Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 26577 KiB  
Article
Using Fixed-Wing UAV for Detecting and Mapping the Distribution and Abundance of Penguins on the South Shetlands Islands, Antarctica
by Christian Pfeifer, Andres Barbosa, Osama Mustafa, Hans-Ulrich Peter, Marie-Charlott Rümmler and Alexander Brenning
Drones 2019, 3(2), 39; https://doi.org/10.3390/drones3020039 - 19 Apr 2019
Cited by 38 | Viewed by 9811
Abstract
Antarctic marine ecosystems undergo enormous changes, presumably due to climate change and fishery. Unmanned aerial vehicles (UAVs) have an unprecedented potential for measuring these changes by mapping indicator species such as penguins even in remote areas. We used a battery-powered fixed-wing UAV to [...] Read more.
Antarctic marine ecosystems undergo enormous changes, presumably due to climate change and fishery. Unmanned aerial vehicles (UAVs) have an unprecedented potential for measuring these changes by mapping indicator species such as penguins even in remote areas. We used a battery-powered fixed-wing UAV to survey colonies along a 30-km stretch of the remote coast of southwest King George Island and northwest Nelson Island (South Shetland Islands, Antarctica) during the austral summer 2016/17. With multiple flights, we covered a total distance of 317 km. We determined the exact position of 14 chinstrap penguin colonies, including two small unknown colonies, with a total abundance of 35,604 adults. To model the number of occupied nests based on the number of adults counted in the UAV imagery we used data derived from terrestrial time-lapse imagery. The comparison with previous studies revealed a decline in the total abundance of occupied nests. However, we also found four chinstrap penguin colonies that have grown since the 1980s against the general trend on the South Shetland Islands. The results proved the suitability of the use of small and lightweight fixed-wing UAVs with electric engines for mapping penguin colonies in remote areas in the Antarctic. Full article
Show Figures

Graphical abstract

15 pages, 6030 KiB  
Article
Use of Fire-Extinguishing Balls for a Conceptual System of Drone-Assisted Wildfire Fighting
by Burchan Aydin, Emre Selvi, Jian Tao and Michael J. Starek
Drones 2019, 3(1), 17; https://doi.org/10.3390/drones3010017 - 12 Feb 2019
Cited by 87 | Viewed by 30662
Abstract
This paper examines the potential use of fire extinguishing balls as part of a proposed system, where drone and remote-sensing technologies are utilized cooperatively as a supplement to traditional firefighting methods. The proposed system consists of (1) scouting unmanned aircraft system (UAS) to [...] Read more.
This paper examines the potential use of fire extinguishing balls as part of a proposed system, where drone and remote-sensing technologies are utilized cooperatively as a supplement to traditional firefighting methods. The proposed system consists of (1) scouting unmanned aircraft system (UAS) to detect spot fires and monitor the risk of wildfire approaching a building, fence, and/or firefighting crew via remote sensing, (2) communication UAS to establish and extend the communication channel between scouting UAS and fire-fighting UAS, and (3) a fire-fighting UAS autonomously traveling to the waypoints to drop fire extinguishing balls (environmental friendly, heat activated suppressants). This concept is under development through a transdisciplinary multi-institutional project. The scope of this paper encloses general illustration of this design, and the experiments conducted so far to evaluate fire extinguishing balls. The results of the experiments show that smaller size fire extinguishing balls available in the global marketplace attached to drones might not be effective in aiding in building fires (unless there are open windows in the buildings already). On the contrary, results show that even the smaller size fire extinguishing balls might be effective in extinguishing short grass fires (around 0.5 kg size ball extinguished a circle of 1-meter of short grass). This finding guided the authors towards wildfire fighting rather than building fires. The paper also demonstrates building of heavy payload drones (around 15 kg payload), and the progress of development of an apparatus carrying fire-extinguishing balls attachable to drones. Full article
Show Figures

