frailty; event-related potentials; electroencephalography; functional and structural MRI; non-pharmacological intervention; physical activity and sport intervention; lifestyle intervention
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Dementia is an urgent problem around the world, and preventive interventions and the early detection of dementia are critical for overcoming it. To solve this issue, research on brain health and dementia is underway in various fields.

This Special Issue of Brain Sciences aims to present a collection of studies detailing the most recent advancements in the field of research on brain health and dementia. Authors are invited to submit cutting-edge research and reviews that address a broad range of topics related to brain health and dementia, including (but not limited to) the following:

  • The epidemiology of dementia prevention (e.g., risk and protective factors, the relationship between dementia and frailty, etc.);
  • The maintenance of brain health using various interventions (e.g., physical activity, nutritional and cognitive interventions, etc.);
  • The early detection and diagnosis of cognitive decline and dementia using various techniques (e.g., electrophysiological and neuroimaging techniques, sensing technology, other new technologies, etc.).

In particular, we aim to present advances in the research on brain health and dementia that may have a significant translational effect to the field of clinical services.

Dr. Takao Yamasaki
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Brain Sciences is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • brain health
  • dementia
  • mild cognitive impairment
  • Alzheimer's disease
  • preventive intervention
  • early detection and diagnosis

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review, Other

12 pages, 1927 KiB  
Article
The Influence of Separate and Combined Exercise and Foreign Language Acquisition on Learning and Cognition
by Yijun Qian, Anna Schwartz, Ara Jung, Yichi Zhang, Uri Seitz, Gabrielle Wilds, Miso Kim, Arthur F. Kramer and Leanne Chukoskie
Brain Sci. 2024, 14(6), 572; https://doi.org/10.3390/brainsci14060572 - 3 Jun 2024
Viewed by 331
Abstract
Aging contributes significantly to cognitive decline. Aerobic exercise (AE) has been shown to induce substantial neuroplasticity changes, enhancing cognitive and brain health. Likewise, recent research underscores the cognitive benefits of foreign language learning (FLL), indicating improvements in brain structure and function across age [...] Read more.
Aging contributes significantly to cognitive decline. Aerobic exercise (AE) has been shown to induce substantial neuroplasticity changes, enhancing cognitive and brain health. Likewise, recent research underscores the cognitive benefits of foreign language learning (FLL), indicating improvements in brain structure and function across age groups. However, the lack of a comprehensive paradigm integrating language learning with exercise limits research on combined effects in older adults. In order to address this gap, we devised a novel approach using a virtual world tourism scenario for auditory-based language learning combined with aerobic cycling. Our study examines the impact of simultaneous AE and FLL integration on cognitive and language learning outcomes compared to FLL alone. A total of 20 older adults were randomly assigned to AE + FLL and FLL-only groups. The results revealed significantly improved Spanish language learning outcomes in both combined and language learning-only groups. Additionally, significant cognitive function improvement was observed in the FLL group following short-term language learning. Full article
Show Figures

Figure 1

14 pages, 3282 KiB  
Article
Sex-Specific Association of Body Mass Index with Hippocampal Subfield Volume and Cognitive Function in Non-Demented Chinese Older Adults
by Shaohui Lin, Lijuan Jiang, Kai Wei, Junjie Yang, Xinyi Cao and Chunbo Li
Brain Sci. 2024, 14(2), 170; https://doi.org/10.3390/brainsci14020170 - 8 Feb 2024
Viewed by 1312
Abstract
Recent research suggests a possible association between midlife obesity and an increased risk of dementia in later life. However, the underlying mechanisms remain unclear. Little is known about the relationship between body mass index (BMI) and hippocampal subfield atrophy. In this study, we [...] Read more.
Recent research suggests a possible association between midlife obesity and an increased risk of dementia in later life. However, the underlying mechanisms remain unclear. Little is known about the relationship between body mass index (BMI) and hippocampal subfield atrophy. In this study, we aimed to explore the associations between BMI and hippocampal subfield volumes and cognitive function in non-demented Chinese older adults. Hippocampal volumes were assessed using structural magnetic resonance imaging. Cognitive function was evaluated using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). A total of 66 participants were included in the final analysis, with 35 females and 31 males. We observed a significant correlation between BMI and the hippocampal fissure volume in older females. In addition, there was a negative association between BMI and the RBANS total scale score, the coding score, and the story recall score, whereas no significant correlations were observed in older males. In conclusion, our findings revealed sex-specific associations between BMI and hippocampal subfield volumes and cognitive performance, providing valuable insights into the development of effective interventions for the early prevention of cognitive decline. Full article
Show Figures

