ijms-logo

Journal Browser

Journal Browser

Melanins and Melanogenesis 4.0: From Nature to Applications

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Bioactives and Nutraceuticals".

Deadline for manuscript submissions: closed (30 March 2024) | Viewed by 5472

Special Issue Editors


E-Mail Website
Guest Editor
Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 4, I-80126 Naples, Italy
Interests: polyphenol antioxidants of dietary origin; conjugates of polyphenols with sulphydryl compounds of biological relevance; antioxidants from marine sources; valorization of agri food wastes; synthesis and exploitation of biopolymers from natural polyphenols; chemistry and structural investigation of natural polymers from catechols including human epidermal pigments melanins; oxidation chemistry of catecholamines in relation to neurodegenerative disorders; design and preparation of polydopamine related biomaterials with peculiar adhesive properties
Special Issues, Collections and Topics in MDPI journals

E-Mail
Guest Editor
Institute for Melanin Chemistry, Fujita Health University, Toyoake 470-1192, Japan
Interests: structure and properties of melanins; chemistry of melanogenesis; chemical analysis of melanins; effects of ultraviolet radiation and visible light on melanins; effects of heat on melanins; chemistry of tyrosinase-catalyzed oxidation of phenols
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA 02125, USA
Interests: enzymology; post translational modifications; aromatic metabolism; phenolic biochemistry; reactions of quinonoid compounds; invertebrate immunity; insect cuticular sclerotization; phenoloxidase; quinone isomerases; oxidative browning; melanin biosynthesis; catecholic antibiotics
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues, 

Melanins are a vast class of biopolymers that are widespread in all types of organisms. They are responsible for the variety of skin, hair, and eye pigmentation in humans and other mammals, determine the colors of avian feathers, reptiles, amphibians, fishes, and insects, but largely occur also in lower organisms such as fungi and bacteria.

In humans, two main types of melanins are found, the black insoluble eumelanin, characterizing dark phenotypes; and the reddish-brown, sulfur-containing pheomelanin, typical of red-haired individuals. In addition, substantia nigra neuromelanin and extracutaneous melanins of the inner ear and iridial epithelium are known. Both eumelanins and pheomelanins are produced within melanocytes by a complex biosynthetic pathway involving the tyrosinase-catalyzed oxidation of tyrosine.

Many factors, either enzymatic or not, intervene in the melanogenic pathway, ultimately determining the eumelanin and pheomelanin pigmentation. Dysregulation of these control mechanisms results in a variety of pigmentary disorders, from melasma to vitiligo, bearing severe pathological implications and often dramatic aesthetic impacts.

Intense research work over the past few decades has disclosed a variety of roles for melanin pigments, from photoprotection to photosensitization, from antioxidant defense to metal/drug binding. Neuromelanin is believed to be involved in neurodegeneration, and to be related to Parkinson's disease.

However, we have yet to fully appreciate how these peculiar properties of melanin pigments and how the tuning of melanogenesis could be exploited for developing strategies for the control of melanin disorders, photoprotection, the implementation of all-natural or bioinspired antioxidants, metal detoxification, ingredients for cosmetic or dermocosmetic uses.

This Special Issue takes advantage of the open-access format to offer a novel and stimulating perspective of the field. It is especially directed to translate the results of basic and academic research to applications that may arouse the interest of researchers from industries and companies who are willing to develop innovative melanin- or melanogenesis-based solutions.

Contributions to this Special Issue may cover all aspects of the chemistry of natural and synthetic melanins with potential applications, melanogenesis inhibitors via the definition of the mechanism of action, approaches for the amelioration or control of all types of melanin-based pigmentary disorders, and photoprotection strategies; innovative methodologies for the analysis of pigmented tissues and for diagnostic purposes; molecular engineering methodologies for melanin production in microorganisms; and novel functions of melanins of potential application interest, drug targeting, and exploiting the specific affinity of melanins.

Experimental papers, up-to-date review articles, and commentaries are all welcome.

Prof. Dr. Alessandra Napolitano
Prof. Dr. Shosuke Ito
Prof. Dr. Manickam Sugumaran
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • eumelanin
  • photoprotection
  • biological activities
  • antioxidant
  • depigmenting agents
  • melanogenesis
  • dermocosmetics
  • pigmentary disorders
  • pheomelanin
  • extracutaneous melanins