Figure 1

20 pages, 4178 KiB  
Article
A Hybrid Communication Scheme for Efficient and Low-Cost Deployment of Future Flying Ad-Hoc Network (FANET)
by Muhammad Asghar Khan, Ijaz Mansoor Qureshi and Fahimullah Khanzada
Drones 2019, 3(1), 16; https://doi.org/10.3390/drones3010016 - 11 Feb 2019
Cited by 115 | Viewed by 20348
Abstract
In recent years, FANET-related research and development has doubled, due to the increased demands of unmanned aerial vehicles (UAVs) in both military and civilian operations. Equipped with more capabilities and unique characteristics, FANET is able to play a vital role in mission-critical applications. [...] Read more.
In recent years, FANET-related research and development has doubled, due to the increased demands of unmanned aerial vehicles (UAVs) in both military and civilian operations. Equipped with more capabilities and unique characteristics, FANET is able to play a vital role in mission-critical applications. However, these distinctive features enforce a series of guidelines to be considered for its efficient deployment. Particularly, the use of FANET for on-time data communication services presents demanding challenges in terms of energy efficiency and quality of service (QoS). Proper use of communication architecture and wireless technology will assist to solve these challenges. Therefore, in this paper, we review different communication architectures, including the existing wireless technologies, in order to provide seamless wireless connectivity. Based on the discussions, we conclude that a multi-layer UAV ad-hoc network is the most suitable architecture for networking a group of heterogeneous UAVs, while Bluetooth 5 (802.15.1) is the most favored option because of its low-cost, low power consumption, and longer transmission range for FANET. However, 802.15.1 has the limitation of a lower data rate as compared to Wi-Fi (802.11). Therefore, we propose a hybrid wireless communication scheme so as to utilize the features of the high data transmission rate of 802.11 and the low-power consumption of 802.15.1. The proposed scheme significantly reduces communication cost and improves the network performance in terms of throughput and delay. Further, simulation results using the Optimized Network Engineering Tool (OPNET) further support the effectiveness of our proposed scheme. Full article
(This article belongs to the Special Issue Advances in Drone Communications, State-of-the-Art and Architectures)
Show Figures

Figure 1

14 pages, 3312 KiB  
Article
Assessing the Accuracy of Digital Surface Models Derived from Optical Imagery Acquired with Unmanned Aerial Systems
by Salvatore Manfreda, Petr Dvorak, Jana Mullerova, Sorin Herban, Pietro Vuono, José Juan Arranz Justel and Matthew Perks
Drones 2019, 3(1), 15; https://doi.org/10.3390/drones3010015 - 30 Jan 2019
Cited by 46 | Viewed by 9258
Abstract
Small unmanned aerial systems (UASs) equipped with an optical camera are a cost-effective strategy for topographic surveys. These low-cost UASs can provide useful information for three-dimensional (3D) reconstruction even if they are equipped with a low-quality navigation system. To ensure the production of [...] Read more.
Small unmanned aerial systems (UASs) equipped with an optical camera are a cost-effective strategy for topographic surveys. These low-cost UASs can provide useful information for three-dimensional (3D) reconstruction even if they are equipped with a low-quality navigation system. To ensure the production of high-quality topographic models, careful consideration of the flight mode and proper distribution of ground control points are required. To this end, a commercial UAS was adopted to monitor a small earthen dam using different combinations of flight configurations and by adopting a variable number of ground control points (GCPs). The results highlight that optimization of both the choice and combination of flight plans can reduce the relative error of the 3D model to within two meters without the need to include GCPs. However, the use of GCPs greatly improved the quality of the topographic survey, reducing error to the order of a few centimeters. The combined use of images extracted from two flights, one with a camera mounted at nadir and the second with a 20° angle, was found to be beneficial for increasing the overall accuracy of the 3D model and especially the vertical precision. Full article
(This article belongs to the Special Issue Drones for Topographic Mapping)
Show Figures

