ijms-logo

Journal Browser

Journal Browser

Advances in Bioactive Molecules

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Biology".

Deadline for manuscript submissions: 20 February 2025 | Viewed by 907

Special Issue Editor


E-Mail Website
Guest Editor
Centre for Textile Science and Technology, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
Interests: antimicrobial agents; regenerative cues; drug delivery; biomaterials; wound healing; medical textiles; polymer processing; nano- and microfiber scaffolding systems
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Bioactive molecules have propelled biomedical research into a new era of innovation. These compounds, found in diverse sources such as plants, marine life and microorganisms, exhibit potent biological activities with implications for medicine and drug development. Breakthroughs in analytical techniques, such as high-throughput screening and advanced imaging, enable the precise characterization of bioactive molecules, facilitating targeted drug design. The synergy of bioinformatics and computational biology expedites the identification of promising molecules, streamlining the drug discovery process. Moreover, chemistry empowers the engineering of microorganisms or plants for an enhanced production of bioactive compounds, fostering sustainable and tailored approaches to a variety of therapies. As our understanding deepens and technologies evolve, the exploration of bioactive molecules continues to reshape healthcare, offering promising solutions for diverse medical challenges.

In this Special Issue, original studies on all aspects related to the advancements in bioactive agents are welcome, in particular for therapeutic and pharmaceutical uses. It will also cover reports providing new insights into the molecular basis of such bioactive compounds or new engineered sources.

Dr. Helena P. Felgueiras
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • antimicrobial profile
  • drug discovery
  • tissue regeneration
  • analytical techniques
  • chemical synthesis
  • high-throughput screening
  • therapeutic development
  • surface functionalization
  • biomaterial integration
  • bio-based

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

21 pages, 9715 KiB  
Article
Chemokine Receptor N-Terminus Charge Dictates Reliance on Post-Translational Modifications for Effective Ligand Capture and Following Boosting by Defense Peptides
by Ting Xu, Anne Sophie Schou, Jarkko J. Lackman, Marina Barrio-Calvo, Lisa Verhallen, Christoffer Knak Goth, Benjamin Anderschou Holbech Jensen, Christopher T. Veldkamp, Brian F. Volkman, Francis C. Peterson and Gertrud Malene Hjortø
Int. J. Mol. Sci. 2024, 25(19), 10854; https://doi.org/10.3390/ijms251910854 - 9 Oct 2024
Viewed by 465
Abstract
The chemokine receptors CCR1 and CCR5 display overlapping expression patterns and ligand dependency. Here we find that ligand activation of CCR5, not CCR1, is dependent on N-terminal receptor O-glycosylation. Release from O-glycosylation dependency is obtained by increasing CCR5 N-terminus acidity to the level [...] Read more.
The chemokine receptors CCR1 and CCR5 display overlapping expression patterns and ligand dependency. Here we find that ligand activation of CCR5, not CCR1, is dependent on N-terminal receptor O-glycosylation. Release from O-glycosylation dependency is obtained by increasing CCR5 N-terminus acidity to the level of CCR1. Ligand activation of CCR5, not CCR1, drastically improves in the absence of glycosaminoglycans (GAGs). Ligand activity at both CCR1 and CCR5 is boosted by positively charged/basic peptides shown to interact with acidic chemokine receptor N-termini. We propose that receptors with an inherent low N-terminus acidity rely on post-translational modifications (PTMs) to efficiently compete with acidic entities in the local environment for ligand capture. Although crucial for initial ligand binding, strong electrostatic interactions between the ligand and the receptor N-terminus may counteract following insertion of the ligand into the receptor binding pocket and activation, a process that seems to be aided in the presence of basic peptides. Basic peptides bind to the naked CCR1 N-terminus, not the CCR5 N-terminus, explaining the loss of boosting of ligand-induced signaling via CCR5 in cells incapable of glycosylation. Full article
(This article belongs to the Special Issue Advances in Bioactive Molecules)
Show Figures

Figure 1

Back to TopTop