ijms-logo

Journal Browser

Journal Browser

Latest Review Papers in Biochemistry 2024

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Biochemistry".

Deadline for manuscript submissions: closed (30 June 2024) | Viewed by 1876

Special Issue Editor


E-Mail
Guest Editor
Department of Chemistry, Universita degli Studi di Pavia, 27100 Pavia, Italy
Interests: biological oxidations; bioinorganic neurochemistry; heme proteins; copper proteins; metal-peptide complexes; metal-amyloid complexes; oxidative stress and neurodegeneration; neuromelanin and Parkinson's disease; catecholamine metabolism and toxicity
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue aims to collect high-quality review papers in all fields of Biochemistry. We encourage researchers from related fields to contribute review papers highlighting the latest developments in Biochemistry, or to invite relevant experts and colleagues to do so. Full-length comprehensive reviews will be preferred.

Prof. Dr. Luigi Casella
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biochemistry
  • latest developments in biochemistry
  • fields of biochemistry

 

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Review

35 pages, 19094 KiB  
Review
Tracking of Ubiquitin Signaling through 3.5 Billion Years of Combinatorial Conjugation
by Alena N. Kaminskaya, Alena S. Evpak, Alexey A. Belogurov, Jr. and Anna A. Kudriaeva
Int. J. Mol. Sci. 2024, 25(16), 8671; https://doi.org/10.3390/ijms25168671 - 8 Aug 2024
Viewed by 388
Abstract
Ubiquitination is an evolutionary, ancient system of post-translational modification of proteins that occurs through a cascade involving ubiquitin activation, transfer, and conjugation. The maturation of this system has followed two main pathways. The first is the conservation of a universal structural fold of [...] Read more.
Ubiquitination is an evolutionary, ancient system of post-translational modification of proteins that occurs through a cascade involving ubiquitin activation, transfer, and conjugation. The maturation of this system has followed two main pathways. The first is the conservation of a universal structural fold of ubiquitin and ubiquitin-like proteins, which are present in both Archaea and Bacteria, as well as in multicellular Eukaryotes. The second is the rise of the complexity of the superfamily of ligases, which conjugate ubiquitin-like proteins to substrates, in terms of an increase in the number of enzyme variants, greater variation in structural organization, and the diversification of their catalytic domains. Here, we examine the diversity of the ubiquitination system among different organisms, assessing the variety and conservation of the key domains of the ubiquitination enzymes and ubiquitin itself. Our data show that E2 ubiquitin-conjugating enzymes of metazoan phyla are highly conservative, whereas the homology of E3 ubiquitin ligases with human orthologues gradually decreases depending on “molecular clock” timing and evolutionary distance. Surprisingly, Chordata and Echinodermata, which diverged over 0.5 billion years ago during the Cambrian explosion, share almost the same homology with humans in the amino acid sequences of E3 ligases but not in their adaptor proteins. These observations may suggest that, firstly, the E2 superfamily already existed in its current form in the last common metazoan ancestor and was generally not affected by purifying selection in metazoans. Secondly, it may indicate convergent evolution of the ubiquitination system and highlight E3 adaptor proteins as the “upper deck” of the ubiquitination system, which plays a crucial role in chordate evolution. Full article
(This article belongs to the Special Issue Latest Review Papers in Biochemistry 2024)
Show Figures

