ijms-logo

Journal Browser

Journal Browser

Exosomes—3rd Edition

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Biology".

Deadline for manuscript submissions: 20 March 2025 | Viewed by 3637

Special Issue Editor


E-Mail
Guest Editor
Robert C. Byrd Biotechnology Science Center, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
Interests: genetic markers; sleep apnea; exosomes; single cell; snRNA-seq; metabolic dysfunction; animal models for sleep apnea
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Intercellular Communication between neighbored and distant cells are crucial for cell survival and responding to endocrine signaling. Exosomes, a class of extracellular vesicle (EVs) involved in cell to cell communication, are released by most of all biological fluids and emerging as novel cell-cell communication mediators in physiological and pathological conditions. These exosomes differ from other EVs based on their biogenesis, release pathways, size content, and function. Furthermore, these exosomes have shown to carry cell-specific cargos such as lipids, proteins, and miRNAs, mRNAs, and other genetic materials, and can be selectively taken up by neighboring or distant cells far from their release, which may ultimately reprogram the recipient cells distal from their release. Thus, exosomes and their biologically active cargos may offer potential biomarkers of diagnosis and therapeutic targets in a range of diseases, such as chronic inflammation, obesity, cardiovascular, neurodegenerative diseases, metabolic diseases, and tumors. This special issue aims to present new knowledge and covers all the topics relevant to exosomes in human cancers, cardiovascular, obesity, sleep, and neurogenerative deficit. We invite researchers to contribute either with original research or review articles focusing on every aspect regarding the role and function of exosomes in healthy and pathological conditions including the onset and progression of cancer, sleep, and heart diseases.

Due to the success of the 1st and 2nd editions, we would like to add more results and new insights from recent research projects.

https://www.mdpi.com/journal/ijms/special_issues/exosome

https://www.mdpi.com/journal/ijms/special_issues/VD106X1HQK

You can read more my publications at the following link: https://pubmed.ncbi.nlm.nih.gov/?term=khalyfa+a%2C+exosomes&sort=date&show_snippets=off

Dr. Abdelnaby Khalyfa
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • extracellular vesicles (EVs)
  • exosomes
  • cancer
  • sleep cardiovascular diseases
  • lung disease and upper airways
  • obesity
  • sleep and end-organ morbidity

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Related Special Issues

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 2167 KiB  
Article
Small Extracellular Vesicles Derived from Cord Blood Plasma and Placental Mesenchymal Stem Cells Attenuate Acute Lung Injury Induced by Lipopolysaccharide (LPS)
by Ranga P. Thiruvenkataramani, Amal Abdul-Hafez, Tulasi Kesaraju, Hend Mohamed, Sherif Abdelfattah Ibrahim, Amira Othman, Hattan Arif, Ahmed A. Zarea, Mohammed Abdulmageed, Myrna Gonzalez Arellano, Tarek Mohamed, Masamitsu Kanada, Burra V. Madhukar and Said A. Omar
Int. J. Mol. Sci. 2025, 26(1), 75; https://doi.org/10.3390/ijms26010075 - 25 Dec 2024
Viewed by 1144
Abstract
Sepsis is a risk factor associated with increasing neonatal morbidity and mortality, acute lung injury, and chronic lung disease. While stem cell therapy has shown promise in alleviating acute lung injury, its effects are primarily exerted through paracrine mechanisms rather than local engraftment. [...] Read more.
Sepsis is a risk factor associated with increasing neonatal morbidity and mortality, acute lung injury, and chronic lung disease. While stem cell therapy has shown promise in alleviating acute lung injury, its effects are primarily exerted through paracrine mechanisms rather than local engraftment. Accumulating evidence suggests that these paracrine effects are mediated by mesenchymal stem cell (MSC)-derived small extracellular vesicles (sEVs), which play a critical role in immune system modulation and tissue regeneration. sEVs contain a diverse cargo of mRNA, miRNA, and proteins, contributing to their therapeutic potential. We hypothesize that sEVs derived from three distinct sources, cord blood plasma (CBP), Wharton jelly (WJ), and placental (PL) MSCs, may prevent the cytotoxicity induced by E. coli lipopolysaccharide (LPS) in lung alveolar epithelial cells. Objective: To determine the effects of CBP-, WJ-, and PL-MSCs-derived sEVs on cell viability, apoptosis, and proinflammatory cytokine production in alveolar epithelial cells and monocytes following LPS treatment. sEVs were collected from conditioned media of PL-MSCs, WJ-MSCs, and CBP using 50 nm membrane filters. sEVs were characterized based on nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), and Western blotting techniques. The protein concentration of isolated sEVs was used to standardize treatment doses. A549 cells and monocyte THP-1 cells were cultured and exposed to LPS in the presence or absence of sEVs for 72 h. Cell viability was measured using CellTiter-Glo 2.0 chemiluminescence-based assay. For cytokine analysis, A549 and THP-1 cells were pre-incubated for 24 h with or without PL- and CBP-sEVs, followed by exposure to LPS or control conditions for an additional 24 h. The conditioned media were collected, and interleukin-6 (IL-6) and interleukin-8 (IL-8) levels were quantified using ELISA. LPS treatment significantly reduced the viability of both A549 and THP-1 cells. The presence of CB- or WJ-sEVs significantly increased cell viability compared to controls. Cells treated with PL-sEVs showed increased cell viability but did not reach statistical significance. LPS-treated cells showed a significant increase in apoptosis and elevated levels of pro-inflammatory cytokines IL-6 and IL-8. All three sEVs types (CBP-, WJ-, and PL-sEVs) significantly reduced LPS-induced apoptosis and IL-6 release. Interestingly, while WJ-sEVs decreased IL-8, both CBP- and PL-sEVs led to an increase in IL-8 compared to their respective controls. CBP-, PL-, and WJ-derived sEVs demonstrated protective effects against LPS-induced injury in alveolar epithelial cells and monocytes, as evidenced by increased cell viability and modulation of pro-inflammatory cytokine release. These findings suggest that placenta-derived sEVs have the potential to modulate the immune response, mitigate inflammation, and prevent end-organ damage in neonatal sepsis. Full article
(This article belongs to the Special Issue Exosomes—3rd Edition)
Show Figures