Figure 1

Review

Jump to: Research, Other

13 pages, 653 KiB  
Review
Long COVID in Brain Health Research: A Call to Action
by Thorsten Rudroff
Brain Sci. 2024, 14(6), 587; https://doi.org/10.3390/brainsci14060587 - 8 Jun 2024
Viewed by 1186
Abstract
The COVID-19 pandemic has brought attention to the long-term consequences of the virus, particularly the persistent symptoms that characterize long COVID. This syndrome, which can last for months after the initial infection, includes a range of neurological and neuropsychiatric manifestations that have significant [...] Read more.
The COVID-19 pandemic has brought attention to the long-term consequences of the virus, particularly the persistent symptoms that characterize long COVID. This syndrome, which can last for months after the initial infection, includes a range of neurological and neuropsychiatric manifestations that have significant implications for brain health and dementia research. This review explores the current understanding of long COVID’s cognitive, neurological, and psychiatric symptoms and their potential impact on brain stimulation and neuroimaging studies. It argues that researchers must adapt their study designs and screening processes to account for the confounding effects of long COVID and ensure the accuracy and reliability of their findings. To advance the understanding of this condition and its long-term effects on brain health, the review proposes a series of strategies, including the development of standardized screening tools, the investigation of underlying mechanisms, and the identification of risk factors and protective factors. It also emphasizes the importance of collaborative research efforts and international data sharing platforms in accelerating the pace of discovery and developing targeted interventions for individuals with long COVID. As the prevalence of this condition continues to grow, it is imperative that the neuroscience community comes together to address this challenge and support those affected by long COVID. Full article
Show Figures

Figure 1

15 pages, 2033 KiB  
Review
Sensory Integration: A Novel Approach for Healthy Ageing and Dementia Management
by Ongart Maneemai, Maira Cristina Cujilan Alvarado, Lina Graciela Calderon Intriago, Alicia Jeanette Donoso Triviño, Joicy Anabel Franco Coffré, Domenico Pratico, Kristof Schwartz, Tadele Tesfaye and Takao Yamasaki
Brain Sci. 2024, 14(3), 285; https://doi.org/10.3390/brainsci14030285 - 18 Mar 2024
Viewed by 2277
Abstract
Sensory processing is a fundamental aspect of the nervous system that plays a pivotal role in the cognitive decline observed in older individuals with dementia. The “sensory diet”, derived from sensory integration theory, may provide a tailored approach to modulating sensory experiences and [...] Read more.
Sensory processing is a fundamental aspect of the nervous system that plays a pivotal role in the cognitive decline observed in older individuals with dementia. The “sensory diet”, derived from sensory integration theory, may provide a tailored approach to modulating sensory experiences and triggering neuroplastic changes in the brain in individuals with dementia. Therefore, this review aimed to investigate the current knowledge regarding the sensory diet and its potential application to dementia. This review encompassed an extensive search across multiple databases, including PubMed, Google Scholar, covering articles published from 2010 to 2023. Keywords such as “sensory integration”, “sensory modulation”, “healthy aging”, and “dementia” were utilized to identify relevant studies. The types of materials retrieved included peer-reviewed articles, systematic reviews, and meta-analyses, ensuring a comprehensive overview of the current research landscape. This article offers a comprehensive exploration of the effectiveness of sensory diets such as tactile stimulation, auditory therapies, and visual interventions, which have demonstrated noteworthy efficacy in addressing challenges linked to aging and dementia. Research findings consistently report positive outcomes, such as improved cognitive function, elevated emotional well-being, and enhanced overall quality of life in older individuals. Furthermore, we found that the integration of sensory diets with the metaverse, augmented reality, and virtual reality opens up personalized experiences, fostering cognitive stimulation and emotional well-being for individuals during aging. Therefore, we conclude that customized sensory diets, based on interdisciplinary cooperation and leveraging technological advancements, are effective in optimizing sensory processing and improve the overall well-being of older individuals contending with sensory modulation challenges and dementia. Full article
Show Figures