Figure 1

33 pages, 7517 KiB  
Review
Insecticidal Triterpenes in Meliaceae III: Plant Species, Molecules, and Activities in Munronia–Xylocarpus
by Meihong Lin, Xiaohui Liu, Jiaxin Chen, Jiguang Huang and Lijuan Zhou
Int. J. Mol. Sci. 2024, 25(14), 7818; https://doi.org/10.3390/ijms25147818 - 17 Jul 2024
Viewed by 453
Abstract
Plants of the Meliaceae family have long attracted researchers’ interest due to their various insecticidal activities, with triterpenes being the main active ingredients. In this paper, we discuss 93 triterpenoids with insecticidal activity from 37 insecticidal plant species of 15 genera (Munronia [...] Read more.
Plants of the Meliaceae family have long attracted researchers’ interest due to their various insecticidal activities, with triterpenes being the main active ingredients. In this paper, we discuss 93 triterpenoids with insecticidal activity from 37 insecticidal plant species of 15 genera (Munronia, Neobeguea, Pseudocedrela, Nymania, Quivisia, Ruagea, Dysoxylum, Soymida, Lansium, Sandoricum, Walsura, Trichilia, Swietenia, Turraea, and Xylocarpus) in the family Meliaceae. Among these genera, Trichilia deserves further research, with twelve species possessing insecticidal activity. The 93 insecticidal molecules included 27 ring-seco limonoids (comprising 1 ring A-seco group chemical, 1 ring B-seco group chemical, 5 ring D-seco group chemicals, 14 rings A,B-seco group chemicals, 5 rings B,D-seco group chemicals, and 1 rings A,B,D-seco group chemical), 22 ring-intact limonoids (comprising 5 cedrelone-class chemicals, 6 trichilin-class chemicals, 7 havanensin-class chemicals, 2 azadirone-class chemicals, 1 vilasinin-class chemical, and 1 other chemical), 33 2,30-linkage chemicals (comprising 25 mexicanolide-class chemicals and 8 phragmalin-class chemicals), 3 1,n-linkage-group chemicals, 3 onoceranoid-type triterpenoids, 2 apotirucallane-type terpenoids, 2 kokosanolide-type tetranortriterpenoids, and 1 cycloartane triterpene. In particular, 59 molecules showed antifeedant activity, 30 molecules exhibited poisonous effects, and 9 molecules possessed growth regulatory activity. Particularly, khayasin, beddomei lactone, 3β,24,25-trihydroxycycloartane, humilinolides A–E and methyl-2-hydroxy-3β-isobutyroxy-1-oxomeliac-8(30)-enate showed excellent insecticidal activities, which were comparable to that of azadirachtin and thus deserved more attention. Moreover, it was noteworthy that various chemicals (such as 12α-diacetoxywalsuranolide, 11β,12α-diacetoxycedrelone, 1α,7α,12α-triacetoxy-4α-carbomethoxy-11β-hydroxy-14β,15β-epoxyhavanensin, and 11-epi-21-hydroxytoonacilide, etc.) from Turraea showed excellent insecticidal activity. Specially, the insecticidal activity of khayasin from Neobeguea against the coconut leaf beetle were similar to that of rotenone. Therefore, it was a promising candidate insecticide for the control of the coconut leaf beetle. Full article
(This article belongs to the Special Issue Latest Review Papers in Biochemistry 2024)
Show Figures

Figure 1

23 pages, 641 KiB  
Review
Aquaporins: Gatekeepers of Fluid Dynamics in Traumatic Brain Injury
by Wojciech Czyżewski, Jakub Litak, Jan Sobstyl, Tomasz Mandat, Kamil Torres and Grzegorz Staśkiewicz
Int. J. Mol. Sci. 2024, 25(12), 6553; https://doi.org/10.3390/ijms25126553 - 14 Jun 2024
Viewed by 636
Abstract
Aquaporins (AQPs), particularly AQP4, play a crucial role in regulating fluid dynamics in the brain, impacting the development and resolution of edema following traumatic brain injury (TBI). This review examines the alterations in AQP expression and localization post-injury, exploring their effects on brain [...] Read more.
Aquaporins (AQPs), particularly AQP4, play a crucial role in regulating fluid dynamics in the brain, impacting the development and resolution of edema following traumatic brain injury (TBI). This review examines the alterations in AQP expression and localization post-injury, exploring their effects on brain edema and overall injury outcomes. We discuss the underlying molecular mechanisms regulating AQP expression, highlighting potential therapeutic strategies to modulate AQP function. These insights provide a comprehensive understanding of AQPs in TBI and suggest novel approaches for improving clinical outcomes through targeted interventions. Full article
(This article belongs to the Special Issue Latest Review Papers in Biochemistry 2024)
Show Figures

Figure 1

Back to TopTop