Graphical abstract

15 pages, 5444 KiB  
Article
UAVs for Hydrologic Scopes: Application of a Low-Cost UAV to Estimate Surface Water Velocity by Using Three Different Image-Based Methods
by Paschalis Koutalakis, Ourania Tzoraki and George Zaimes
Drones 2019, 3(1), 14; https://doi.org/10.3390/drones3010014 - 28 Jan 2019
Cited by 63 | Viewed by 9892
Abstract
Stream velocity and flow are very important parameters that must be measured accurately to develop effective water resource management plans. There are various methods and tools to measure the velocity but, nowadays, image-based methods are a promising alternative that does not require physical [...] Read more.
Stream velocity and flow are very important parameters that must be measured accurately to develop effective water resource management plans. There are various methods and tools to measure the velocity but, nowadays, image-based methods are a promising alternative that does not require physical contact with the water body. The current study describes the application of a low cost unmanned aerial vehicle that was selected in order to capture a video over a specific reach of Aggitis River in Greece. The captured frames were analyzed by three different software (PIVlab, PTVlab, and KU-STIV) in order to estimate accurately the surface water velocity. These three software also represent three different image-based methodologies. Although there are differences among these three methods, the analysis produced similar trends for all. The velocity ranged between 0.02 and 3.98 m/s for PIVlab, 0.12 and 3.44 m/s for PTVlab, and 0.04 and 3.99 m/s for KU-STIV software. There were parts, especially in the existing vegetation, where differences were observed. Further applications will be examined in the same or different reaches, to study the parameters affecting the analysis. Finally, the image-based methods will be coupled with verification measurements by a current meter to produce more rigorous results. Full article
Show Figures

Figure 1

18 pages, 3820 KiB  
Article
Collaboration of Drone and Internet of Public Safety Things in Smart Cities: An Overview of QoS and Network Performance Optimization
by Saeed H. Alsamhi, Ou Ma, M. Samar Ansari and Sachin Kumar Gupta
Drones 2019, 3(1), 13; https://doi.org/10.3390/drones3010013 - 27 Jan 2019
Cited by 113 | Viewed by 12845
Abstract
This paper studies the network performance of collaboration between the Internet of public safety things (IoPST) and drones. Drones play a vital role in delivering timely and essential wireless communication services for the recovery of services right after a disaster by increasing surge [...] Read more.
This paper studies the network performance of collaboration between the Internet of public safety things (IoPST) and drones. Drones play a vital role in delivering timely and essential wireless communication services for the recovery of services right after a disaster by increasing surge capacity for the purposes of public safety, exploring areas that are difficult to reach, and providing an area of rapid coverage and connectivity. To provide such critical facilities in the case of disasters and for the purposes of public safety, collaboration between drones and IoPST is able to support public safety requirements such as real-time analytics, real-time monitoring, and enhanced decision-making to help smart cities meet their public safety requirements. Therefore, the deployment of drone-based wireless communication can save people and ecosystems by helping public safety organizations face threats and manage crises in an efficient manner. The contribution of this work lies in improving the level of public safety in smart cities through collaborating between smart wearable devices and drone technology. Thus, the collaboration between drones and IoPST devices establishes a public safety network that shows satisfying results in terms of enhancing efficiency and information accuracy. Full article
(This article belongs to the Special Issue Advances in Drone Communications, State-of-the-Art and Architectures)
Show Figures