Figure 1

Other

Jump to: Research, Review

24 pages, 4074 KiB  
Technical Note
Modal Analysis of Cerebrovascular Effects for Digital Health Integration of Neurostimulation Therapies—A Review of Technology Concepts
by Marcel Stefanski, Yashika Arora, Mancheung Cheung and Anirban Dutta
Brain Sci. 2024, 14(6), 591; https://doi.org/10.3390/brainsci14060591 - 10 Jun 2024
Viewed by 742
Abstract
Transcranial electrical stimulation (tES) is increasingly recognized for its potential to modulate cerebral blood flow (CBF) and evoke cerebrovascular reactivity (CVR), which are crucial in conditions like mild cognitive impairment (MCI) and dementia. This study explores the impact of tES on the neurovascular [...] Read more.
Transcranial electrical stimulation (tES) is increasingly recognized for its potential to modulate cerebral blood flow (CBF) and evoke cerebrovascular reactivity (CVR), which are crucial in conditions like mild cognitive impairment (MCI) and dementia. This study explores the impact of tES on the neurovascular unit (NVU), employing a physiological modeling approach to simulate the vascular response to electric fields generated by tES. Utilizing the FitzHugh–Nagumo model for neuroelectrical activity, we demonstrate how tES can initiate vascular responses such as vasoconstriction followed by delayed vasodilation in cerebral arterioles, potentially modulated by a combination of local metabolic demands and autonomic regulation (pivotal locus coeruleus). Here, four distinct pathways within the NVU were modeled to reflect the complex interplay between synaptic activity, astrocytic influences, perivascular potassium dynamics, and smooth muscle cell responses. Modal analysis revealed characteristic dynamics of these pathways, suggesting that oscillatory tES may finely tune the vascular tone by modulating the stiffness and elasticity of blood vessel walls, possibly by also impacting endothelial glycocalyx function. The findings underscore the therapeutic potential vis-à-vis blood-brain barrier safety of tES in modulating neurovascular coupling and cognitive function needing the precise modulation of NVU dynamics. This technology review supports the human-in-the-loop integration of tES leveraging digital health technologies for the personalized management of cerebral blood flow, offering new avenues for treating vascular cognitive disorders. Future studies should aim to optimize tES parameters using computational modeling and validate these models in clinical settings, enhancing the understanding of tES in neurovascular health. Full article
Show Figures

Figure 1

18 pages, 638 KiB  
Systematic Review
Cognitive, Emotional, and Daily Functioning Domains Involved in Decision-Making among Patients with Mild Cognitive Impairment: A Systematic Review
by Federica Alfeo, Tiziana Lanciano, Chiara Abbatantuono, Giorgia Gintili, Maria Fara De Caro, Antonietta Curci and Paolo Taurisano
Brain Sci. 2024, 14(3), 278; https://doi.org/10.3390/brainsci14030278 - 14 Mar 2024
Cited by 2 | Viewed by 1914
Abstract
Mild cognitive impairment (MCI) is a transitional or prodromal stage of dementia in which autonomies are largely preserved (autonomies are not particularly affected). However, this condition may entail a depletion of decision-making (DM) abilities likely due to a gradual deterioration of the prefrontal [...] Read more.
Mild cognitive impairment (MCI) is a transitional or prodromal stage of dementia in which autonomies are largely preserved (autonomies are not particularly affected). However, this condition may entail a depletion of decision-making (DM) abilities likely due to a gradual deterioration of the prefrontal cortex and subcortical brain areas underlying cognitive–emotional processing. Given the clinical implications of a decline in self-determination observed in some MCI sufferers, the present systematic review was aimed at investigating the literature addressing DM processes in patients with MCI, consistent with PRISMA guidelines. The six online databases inquired yielded 1689 research articles that were screened and then assessed based on eligibility and quality criteria. As a result, 41 studies were included and classified following the PICOS framework. Overall, patients with MCI who underwent neuropsychological assessment were found to be slightly or moderately impaired in DM abilities related to financial management, medical adherence, specific cognitive performances, risky conditions, and especially uncertain life circumstances. Comparative cross-sectional studies indicated not only mid-stage cognitive functioning in MCI but also borderline or deficit DM patterns evaluated through different tasks and procedures. Further research addressing MCI profiles suggested an association between explicit memory, executive functions, and DM performance. These findings highlight the diversity of MCI manifestations, in addition to the critical importance of DM features and correlates in patients’ daily functioning. Due to a lack of consensus on both MCI and DM, this review paper sought to shed light on assessment and intervention strategies accounting for the interplay between emotion, motivation, and learning to foster DM in cognitively impaired individuals. Full article
Show Figures

Figure 1

Back to TopTop