Related Special Issues

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

16 pages, 3090 KiB  
Article
Eumelanin Detection in Melanized Focal Changes but Not in Red Focal Changes on Atlantic Salmon (Salmo salar) Fillets
by Kazumasa Wakamatsu, Johannes M. Dijkstra, Turid Mørkøre and Shosuke Ito
Int. J. Mol. Sci. 2023, 24(23), 16797; https://doi.org/10.3390/ijms242316797 - 27 Nov 2023
Cited by 1 | Viewed by 1846
Abstract
Superficial discolored spots on Atlantic salmon (Salmo salar) fillets are a serious quality problem for commercial seafood farming. Previous reports have proposed that the black spots (called melanized focal changes (MFCs)) may be melanin, but no convincing evidence has been reported. [...] Read more.
Superficial discolored spots on Atlantic salmon (Salmo salar) fillets are a serious quality problem for commercial seafood farming. Previous reports have proposed that the black spots (called melanized focal changes (MFCs)) may be melanin, but no convincing evidence has been reported. In this study, we performed chemical characterization of MFCs and of red pigment (called red focal changes (RFCs)) from salmon fillets using alkaline hydrogen peroxide oxidation and hydroiodic acid hydrolysis. This revealed that the MFCs contain 3,4-dihydroxyphenylalanine (DOPA)-derived eumelanin, whereas the RFCs contain only trace amounts of eumelanin. Therefore, it is probable that the black color of the MFCs can be explained by the presence of eumelanin from accumulated melanomacrophages. For the red pigment, we could not find a significant signature of either eumelanin or pheomelanin; the red color is probably predominantly hemorrhagic in nature. However, we found that the level of pigmentation in RFCs increased together with some melanogenic metabolites. Comparison with a “mimicking experiment”, in which a mixture of a salmon homogenate + DOPA was oxidized with tyrosinase, suggested that the RFCs include conjugations of DOPAquinone and/or DOPAchrome with salmon muscle tissue proteins. In short, the results suggest that melanogenic metabolites in MFCs and RFCs derive from different chemical pathways, which would agree with the two different colorations deriving from distinct cellular origins, namely melanomacrophages and red blood cells, respectively. Full article
(This article belongs to the Special Issue Melanins and Melanogenesis 4.0: From Nature to Applications)
Show Figures

Figure 1

Review

Jump to: Research

14 pages, 964 KiB  
Review
Role of Dermal Factors Involved in Regulating the Melanin and Melanogenesis of Mammalian Melanocytes in Normal and Abnormal Skin
by Tomohisa Hirobe
Int. J. Mol. Sci. 2024, 25(8), 4560; https://doi.org/10.3390/ijms25084560 - 22 Apr 2024
Viewed by 216
Abstract
Mammalian melanin is produced in melanocytes and accumulated in melanosomes. Melanogenesis is supported by many factors derived from the surrounding tissue environment, such as the epidermis, dermis, and subcutaneous tissue, in addition to numerous melanogenesis-related genes. The roles of these genes have been [...] Read more.
Mammalian melanin is produced in melanocytes and accumulated in melanosomes. Melanogenesis is supported by many factors derived from the surrounding tissue environment, such as the epidermis, dermis, and subcutaneous tissue, in addition to numerous melanogenesis-related genes. The roles of these genes have been fully investigated and the molecular analysis has been performed. Moreover, the role of paracrine factors derived from epidermis has also been studied. However, the role of dermis has not been fully studied. Thus, in this review, dermis-derived factors including soluble and insoluble components were overviewed and discussed in normal and abnormal circumstances. Dermal factors play an important role in the regulation of melanogenesis in the normal and abnormal mammalian skin. Full article
(This article belongs to the Special Issue Melanins and Melanogenesis 4.0: From Nature to Applications)
Show Figures

Figure 1

32 pages, 3085 KiB  
Review
Recent Advances in Characterization of Melanin Pigments in Biological Samples
by Kazumasa Wakamatsu and Shosuke Ito
Int. J. Mol. Sci. 2023, 24(9), 8305; https://doi.org/10.3390/ijms24098305 - 05 May 2023
Cited by 7 | Viewed by 3019
Abstract
The melanin pigments eumelanin (EM) and pheomelanin (PM), which are dark brown to black and yellow to reddish-brown, respectively, are widely found among vertebrates. They are produced in melanocytes in the epidermis, hair follicles, the choroid, the iris, the inner ear, and other [...] Read more.
The melanin pigments eumelanin (EM) and pheomelanin (PM), which are dark brown to black and yellow to reddish-brown, respectively, are widely found among vertebrates. They are produced in melanocytes in the epidermis, hair follicles, the choroid, the iris, the inner ear, and other tissues. The diversity of colors in animals is mainly caused by the quantity and quality of their melanin, such as by the ratios of EM versus PM. We have developed micro-analytical methods to simultaneously measure EM and PM and used these to study the biochemical and genetic fundamentals of pigmentation. The photoreactivity of melanin has become a major focus of research because of the postulated relevance of EM and PM for the risk of UVA-induced melanoma. Our biochemical methods have found application in many clinical studies on genetic conditions associated with alterations in pigmentation. Recently, besides chemical degradative methods, other methods have been developed for the characterization of melanin, and these are also discussed here. Full article
(This article belongs to the Special Issue Melanins and Melanogenesis 4.0: From Nature to Applications)
Show Figures

Figure 1

Back to TopTop