Figure 1

24 pages, 7764 KiB  
Article
Implementation of a UAV–Hyperspectral Pushbroom Imager for Ecological Monitoring
by J. Pablo Arroyo-Mora, Margaret Kalacska, Deep Inamdar, Raymond Soffer, Oliver Lucanus, Janine Gorman, Tomas Naprstek, Erica Skye Schaaf, Gabriela Ifimov, Kathryn Elmer and George Leblanc
Drones 2019, 3(1), 12; https://doi.org/10.3390/drones3010012 - 15 Jan 2019
Cited by 63 | Viewed by 10197
Abstract
Hyperspectral remote sensing provides a wealth of data essential for vegetation studies encompassing a wide range of applications (e.g., species diversity, ecosystem monitoring, etc.). The development and implementation of UAV-based hyperspectral systems have gained popularity over the last few years with novel efforts [...] Read more.
Hyperspectral remote sensing provides a wealth of data essential for vegetation studies encompassing a wide range of applications (e.g., species diversity, ecosystem monitoring, etc.). The development and implementation of UAV-based hyperspectral systems have gained popularity over the last few years with novel efforts to demonstrate their operability. Here we describe the design, implementation, testing, and early results of the UAV-μCASI system, which showcases a relatively new hyperspectral sensor suitable for ecological studies. The μCASI (288 spectral bands) was integrated with a custom IMU-GNSS data recorder built in-house and mounted on a commercially available hexacopter platform with a gimbal to maximize system stability and minimize image distortion. We deployed the UAV-μCASI at three sites with different ecological characteristics across Canada: The Mer Bleue peatland, an abandoned agricultural field on Ile Grosbois, and the Cowichan Garry Oak Preserve meadow. We examined the attitude data from the flight controller to better understand airframe motion and the effectiveness of the integrated Differential Real Time Kinematic (RTK) GNSS. We describe important aspects of mission planning and show the effectiveness of a bundling adjustment to reduce boresight errors as well as the integration of a digital surface model for image geocorrection to account for parallax effects at the Mer Bleue test site. Finally, we assessed the quality of the radiometrically and atmospherically corrected imagery from the UAV-μCASI and found a close agreement (<2%) between the image derived reflectance and in-situ measurements. Overall, we found that a flight speed of 2.7 m/s, careful mission planning, and the integration of the bundling adjustment were important system characteristics for optimizing the image quality at an ultra-high spatial resolution (3–5 cm). Furthermore, environmental considerations such as wind speed (<5 m/s) and solar illumination also play a critical role in determining image quality. With the growing popularity of “turnkey” UAV-hyperspectral systems on the market, we demonstrate the basic requirements and technical challenges for these systems to be fully operational. Full article
Show Figures

Graphical abstract

23 pages, 849 KiB  
Review
Drones for Conservation in Protected Areas: Present and Future
by Jesús Jiménez López and Margarita Mulero-Pázmány
Drones 2019, 3(1), 10; https://doi.org/10.3390/drones3010010 - 9 Jan 2019
Cited by 194 | Viewed by 46361
Abstract
Park managers call for cost-effective and innovative solutions to handle a wide variety of environmental problems that threaten biodiversity in protected areas. Recently, drones have been called upon to revolutionize conservation and hold great potential to evolve and raise better-informed decisions to assist [...] Read more.
Park managers call for cost-effective and innovative solutions to handle a wide variety of environmental problems that threaten biodiversity in protected areas. Recently, drones have been called upon to revolutionize conservation and hold great potential to evolve and raise better-informed decisions to assist management. Despite great expectations, the benefits that drones could bring to foster effectiveness remain fundamentally unexplored. To address this gap, we performed a literature review about the use of drones in conservation. We selected a total of 256 studies, of which 99 were carried out in protected areas. We classified the studies in five distinct areas of applications: “wildlife monitoring and management”; “ecosystem monitoring”; “law enforcement”; “ecotourism”; and “environmental management and disaster response”. We also identified specific gaps and challenges that would allow for the expansion of critical research or monitoring. Our results support the evidence that drones hold merits to serve conservation actions and reinforce effective management, but multidisciplinary research must resolve the operational and analytical shortcomings that undermine the prospects for drones integration in protected areas. Full article
(This article belongs to the Special Issue Drones for Biodiversity Conservation and Ecological Monitoring)
Show Figures

Figure 1

16 pages, 6596 KiB  
Article
Greenness Indices from a Low-Cost UAV Imagery as Tools for Monitoring Post-Fire Forest Recovery
by Asier R. Larrinaga and Lluis Brotons
Drones 2019, 3(1), 6; https://doi.org/10.3390/drones3010006 - 6 Jan 2019
Cited by 61 | Viewed by 9418
Abstract
During recent years unmanned aerial vehicles (UAVs) have been increasingly used for research and application in both agriculture and forestry. Nevertheless, most of this work has been devoted to improving accuracy and explanatory power, often at the cost of usability and affordability. We [...] Read more.
During recent years unmanned aerial vehicles (UAVs) have been increasingly used for research and application in both agriculture and forestry. Nevertheless, most of this work has been devoted to improving accuracy and explanatory power, often at the cost of usability and affordability. We tested a low-cost UAV and a simple workflow to apply four different greenness indices to the monitoring of pine (Pinus sylvestris and P. nigra) post-fire regeneration in a Mediterranean forest. We selected two sites and measured all pines within a pre-selected plot. Winter flights were carried out at each of the sites, at two flight heights (50 and 120 m). Automatically normalized images entered an structure from motion (SfM) based photogrammetric software for restitution, and the obtained point cloud and orthomosaic processed to get a canopy height model and four different greenness indices. The sum of pine diameter at breast height (DBH) was regressed on summary statistics of greenness indices and the canopy height model. Excess green index (ExGI) and green chromatic coordinate (GCC) index outperformed the visible atmospherically resistant index (VARI) and green red vegetation index (GRVI) in estimating pine DBH, while canopy height slightly improved the models. Flight height did not severely affect model performance. Our results show that low cost UAVs may improve forest monitoring after disturbance, even in those habitats and situations where resource limitation is an issue. Full article
(This article belongs to the Special Issue Drones for Biodiversity Conservation and Ecological Monitoring)
Show Figures