Figure 1

8 pages, 8360 KiB  
Communication
Exosome Therapy: A Novel Approach for Enhancing Estrogen Levels in Perimenopause
by Samar Alkhrait, Mervat M. Omran, Mohammad Mousaei Ghasroldasht, Hang-Soo Park, Riham Katkhuda and Ayman Al-Hendy
Int. J. Mol. Sci. 2024, 25(13), 7075; https://doi.org/10.3390/ijms25137075 - 27 Jun 2024
Viewed by 1581
Abstract
Perimenopause significantly impacts women’s health globally, often managed with hormone replacement therapy (HRT) despite the associated risks. This study explores a novel alternative exosome therapy, aimed at stimulating estrogen production in ovarian tissues, thus offering a potential non-hormonal treatment for perimenopausal symptoms. Employing [...] Read more.
Perimenopause significantly impacts women’s health globally, often managed with hormone replacement therapy (HRT) despite the associated risks. This study explores a novel alternative exosome therapy, aimed at stimulating estrogen production in ovarian tissues, thus offering a potential non-hormonal treatment for perimenopausal symptoms. Employing ex vivo methodologies, ovarian cortex specimens from perimenopausal women were treated with exosomes derived from human umbilical cord mesenchymal stem cells and cultured under specific conditions (patent number: PCT/US2022/073467). The exosomes were produced under cyclic guanosine monophosphate (cGMP) conditions, ensuring high safety standards. Estrogen levels were quantified using enzyme-linked immunosorbent assay (ELISA), and gene expression changes in estrogen and follicle-stimulating hormone (FSH) receptors were assessed via quantitative polymerase chain reaction (PCR). Immunohistochemistry (IHC) was utilized to evaluate cellular proliferation and apoptotic markers. The results indicated a significant increase in estrogen levels and estrogen receptor-alpha (Erα) expression in treated tissues compared to controls. Additionally, a decrease in apoptotic markers and an increase in cellular proliferation markers were observed. These findings suggest that exosome therapy can effectively enhance estrogen production and modulate receptor sensitivity in perimenopausal ovarian tissues. This approach could serve as a safer alternative to HRT, aligning with the body’s natural regulatory mechanisms and potentially offering a more effective treatment option for managing perimenopausal symptoms. Full article
(This article belongs to the Special Issue Exosomes—3rd Edition)
Show Figures

Figure 1

Back to TopTop