Figure 1

12 pages, 3630 KiB  
Article
Classification of Lowland Native Grassland Communities Using Hyperspectral Unmanned Aircraft System (UAS) Imagery in the Tasmanian Midlands
by Bethany Melville, Arko Lucieer and Jagannath Aryal
Drones 2019, 3(1), 5; https://doi.org/10.3390/drones3010005 - 5 Jan 2019
Cited by 32 | Viewed by 5584
Abstract
This paper presents the results of a study undertaken to classify lowland native grassland communities in the Tasmanian Midlands region. Data was collected using the 20 band hyperspectral snapshot PhotonFocus sensor mounted on an unmanned aerial vehicle. The spectral range of the sensor [...] Read more.
This paper presents the results of a study undertaken to classify lowland native grassland communities in the Tasmanian Midlands region. Data was collected using the 20 band hyperspectral snapshot PhotonFocus sensor mounted on an unmanned aerial vehicle. The spectral range of the sensor is 600 to 875 nm. Four vegetation classes were identified for analysis including Themeda triandra grassland, Wilsonia rotundifolia, Danthonia/Poa grassland, and Acacia dealbata. In addition to the hyperspectral UAS dataset, a Digital Surface Model (DSM) was derived using a structure-from-motion (SfM). Classification was undertaken using an object-based Random Forest (RF) classification model. Variable importance measures from the training model indicated that the DSM was the most significant variable. Key spectral variables included bands two (620.9 nm), four (651.1 nm), and 11 (763.2 nm) from the hyperspectral UAS imagery. Classification validation was performed using both the reference segments and the two transects. For the reference object validation, mean accuracies were between 70% and 72%. Classification accuracies based on the validation transects achieved a maximum overall classification accuracy of 93. Full article
(This article belongs to the Special Issue Drones for Biodiversity Conservation and Ecological Monitoring)
Show Figures

Figure 1

38 pages, 4962 KiB  
Article
Survey on Coverage Path Planning with Unmanned Aerial Vehicles
by Tauã M. Cabreira, Lisane B. Brisolara and Paulo R. Ferreira Jr.
Drones 2019, 3(1), 4; https://doi.org/10.3390/drones3010004 - 4 Jan 2019
Cited by 398 | Viewed by 36795
Abstract
Coverage path planning consists of finding the route which covers every point of a certain area of interest. In recent times, Unmanned Aerial Vehicles (UAVs) have been employed in several application domains involving terrain coverage, such as surveillance, smart farming, photogrammetry, disaster management, [...] Read more.
Coverage path planning consists of finding the route which covers every point of a certain area of interest. In recent times, Unmanned Aerial Vehicles (UAVs) have been employed in several application domains involving terrain coverage, such as surveillance, smart farming, photogrammetry, disaster management, civil security, and wildfire tracking, among others. This paper aims to explore and analyze the existing studies in the literature related to the different approaches employed in coverage path planning problems, especially those using UAVs. We address simple geometric flight patterns and more complex grid-based solutions considering full and partial information about the area of interest. The surveyed coverage approaches are classified according to a classical taxonomy, such as no decomposition, exact cellular decomposition, and approximate cellular decomposition. This review also contemplates different shapes of the area of interest, such as rectangular, concave and convex polygons. The performance metrics usually applied to evaluate the success of the coverage missions are also presented. Full article
Show Figures

Graphical abstract

Back to TopTop